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Abstract 
 
Trust-region methods are popular for nonlinear optimization problems. How to determine the predicted re-
duction of the trust-region subproblem is a key issue for trust-region methods. Powell gave an estimation of 
the lower bound of the trust-region subproblem by considering the negative gradient direction. In this article, 
we give an alternate way to estimate the same lower bound of the trust-region subproblem. 
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1. Introduction 
 
There are many methods for solving an unconstrained 
optimization problem  

  ,min
nx

f x


                  (1) 

where f  is a smooth function. Line search methods [1,2] 
and trust-region methods [3] are the two popular classes 
of methods for the problem (1). In this article, we consi- 
der the trust-region method for this problem. The trust- 
region method for the problem (1) need to solve the fol- 
lowing trust-region subproblem at every step:  

  1
  ,min

2
T T

k k k
ns

 q s g s s B s            (2) 

subject to  ,k s                (3) 

where  =k kf xg  is the gradient of the objective fun- 
ction  f   at the current approximation solution kx , 

kB  is an n  by n  symmetric matrix which approxi- 
mates the Hessian matrix of f , and > 0k  is a trust- 
region radius. 

It is a key issue to estimate the lower bound of the 
trust-region subproblem (2) and (3) for analyzing the 
global convergence of the trust-region methods for the 
problem (1) [1-5]. Powell [5] obtained a lower bound of 

the subproblem (2) and (3) by considering the quadratic 
model  k sq along the negative gradient direction kg . 
In the next section we give an alternate way to obtain the 
same estimation of its lower bound. Throughout the 
paper   denotes the Euclidean vector norm or its in- 
duced matrix norm.  
 
2. A New Estimation Technique 
 
In this section, we give an alternate way to estimate the 
lower bound and upper bound of    0k k kq q s , res- 
pectively, where ks  is the solution of the subproblem (2) 
and (3). Firstly, we give the well-known properties of the 
trust-region problem [6,7]:  

Lemma 2.1 Vector ks  is a solution of the problem 
(2)-(3) iif k k s  and there exists 0k   to satisfy  

  = ,k k k k B I s g               (4) 

  0,k kB I                  (5) 

  = 0,k k k   s               (6) 

where n n
k

B  is a symmetric matrix.  
This lemma can be proved by the KKT (Karush-Kuhn- 

Tucker) conditions for the constraint optimization pro- 
blem [4]. 

Powell [5] obtained an estimation of the lower bound 
of    0k kq q s  in the trust region k s  as fol- 
lows:  

Lemma 2.2 (Powell, 1975 [5]) If ks  is a solution of 
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(2) and (3), then  

     1
0 min , .

2k k k k k k k  q q s g B g     (7) 

The estimation of the predicted reduction (7) is a key 
property to analyze the convergence of the trust-region 
method. Here, we are interested in the question whether 
we can obtain the analogous result of (7) if we directly 
consider the solution of (4) and (5). Our motivation is 
that we obtain the solution of the trust-region subpro- 
blem (2) and (3) by solving (4)-(6), and we need to dire- 
ctly consider the search direction ks  of (4) and its res- 
tricted step [2] or the parameter k  [8-11] for some tru- 
st region methods. Therefore, we give an alternate way to 
estimate the lower bound of    0k k kq q s  by directly 
considering the solution (4)-(6) of the trust-region sub- 
problem (2) and (3). 

Lemma 2.3 If 0k   such that (5) is satisfied and 

ks  is a solution of (4), then  

     1
0 min , .

2k k k k k k k q q s g s g B    (8) 

Proof. From (4) we get  

= .T T T
k k k k k k k k s B s s s g s          (9) 

Combining the above equality and (4)-(5), we have  
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(10) 

where  k k
B I  is the generalized inverse of k kB I. 

Now we consider the properties of the function  

  2 21
.k k

k

  


 


s g
B

       (11) 

It is not difficult to know that the function     is 
convex when > 0k  B , since  

   32
= 2 0k k    g B . Thus, the function      

attains its minimizer  min   when min  satisfies  

  = 0min   and k   B , i.e.  

  2
= 2 ,min k k k k  g s B s        (12) 

when  

= , and > .min k k k min k  g s B B    (13) 

We will prove this property by distinguishing two 
cases separately, namely min  is nonnegative or negative. 

When k k kg s B , from (13), we have 0min  . 
In this case, combining 0k   with (10)-(13), we obtain  
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The other case is <k k kg s B , which gives 
< 0min  from (13). Since the function     is mono- 

tonically increasing for all 0k    when  
<k k kg s B , from (10) and (11), we obtain  
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Combining (14) with (15), we obtain  

     1
0 min , .

2k k k k k k k q q s g g B s   (16) 

When = 0k  which shows the constraint is inactive, 
from (4) and (5), and the definition of  kq s , we have  

    21 1
0 =

2 2
T

k k k k k k k k
 q q s g B g g B    (17) 

which shows that (8) is also true. □ 
 
3. Conclusions 
 
In this article, we give an alternate way to estimate the 
lower bound of the trust-region method. This new te- 
chnique can be applied to analyze the convergence of 
trajectory-following methods for unconstrained optimi- 
zation problems [9-11]. The interested future works is 
that this new technique is applied to estimate the lower 
bound of the trust-region subproblem of the constraint 
optimization. 
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