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Abstract 

In this paper we consider a problem of investigating the dependence of    
p

P Rz P rz  on  
p

P z  

for every real or complex number   with 1  , > 1R r  , > 0p  and present certain compact generali- 

zations which, besides yielding some interesting results as corollaries, include some well-known results, in 
particular, those of Zygmund, Bernstein, De-Bruijn, Erdös-Lax and Boas and Rahman as special cases. 
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1. Introduction 
 
Let  nP z  denote the space of all complex polynomials 

  =0
=

n j
jj

P z a z  of degree at most n . For nP P , 

define  

   
1

2

0

1
:= ,1 <

2

p
p

i

p
P z P e p

 


    
   

and  

   
=1

:= max .
z

P z P z


 

A famous result known as Bernstein’s inequality(for 
reference,see[1] or [2]) states that if nP P ,then  

   'P z n P z


             (1) 

whereas concerning the maximum modulus of  P z  on 
the circle = > 1z R , we have  

    ,nP Rz R P z
 
           (2) 

(for reference, see [3]). Inequalities (1) and (2) can be 
obtained by letting p   in the inequalities  

    , 1'

pp
P z n P z p          (3) 

and  

    , > 1, > 0,n

p p
P Rz R P z R p     (4) 

respectively. Inequality (3) was found by Zygmund [4] 
whereas inequality (4) is a simple consequence of a re- 
sult of Hardy [5] (see also [6]). Since Inequality (3) was 
deduced from M.Riesz's interpolation formula [7] by 

means of Minkowski’s inequality,it was not clear, whe- 
ther the restriction on p was indeed essential. This 
question was open for a long time. Finally Arestov [8] 
proved that (3) remains true for 0 < < 1p  as well. Both 
the Inequalities (3) and (4) can be sharpened if we res- 
trict ourselves to the class of polynomials having no zero 
in < 1z . In fact, if nP P  and   0P z   in < 1z , 
then Inequalities (3) and (4) can be respectively replaced 
by  

 
 

, 0
1

p'

p
p

P z
P z n p

z
 


       (5) 

and  

   
1

, > 1, > 0.
1

n

p

p p
p

R z
P Rz P z R p

z





(6) 

Inequality (5) is due to De-Bruijn [9] for 1p   and 
Rahman and Schmeisser [10] extended it for 0 < < 1p  
whereas the Inequality (6) was proved by Boas and 
Rahman [11] for 1p   and later it was extended for 
0 < < 1p  by Rahman and Schmeisser[12]. For =p  , 
the Inequality (5) was conjectured by Erdös and later 
verified by Lax [13] whereas Inequality (6) was proved 
by Ankeny and Rivlin [14]. 

Recently the Authors in [12] (see also [15]) investi- 
gated the dependence of  

     on 
p p

P Rz P z P z  

for > 1R , 1.p   As a compact generalization of 
Inequalities (3) and (4), they have shown that if nP P , 
then for every > 1R  and 1,p    



A. AZIZ  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  AM 

322

       1 .n

p p
P Rz P z R P z        (7) 

It is natural to seek the corresponding analog of (7) for 
polynomials nP P  having no zero in < 1z  and 
which is a compact generalization of Inequalities (5) and 
(6). In the present paper we consider a more general pro- 
blem of investigating the dependence of  

      on 
p p

P Rz P rz P z  

for every real or complex number   with 1  , 
> 1R r  , > 0p  and develop a unified method for arri- 

ving at these results. We first present the following inter- 
esting result and a compact generalization of Inequalities 
(3) and (4), which also extends Inequality (7) for 
0 < < 1p  as well. 

Theorem 1. If nP P , then for every real or complex 

number   with 1  , > 1R r   and > 0p ,  

      .n n

p p
P Rz P rz R r P z      (8) 

The result is best possible and equality in (8) holds for 
  = , 0.nP z az a   
Remark 1. For = 0 , Theorem 1 reduces to Inequality 

(4) and for = 1 , = 1r , it validates Inequality (7) for 
each > 0p . 

If we set = 1  in Inequality (8), we immediately get 
the following generalization of Inequality (7). 

Corollary 1. If nP P , then for > 1R r   and 
> 0p   

        .n n

p p
P Rz P rz R r P z      (9) 

The result is best possible and equality in (9) holds for 
  = , 0.nP z az a   
If we divide the two sides of Inequality (9) by 

 R r  and let R r , we get: 
Corollary 2. If nP P , then for 1r   and > 0p ,  

   1 .' n

pp
P rz nr P z      (10) 

Remark 2. For = 1r , Corollary 2 reduces to 
Zygmund’s Inequality (3) for each > 0p . 

The following result which is a compact generalization 
of Inequalities of (1) and (2) follows from Theorem 1 by 
letting p   in Inequality (8). 

Corollary 3. If nP P , then for every real or 
complex number   with 1   and > 1R r  ,  

     
=1

max for = 1.n n

z
P Rz P rz R r P z z     

 (11) 
The result is best possible and equality in (11) holds 

for   = , 0.nP z az a   

Remark 3. For = 0 , Corollary 3 reduces to 
Inequality (2) and for = 1 , if we divide the two sides 

of (11) by R r  and let R r , it follows that if 

nP P , then for 1r  ,  

   1

=1
max for = 1.' n

z
P rz nr P z z      (12) 

Inequality (12) reduces to Bernstein’s Inequality (1) 
for = 1r . 

For polynomials nP P  having no zero in < 1z , 
we next prove the following interesting improvement of 
(8) which among other things include De-Bruijn’s theo- 
rem (Inequality (5)) and a result of Boas and Rahman 
(Inequality (6)) as special cases. 

Theorem 2. If nP P  and  P z  does not vanish in 

< 1z , then for every real or complex number   with 

1  , > 1R r   and > 0p   

   
   

 
1

.
1

n n

p

p p
p

R r z
P Rz P rz P z

z

 


  
 


 

(13) 
The result is best possible and equality in (13) holds 

for   = , = = 1.nP z az b a b  

For = 0 , Theorem 2 reduces to Inequality (6). A 
variety of interesting results can be easily deduced from 
Theorem 2. Here we mention a few of these. The 
following corollary immediately follows from Theorem 
2 by taking = 1 . 

Corollary 4. If nP P  and  P z  does not vanish 
in < 1z , then for > 1R r   and > 0p ,  

   
 

  .
1

n n

p p
p

R r
P Rz P rz P z

z


 


  (14) 

The result is sharp and equality in (14) holds for 
( ) = , = = 1.nP z az b a b  
Remark 4. For = 1r , if we divide the two sides of 

(14) by 1R   and let 1R  ,we immediately get 
De-Bruijn’s theorem (Inequality (5)) for each > 0p . 

Next we mention the following compact generaliza-  
tion of a theorem of Erdös and Lax (Inequality (5) for 
p   ) and a result of Ankeny and Rivlin (Inequality (5) 

for p   ) which immediately follows from Theorem 2 
by letting p   in (13). 

Corollary 5. If nP P  and  P z  does not vanish 
in < 1z , then for every real or complex number   
with 1   and > 1R r  ,  

     
=1

1
max

2
                      for = 1.

n n

z

R r
P Rz P rz P z

z

 


  
 

 (15) 

The result is best possible and equality in (15) holds 
for   = , = = 1.nP z az b a b  
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Remark 5. For = 1 , if we divide the two sides of 
(15) by R r  and let R r ,we get  

   1

=1
max for = 1.

2
' n

z

n
P rz r P z z     (16) 

For = 1r , Inequality (16) was conjectured by Erdös 
and later verified by Lax[10]. If we take = 0  in 
(15),we immediately get  

   1
, > 1.

2

nR
P Rz P z R

 


       (17) 

Inequality (17) is due to Ankeny and Rivlin [1]. 
A polynomial nP P  is said to be self-inversive if 

   =P z uQ z for all z C where = 1u and   =Q z  

(1 )nz P z . It is known[16, 17] that if nP P  is self- 

inversive polynomial, then for every 1p  ,  

 
 

,
1

p'

p
p

P z
P z n

z



           (18) 

Finally, we present the following result which include 
some well-known results for self-inversive polynomials 
as special cases. 

Theorem 3. If nP P  is self-inversive polynomial, 
then for every real or complex number   with 1  , 

> 1R r   and > 0,p   

   
   

 
1

.
1

n n

p

p p
p

R r z
P Rz P rz P z

z

 


  
 


 

(19) 
The result is best possible and equality in (19) holds 

for   = 1nP z z  . 
Remark 6. Taking = 0  in Theorem 3, it follows 

that if nP P  is self-inversive polynomial, then for 
> 1R  and > 0,p   

 
 

 
1

.
1

n

p

p p
p

R z
P Rz P z

z





   (20) 

The result is sharp. 
Many interesting results can be deduced from Theorem 

3 in exactly the same way as we have deduced from The- 
orem 2. 

 
2. Lemmas  

For the proofs of these theorems, we need the following 
lemmas. 

Lemma 1. If nP P  and  P z  has all its zeros in 
z k  where 1k  , then for every 1R r   and  

= 1z , 

    .
n

R k
P Rz P rz

r k

    
         (21) 

Proof of Lemma 1. Since all the zeros of  P z  lie 
in z k , we write  

   
=1

=
n i j

j
j

P z C z r e


  

where jr k . Now for 0 < 2  , 1R r  , we 
have  




1 22 2

2 2

2
=

2

ii j
j j j j

ii j
j j jj

Re r e R r Rr Cos

r r rr Cosre r e





 
 

     
 

     
 

, = 1, 2, , .j

j

R r R k
j n

r r r k

             
  

Hence  

 
  =1

=

ii i jn
j

ii i j
j

j

P Re Re r e

P re re r e

 

 




  

=1

=
nn

j

R k R k

r k r k

            
  

for 0 < 2  . This implies for = 1z  and > 1R r  ,  

    ,
n

R k
P Rz P rz

r k

    
 

which completes the proof of Lemma 1. 
Lemma 2. If nP P  and  P z  does not vanish in 
< 1z , then for every real or complex number   with 

1  , 1R r  , and = 1z ,  

       P Rz P rz Q Rz P rz       (22) 

where   = (1 )nQ z z P z .The result is sharp and 

equality in (22) holds for   = 1nP z z  . 

Proof of Lemma 2. For the case =R r , the result 
follows by observing that    P z Q z  for 1z  . 
Henceforth, we assume that >R r . Since the polynomi-  
al  P z  has all its zeros in 1z  , therefore, for every 

real or complex number   with > 1 , the polynomi-  

al      =f z P z Q z , where   = (1 )nQ z z P z , has 

all its zeros in 1z  . Applying Lemma 1 to the 

polynomial  f z  with = 1k , we obtain for every 

> 1R r   and 0 < 2  ,  

   1
.

1

n
i iR

f Re f re
r

     
      (23) 

Since   0if Re    for every > 1,0 < 2R r     
and 1 > 1R r  , it follows from (23) that  
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     1
>

1

n
i i ir

f Re f Re f re
R

      
 

for every > 1R r   and 0 < 2  . This gives  

   <f rz f Rz ,  

for 1z   and > 1R r  . 

Using Rouche’s theorem and noting that all the zeros 

of  f Rz  lie in 
1

< 1,z
R

  we conclude that the 

polynomial  

     
         

=

       =

T z f Rz f rz

P Rz P rz Q Rz Q rz



  



  
 (24) 

has all its zeros in < 1z  for every real or complex 
number ,   with 1, > 1   and > 1R r  . This 
implies  

       P Rz P rz Q Rz Q rz        (25) 

for 1z   and > 1R r  . If Inequality (25) is not true, 
then exist a point =z w  with 1w   such that  

       > .P Rw P rw Q Rw Q rw    

But all the zeros of  Q z  lie in 1z  , therefore, it 

follows (as in case of  f z ) that all the zeros of 

   Q Rz Q rz  lie in < 1z . Hence 

    0Q Rw Q rw   with 1w  . We take  

   
   

= ,
P Rw P rw

Q Rw Q rw








 

then   is a well defined real or complex number with 
> 1  and with this choice of  , from (24) we obtain 

  = 0T w  where 1w  . This contradicts the fact that 
all the zeros of ( )T z  lie in < 1z . Thus  

       P Rz P rz Q Rz Q rz     

for 1z   and > 1R r  . This proves Lemma 2. 
Next we describe a result of Arestov. 

For  0 1= , , , n     and   =0
=

n j
j nj

P z a z P , 

we define 

 
=0

= .
n

j
j j

j

P z a z    

The operator   is said to be admissible if it pre- 
serves one of the following properties: 

1)  P z  has all its zeros in  : 1 ,z C z   

2)  P z  has all its zeros in : 1 ,z C z   

The result of Arestov may now be stated as follows. 
Lemma 3. [8] Let    =x logx   where   is a 

convex nondecreasing function on .R  Then for all 

nP P  and each admissible operator  , 

       2 2

0 0
,i iP e d C n P e d

  
        

where    0, = ax , .nC n    

In particular, Lemma 3 applies with : px x   for 
every  0,p  . Therefore, we have  

       
1 1

2 2

0 0
, .

p pp p
i iP e d C n P e d

  
      

  
(26) 

We use (26) to prove the following interesting result. 
Lemma 4. If nP P  and  P z  does not vanish in 
< 1z , then for every real or complex number   with 

1, > 1R r   , > 0p  and   real, 

    
    

     

2

0

2

0
1 .

i i

p
i n i n i

p p
n n i i

P Re P re

e R P e R r P e r d

R r e P e d

  

  

 



 

  



 

   





(27) 

Proof of Lemma 4. Let    = 1nQ z z P z . Since 

 P z  does not vanish in < 1z , by Lemma 2, for every 

real or complex number   with 1, > 1R r    and 

= 1z ,we have 

   
       = n n

P Rz P rz

Q Rz Q rz R P z R r P z r



 



  
 

Now(as in the proof of Lemma 2), the polynomial  

         = = 1 1n n n nH z Q Rz Q rz R z P Rz r z P rz    

has all its zeros in < 1z  for every real or complex 
number   with 1   and >R r , it follows that the 
polynomial 

     1 =n n nz H z R P z R r P z r  

has all its zeros in > 1z . Hence the function  

     
   

=
n n

P Rz P rz
f z

R P z R r P z r







 

is analytic in 1z   and   1f z   for = 1z . Since 
 f z  is not a constant, it follows by the Maximum 

Modulus Principle that  

  < 1  for < 1,f z z  

or equivalently, 

       <  for < 1.n nP Rz P rz R P z R r P z r z    

(28) 

A direct application of Rouche’s theorem shows that 
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    0

=

= 1

   ( 1

i n n

n n i n
n

i n n

P z P Rz P rz

e R P z R r P z r

R r e a z

e R r a













 

 

 

 

  

    

 

does not vanish in < 1z  for every   with 1,   
> 1R r   and   real. Therefore,   is admissibe 

operator. Applying (26) of Lemma 3, the desired result 
follows immediately for each > 0p . This completes the 
proof of Lemma 4. 

From lemma 4, we deduce the following more general 
lemma which is a result of independent interest with 
variety of application. 

Lemma 5. If nP P , then for every real or complex 
number   with 1, > 1R r   , > 0p  and   
real, 

    
    

    

2

0

2

0
1 .

i i

p
i n i n i

p p
n n i i

P Re P re

e R P e R r P e r d

R r e P e d

  

  

 



 

  



 

   





   (29) 

The result is sharp and equality in (29) holds for 
  = , 0nP z z    
Proof of Lemma 5. Since  P z  is a polynomial of 

degree at most n , we can write 

         1 2
=1 = 1

= = , 1
k n

j j
j j k

P z P z P z z z z z k


     

where all the zeros of  1P z  lie in 1z   and all the 

zeros of  2P z  lie in < 1z . First we suppose that 

 1P z  has no zero on = 1z  so that all the zeros of 

 1P z  lie in > 1z . Let    2 2= 1n kQ z z P z , then all 

the zeros of  2Q z  lie in > 1z  and    2 2=Q z P z  

for = 1z . Now consider the polynomial 

         1 2
=1 = 1

= = 1 ,
k n

j j
j j k

g z P z Q z z z zz


    

then all the zeros of  g z lie in > 1z  and for = 1z , 

           1 2 1 2= = = .g z P z Q z P z P z P z  (30) 

By the Maximum Modulus Principle, it follows that  

     for 1.P z g z z         (31) 

We claim that the polynomial      =h z P z g z  
does not vanish in 1z   for every   with > 1 . If 
this is not true, then  0 = 0h z  for some 0z  with 

0 1z  . This gives  

   0 0= .P z g z  

Since  0 0g z   and > 1 , it follows that  

   0 0 0> with 1,P z g z z   

which clearly contradicts (31). Thus  h z  does not 
vanish in 1z   for every   with > 1 , so that all 
the zeros of  h z  lie in z   for some > 1  and 
hence all the zeros of  h z  lie in 1z  . Applying 
(28) to the polynomial  h z , we get 

       <

                for < 1, > 1.

n nh R z h r z R h z R r h z r

z R r

      


 

Taking = ,0 < 2iz e     , then  = 1 < 1z   as 

> 1  and we get 

       < ,i i n i n ih Re h re R h e R r h e r       

0 < 2  , > 1R r   and 1  . This implies 

       <  for = 1.n nh Rz h rz R h z R r h z r z    

An application of Rouche’s theorem shows that the 
polynomial 

           = i n nT z h Rz h rz e R h z R r h z r     

does not vanish in 1z   for every real or complex 
number   with 1,  > 1R r   and   real. 
Replacing  h z  by    P z h z , it follows that the 
polynomial 

           = i n nT z P Rz P rz e R P z R r P z r     

          i n ng Rz g rz e R g z R r g z r       

(32) 

does not vanish in 1z   for every ,   with 1   
and > 1 . This implies 

         
         

i n n

i n n

P Rz P rz e R P z R r P z r

g Rz g rz e R g z R r g z r





 

 

  

   
 

(33) 
for 1z  , 1  , > 1R r   and   real. If Ine- 
quality (33) is not true, then there is a point 0=z z  with 

0 1z   such that  

         0 0 0 0
i n nP Rz P rz e R P z R r P z r   

        0 0 0 0> ( ) .i n ng Rz g rz e R g z R r g z r     

Since all the zeros of polynomials  g z  lie in > 1z , 

it follows (as before) that all the zeros of polynomial  

         i n ng Rz g rz e R g z R r g z r    also li- 
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e in > 1z  for every real or complex number   with 
1  , > 1R r   and   real. Hence 

        0 0 0 0

0

0  

                            with 1.

i n ng Rz g rz e R g z R r g z r

z

    


 

We take 

         
         

0 0 0 0

0 0 0 0

=
i n n

i n n

P Rz P rz e R P z R r P z r

g Rz g rz e R g z R r g z r







 

 

  


  

 

so that   is a well-defined real or complex number 
with > 1  and with this choice of  , from (32) we 
get  0 = 0T z  with 0 1z   This clearly is a con- 
tradiction to the fact that  T z  does not vanish in 

1z  . Thus for every   with 1  , > 1R r   and 
  real, 

         
         

i n n

i n n

P Rz P rz e R P z R r P z r

g Rz g rz e R g z R r g z r





 

 

  

   
 

for | | 1z  , which in particular gives for each > 0p  
and 0 < 2  ,  

    
    

    
    

2

0

2

0

 

i i

p
i n i n i

i i

p
i n i n i

P Re P re

e R P e R r P e r d

g Re g re

e R g e R r g e r d

  

  

  

  



 



 



 

 

 




 

Using lemma 4 and (30), it follows that for every   
with 1  , >R r , > 0p  and   real,  

    
    

    
    

2

0

2

0

2

0

1

= 1 .

i i

p
i n i n i

p p
n n i i

p p
n n i i

P Re P re

e R P e R r P e r d

R r e g e d

R r e P e d

  

  

 

 



 

  

  



 

   

  







  (34) 

Now if  1P z  has a zero on = 1z , then applying 
(34) to the polynomial      *

1 2=P z P tz P z  where 
< 1t , we get for every   with 1  , > 1R r  , 
> 0p  and   real,  

    
    

    

2 * *

0

* *

2 *

0
1 .

i i

p
i n i n i

p p
n n i i

P Re P re

e R P e R r P e r d

R r e P e d

  

  

 



 

  



 

   





  (35) 

Letting 1t   in (35) and using continuity, the 
desired result follows immediately and this proves 
Lemma 5.  
 
3. Proofs of the Theorems  
 
Proof of Theorem 1. Since  P z  is a polynomial of 
degree at most n , we can write  

         1 2
=1 = 1

= = , 1
k n

j j
j j k

P z P z P z z z z z k


     

where all the zeros of  1P z  lie in 1z   and all the 

zeros of  2P z  lie in > 1z . First we suppose that all 

the zeros of  1P z  lie in < 1z . Let    2 2= 1n kQ z z P z , 

then all the zeros of  2Q z  lie in < 1z  and 

   2 2=Q z P z  for = 1z . Now consider the poly- 
nomial 

         1 2
=1 = 1

= = 1 ,
k n

j j
j j k

F z P z Q z z z zz


    

then all the zeros of  F z  lie in < 1z  and for = 1z , 

           1 2 1 2= = = .F z P z Q z P z P z P z  (29) 

By the Maximum Modulus Principle, it follows that 

     for 1.P z F z z   

Since   0F z   for 1z   and > 1 , a direct 
application of Rouche’s theorem shows that the poly- 
nomial      =H z P z F z  has all its zeros in 

< 1z  for every   with > 1 . Applying lemma 1 to 
the polynomial  H z , we deduce (as before)  

   <H rz H Rz   

for = 1z  and > 1R r  . 

Since all the zeros of  H Rz  lie in 
1

< 1,z
R
  we  

conclude that for every ,   with | | 1   and | |> 1 , 
all the zeros of polynomial  

     
         

=

       =

G z H Rz H rz

P Rz P rz F Rz F rz



  



  
 

lie in < 1z . This implies (as in the case of Lemma 2)  

         for 1

                 and > 1,

P Rz P rz F Rz F rz z

R r

    


 

which in particular gives for >R r  and > 0,p   

   
   

2

0

2

0

p
i i

p
i i

P Re P re d

F Re F re d

  

  

 

 



 




      (30) 
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Again, since all the zeros of  F z  lie in 1z  , as 

before,    F Rz F rz  has all its zeros in 1z   for 

every real or complex number   with 1  . There- 
fore, the operator   defined by  

     
    0

=

           = 1n n n
n

F z F Rz F rz

R r b z b

 

 

 

   
 

is admissible. Hence by (26) of Lemma (3), for each 
> 0p , we have  
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0
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i i

ppn n i

F Re F re d

R r F e d

  

 

 

 



 




      (31) 

Combining Inequalities (37) and (38) and noting that  

   =i iF e P e  , we obtain for > 1R r   and > 0p   
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0
.

pp
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R r P e d

  

 

 

 



 




    (32) 

In case  1P z  has a zero on = 1z , the Inequality 
(39) follows by using similar argument as in the case of 
Lemma 5. This completes the proof of Theorem 1. 

Proof of Theorem 2. By hypothesis nP P  and 
 P z  does not vanish in 1z  , therefore, by Lemma 2 

for every real or complex number   with 1  , 
0 < 2   and > 1R r  ,  
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n i n i

P Re P re

R P e R r P e r
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Also, by Lemma 5,  
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 (34) 

where 

     = i iF P Re P re    and 

     = .n i n iG R P e R r P e r    

Integrating both sides of (41) with respect to   from 
0 to 2 , we get for each > 0p , > 1R r   and   
real, 
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0 0

piF e G d d
        

      2 2

0 0
1

p p
n n i iR r e d P e d

           

(35) 
Now for every real  , 1t   and > 0p , we have 

2 2

0 0
1 .

p pi it e d e d
        

If   0F   , we take    =t G F  , then by (40) 
1t   and we get  
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For   = 0F  , this inequality is trivially true. Using 
this in(42), we conclude that for every real or complex 
number   with 1  , > 1R r   and   real,  
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(43) 

Since  
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    (44) 

the desired result follows immediately by combining (43) 
and (44). This completes the proof of Theorem 2. 

Proof of Theorem 3. Since  P z  is a self-inversive 

polynomial, we have    =P z uQ z  for all z C  

where = 1u  and    = 1nQ z z P z . Therefore, for 
every real or complex number   and > 1R r  ,  

       =   for all P Rz P rz Q Rz Q rz z C     

so that 

   
   
   

= = 1.
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Using this in (41) with 1   and proceeding simi- 
larly as in the proof of Theorem 2, we get the desired 
result. This completes the proof of Theorem 3.  
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