L^{p} Inequalities for Polynomials

Abdul Aziz, Nisar A. Rather
Department of Mathematics, Kashmir University, Srinagar, India
E-mail: dr.narather@gmail.com

Received July 9, 2010; revised January 14, 2011; accepted January 17, 2011

Abstract

In this paper we consider a problem of investigating the dependence of $\|P(R z)-\beta P(r z)\|_{p}$ on $\|P(z)\|_{p}$ for every real or complex number β with $|\beta| \leq 1, \quad R>r \geq 1, \quad p>0$ and present certain compact generalizations which, besides yielding some interesting results as corollaries, include some well-known results, in particular, those of Zygmund, Bernstein, De-Bruijn, Erdös-Lax and Boas and Rahman as special cases.

Keywords: L ${ }^{\text {p }}$-Inequalities, Polynomials, Complex Domain

1. Introduction

Let $P_{n}(z)$ denote the space of all complex polynomials $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree at most n. For $P \in P_{n}$, define

$$
\|P(z)\|_{p}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p}\right\}^{1 / p}, 1 \leq p<\infty
$$

and

$$
\|P(z)\|_{\infty}:=\max _{|z|=1}|P(z)| .
$$

A famous result known as Bernstein's inequality(for reference,see[1] or [2]) states that if $P \in P_{n}$, then

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{\infty} \leq n\|P(z)\|_{\infty} \tag{1}
\end{equation*}
$$

whereas concerning the maximum modulus of $P(z)$ on the circle $|z|=R>1$, we have

$$
\begin{equation*}
\|P(R z)\|_{\infty} \leq R^{n}\|P(z)\|_{\infty}, \tag{2}
\end{equation*}
$$

(for reference, see [3]). Inequalities (1) and (2) can be obtained by letting $p \rightarrow \infty$ in the inequalities

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{p} \leq n\|P(z)\|_{p}, p \geq 1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R z)\|_{p} \leq R^{n}\|P(z)\|_{p}, R>1, p>0, \tag{4}
\end{equation*}
$$

respectively. Inequality (3) was found by Zygmund [4] whereas inequality (4) is a simple consequence of a result of Hardy [5] (see also [6]). Since Inequality (3) was deduced from M.Riesz's interpolation formula [7] by
means of Minkowski's inequality,it was not clear, whether the restriction on p was indeed essential. This question was open for a long time. Finally Arestov [8] proved that (3) remains true for $0<p<1$ as well. Both the Inequalities (3) and (4) can be sharpened if we restrict ourselves to the class of polynomials having no zero in $|z|<1$. In fact, if $P \in P_{n}$ and $P(z) \neq 0$ in $|z|<1$, then Inequalities (3) and (4) can be respectively replaced by

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{p} \leq n \frac{\|P(z)\|_{p}}{\|1+z\|_{p}}, p>0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R z)\|_{p} \leq \frac{\left\|R^{n} z+1\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}, R>1, p>0 . \tag{6}
\end{equation*}
$$

Inequality (5) is due to De-Bruijn [9] for $p \geq 1$ and Rahman and Schmeisser [10] extended it for $0<p<1$ whereas the Inequality (6) was proved by Boas and Rahman [11] for $p \geq 1$ and later it was extended for $0<p<1$ by Rahman and Schmeisser[12]. For $p=\infty$, the Inequality (5) was conjectured by Erdös and later verified by Lax [13] whereas Inequality (6) was proved by Ankeny and Rivlin [14].

Recently the Authors in [12] (see also [15]) investigated the dependence of

$$
\|P(R z)-P(z)\|_{p} \text { on }\|P(z)\|_{p}
$$

for $R>1, p \geq 1$. As a compact generalization of Inequalities (3) and (4), they have shown that if $P \in P_{n}$, then for every $R>1$ and $p \geq 1$,

$$
\begin{equation*}
\|P(R z)-P(z)\|_{p} \leq\left(R^{n}-1\right)\|P(z)\|_{p} . \tag{7}
\end{equation*}
$$

It is natural to seek the corresponding analog of (7) for polynomials $P \in P_{n}$ having no zero in $|z|<1$ and which is a compact generalization of Inequalities (5) and (6). In the present paper we consider a more general problem of investigating the dependence of

$$
\|P(R z)-\beta P(r z)\|_{p} \text { on }\|P(z)\|_{p}
$$

for every real or complex number β with $|\beta| \leq 1$, $R>r \geq 1, \quad p>0$ and develop a unified method for arriving at these results. We first present the following interesting result and a compact generalization of Inequalities (3) and (4), which also extends Inequality (7) for $0<p<1$ as well.

Theorem 1. If $P \in P_{n}$, then for every real or complex number β with $|\beta| \leq 1, \quad R>r \geq 1$ and $p>0$,

$$
\begin{equation*}
\|P(R z)-\beta P(r z)\|_{p} \leq\left|R^{n}-\beta r^{n}\right|\|P(z)\|_{p} . \tag{8}
\end{equation*}
$$

The result is best possible and equality in (8) holds for $P(z)=a z^{n}, a \neq 0$.
Remark 1. For $\beta=0$, Theorem 1 reduces to Inequality (4) and for $\beta=1, r=1$, it validates Inequality (7) for each $p>0$.

If we set $\beta=1$ in Inequality (8), we immediately get the following generalization of Inequality (7).

Corollary 1. If $P \in P_{n}$, then for $R>r \geq 1$ and $p>0$

$$
\begin{equation*}
\|P(R z)-P(r z)\|_{p} \leq\left(R^{n}-r^{n}\right)\|P(z)\|_{p} . \tag{9}
\end{equation*}
$$

The result is best possible and equality in (9) holds for $P(z)=a z^{n}, a \neq 0$.
If we divide the two sides of Inequality (9) by $(R-r)$ and let $R \rightarrow r$, we get:
Corollary 2. If $P \in P_{n}$, then for $r \geq 1$ and $p>0$,

$$
\begin{equation*}
\left\|P^{\prime}(r z)\right\|_{p} \leq n r^{n-1}\|P(z)\|_{p} . \tag{10}
\end{equation*}
$$

Remark 2. For $r=1$, Corollary 2 reduces to Zygmund's Inequality (3) for each $p>0$.

The following result which is a compact generalization of Inequalities of (1) and (2) follows from Theorem 1 by letting $\quad p \rightarrow \infty$ in Inequality (8).

Corollary 3. If $P \in P_{n}$, then for every real or complex number β with $|\beta| \leq 1$ and $R>r \geq 1$,

$$
\begin{equation*}
|P(R z)-\beta P(r z)| \leq\left|R^{n}-\beta r^{n}\right| \max _{|z|=1}|P(z)| \text { for }|z|=1 \text {. } \tag{11}
\end{equation*}
$$

The result is best possible and equality in (11) holds for $P(z)=a z^{n}, a \neq 0$.

Remark 3. For $\beta=0$, Corollary 3 reduces to Inequality (2) and for $\beta=1$, if we divide the two sides
of (11) by $R-r$ and let $R \rightarrow r$, it follows that if $P \in P_{n}$, then for $r \geq 1$,

$$
\begin{equation*}
\left|P^{\prime}(r z)\right| \leq n r^{n-1} \max _{|z|=1}|P(z)| \text { for }|z|=1 \text {. } \tag{12}
\end{equation*}
$$

Inequality (12) reduces to Bernstein's Inequality (1) for $r=1$.

For polynomials $P \in P_{n}$ having no zero in $|z|<1$, we next prove the following interesting improvement of (8) which among other things include De-Bruijn's theorem (Inequality (5)) and a result of Boas and Rahman (Inequality (6)) as special cases.

Theorem 2. If $P \in P_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every real or complex number β with $|\beta| \leq 1, \quad R>r \geq 1$ and $p>0$
$\|P(R z)-\beta P(r z)\|_{p} \leq \frac{\left\|\left(R^{n}-\beta r^{n}\right) z+(1-\beta)\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}$.

The result is best possible and equality in (13) holds for $P(z)=a z^{n}+b,|a|=|b|=1$.

For $\beta=0$, Theorem 2 reduces to Inequality (6). A variety of interesting results can be easily deduced from Theorem 2. Here we mention a few of these. The following corollary immediately follows from Theorem 2 by taking $\beta=1$.

Corollary 4. If $P \in P_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for $R>r \geq 1$ and $p>0$,

$$
\begin{equation*}
\|P(R z)-P(r z)\|_{p} \leq \frac{\left(R^{n}-r^{n}\right)}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{14}
\end{equation*}
$$

The result is sharp and equality in (14) holds for $P(z)=a z^{n}+b,|a|=|b|=1$.

Remark 4. For $r=1$, if we divide the two sides of (14) by $R-1$ and let $R \rightarrow 1$, we immediately get De-Bruijn's theorem (Inequality (5)) for each $p>0$.

Next we mention the following compact generalization of a theorem of Erdös and Lax (Inequality (5) for $p=\infty$) and a result of Ankeny and Rivlin (Inequality (5) for $p=\infty$) which immediately follows from Theorem 2 by letting $p \rightarrow \infty$ in (13).

Corollary 5. If $P \in P_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every real or complex number β with $|\beta| \leq 1$ and $R>r \geq 1$,

$$
\begin{align*}
& |P(R z)-\beta P(r z)| \leq \frac{\left|R^{n}-\beta r^{n}\right|+|1-\beta|}{2} \max _{|z|=1}|P(z)| \tag{15}\\
& \text { for }|z|=1 .
\end{align*}
$$

The result is best possible and equality in (15) holds for $P(z)=a z^{n}+b,|a|=|b|=1$.

Remark 5. For $\beta=1$, if we divide the two sides of (15) by $R-r$ and let $R \rightarrow r$, we get

$$
\begin{equation*}
\left|P^{\prime}(r z)\right| \leq \frac{n}{2} r^{n-1} \max _{|z|=1}|P(z)| \text { for }|z|=1 \tag{16}
\end{equation*}
$$

For $r=1$, Inequality (16) was conjectured by Erdös and later verified by Lax[10]. If we take $\beta=0$ in (15), we immediately get

$$
\begin{equation*}
\left\|P(R z)_{\infty}\right\| \leq \frac{R^{n}+1}{2}\|P(z)\|_{\infty}, R>1 . \tag{17}
\end{equation*}
$$

Inequality (17) is due to Ankeny and Rivlin [1].
A polynomial $P \in P_{n}$ is said to be self-inversive if $P(z)=u Q(z)$ for all $z \in C$ where $|u|=1$ and $Q(z)=$ $z^{n} \overline{P(1 / \bar{z})}$. It is known[16, 17] that if $P \in P_{n}$ is selfinversive polynomial, then for every $p \geq 1$,

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{p} \leq n \frac{\|P(z)\|_{p}}{\|1+z\|_{p}}, \tag{18}
\end{equation*}
$$

Finally, we present the following result which include some well-known results for self-inversive polynomials as special cases.

Theorem 3. If $P \in P_{n}$ is self-inversive polynomial, then for every real or complex number β with $|\beta| \leq 1$, $R>r \geq 1$ and $p>0$,
$\|P(R z)-\beta P(r z)\|_{p} \leq \frac{\left\|\left(R^{n}-\beta r^{n}\right) z+(1-\beta)\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}$.

The result is best possible and equality in (19) holds for $P(z)=z^{n}+1$.

Remark 6. Taking $\beta=0$ in Theorem 3, it follows that if $P \in P_{n}$ is self-inversive polynomial, then for $R>1$ and $p>0$,

$$
\begin{equation*}
\|P(R z)\|_{p} \leq \frac{\left\|\left(R^{n} z+1\right)\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{20}
\end{equation*}
$$

The result is sharp.
Many interesting results can be deduced from Theorem 3 in exactly the same way as we have deduced from Theorem 2.

2. Lemmas

For the proofs of these theorems, we need the following lemmas.

Lemma 1. If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq k$ where $k \leq 1$, then for every $R \geq r \geq 1$ and $|z|=1$,

$$
\begin{equation*}
|P(R z)| \geq\left(\frac{R+k}{r+k}\right)^{n}|P(r z)| \tag{21}
\end{equation*}
$$

Proof of Lemma 1. Since all the zeros of $P(z)$ lie in $|z| \leq k$, we write

$$
P(z)=C \prod_{j=1}^{n}\left(z-r_{j} e^{i \theta_{j}}\right)
$$

where $r_{j} \leq k$. Now for $0 \leq \theta<2 \pi, R \geq r \geq 1$, we have

$$
\begin{gathered}
\left|\frac{R e^{i \theta}-r_{j} e^{i \theta_{j}}}{r e^{i \theta}-r_{j} e^{i \theta_{j}}}\right|=\left\{\frac{R^{2}+r_{j}^{2}-2 R r_{j} \operatorname{Cos}\left(\theta-\theta_{j}\right.}{r^{2}+r_{j}^{2}-2 r r_{j} \operatorname{Cos}\left(\theta-\theta_{j}\right.}\right\}^{1 / 2} \\
\geq\left\{\frac{R+r_{j}}{r+r_{j}}\right\} \geq\left\{\frac{R+k}{r+k}\right\}, j=1,2, \cdots, n .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\left|\frac{P\left(R e^{i \theta}\right)}{P\left(r e^{i \theta}\right)}\right|=\prod_{j=1}^{n}\left|\frac{R e^{i \theta}-r_{j} e^{i \theta_{j}}}{r e^{i \theta}-r_{j} e^{i \theta_{j}}}\right| \\
\geq \prod_{j=1}^{n}\left(\frac{R+k}{r+k}\right)=\left(\frac{R+k}{r+k}\right)^{n}
\end{gathered}
$$

for $0 \leq \theta<2 \pi$. This implies for $|z|=1$ and $R>r \geq 1$,

$$
|P(R z)| \geq\left(\frac{R+k}{r+k}\right)^{n}|P(r z)|
$$

which completes the proof of Lemma 1.
Lemma 2. If $P \in P_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every real or complex number β with $|\beta| \leq 1, R \geq r \geq 1$, and $|z|=1$,

$$
\begin{equation*}
|P(R z)-\beta P(r z)| \leq|Q(R z)-\beta P(r z)| \tag{22}
\end{equation*}
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$.The result is sharp and equality in (22) holds for $P(z)=z^{n}+1$.

Proof of Lemma 2. For the case $R=r$, the result follows by observing that $|P(z)| \leq|Q(z)|$ for $|z| \geq 1$. Henceforth, we assume that $R>r$. Since the polynomial $P(z)$ has all its zeros in $|z| \geq 1$, therefore, for every real or complex number α with $|\alpha|>1$, the polynomial $f(z)=P(z)-\alpha Q(z)$, where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, has all its zeros in $|z| \leq 1$. Applying Lemma 1 to the polynomial $f(z)$ with $k=1$, we obtain for every $R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\left|f\left(R e^{i \theta}\right)\right| \geq\left(\frac{R+1}{r+1}\right)^{n}\left|f\left(r e^{i \theta}\right)\right| \tag{23}
\end{equation*}
$$

Since $f\left(R e^{i \theta}\right) \neq 0$ for every $R>r \geq 1,0 \leq \theta<2 \pi$ and $R+1>r+1$, it follows from (23) that

$$
\left|f\left(R e^{i \theta}\right)\right|>\left(\frac{r+1}{R+1}\right)^{n}\left|f\left(R e^{i \theta}\right)\right| \geq\left|f\left(r e^{i \theta}\right)\right|
$$

for every $R>r \geq 1$ and $0 \leq \theta<2 \pi$. This gives

$$
|f(r z)|<|f(R z)|
$$

for $|z|=1$ and $R>r \geq 1$.
Using Rouche's theorem and noting that all the zeros of $f(R z)$ lie in $|z| \leq \frac{1}{R}<1$, we conclude that the polynomial

$$
\begin{align*}
T(z) & =f(R z)-\beta f(r z) \\
& =\{P(R z)-\beta P(r z)\}-\alpha\{Q(R z)-\beta Q(r z)\} \tag{24}
\end{align*}
$$

has all its zeros in $|z|<1$ for every real or complex number β, α with $|\beta| \leq 1,|\alpha|>1$ and $R>r \geq 1$. This implies

$$
\begin{equation*}
|P(R z)-\beta P(r z)| \leq|Q(R z)-\beta Q(r z)| \tag{25}
\end{equation*}
$$

for $|z| \geq 1$ and $R>r \geq 1$. If Inequality (25) is not true, then exist a point $z=w$ with $|w| \geq 1$ such that

$$
|P(R w)-\beta P(r w)|>|Q(R w)-\beta Q(r w)|
$$

But all the zeros of $Q(z)$ lie in $|z| \leq 1$, therefore, it follows (as in case of $f(z)$) that all the zeros of $Q(R z)-\beta Q(r z)$ lie in $|z|<1$. Hence $Q(R w)-\beta Q(r w) \neq 0$ with $|w| \geq 1$. We take

$$
\alpha=\frac{P(R w)-\beta P(r w)}{Q(R w)-\beta Q(r w)}
$$

then α is a well defined real or complex number with $|\alpha|>1$ and with this choice of α, from (24) we obtain $T(w)=0$ where $|w| \geq 1$. This contradicts the fact that all the zeros of $T(z)$ lie in $|z|<1$. Thus

$$
|P(R z)-\beta P(r z)| \leq|Q(R z)-\beta Q(r z)|
$$

for $|z| \geq 1$ and $R>r \geq 1$. This proves Lemma 2.
Next we describe a result of Arestov.
For $\gamma=\left(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{n}\right)$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j} \in P_{n}$, we define

$$
\Lambda_{\gamma} P(z)=\sum_{j=0}^{n} \gamma_{j} a_{j} z^{j}
$$

The operator Λ_{γ} is said to be admissible if it preserves one of the following properties:

1) $P(z)$ has all its zeros in $\{z \in C:|z| \leq 1\}$,
2) $P(z)$ has all its zeros in $\{z \in C:|z| \geq 1\}$,

The result of Arestov may now be stated as follows.
Lemma 3. [8] Let $\phi(x)=\psi(\log x)$ where ψ is a convex nondecreasing function on R. Then for all
$P \in P_{n}$ and each admissible operator Λ_{γ},

$$
\int_{0}^{2 \pi} \phi\left(\left|\Lambda_{\gamma} P\left(e^{i \theta}\right)\right|\right) d \theta \leq \int_{0}^{2 \pi} \phi\left(C(\gamma, n)\left|P\left(e^{i \theta}\right)\right|\right) d \theta
$$

where $C(\gamma, n)=\operatorname{Max}\left(\left|\gamma_{0}\right|,\left|\gamma_{n}\right|\right)$.
In particular, Lemma 3 applies with $\phi: x \rightarrow x^{p}$ for every $p \in(0, \infty)$. Therefore, we have

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left(\left|\Lambda_{\gamma} P\left(e^{i \theta}\right)\right|^{p}\right) d \theta\right\}^{1 / p} \leq\left(C(\gamma, n)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}\right. \tag{26}
\end{equation*}
$$

We use (26) to prove the following interesting result.
Lemma 4. If $P \in P_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every real or complex number β with $|\beta| \leq 1, R>r \geq 1, \quad p>0$ and α real,

$$
\begin{align*}
& \int_{0}^{2 \pi} \mid\left(P\left(R e^{i \theta}\right)-\beta P\left(r e^{i \theta}\right)\right) \\
& +\left.e^{i \alpha}\left(R^{n} P\left(e^{i \theta} / R\right)-\bar{\beta} r^{n} P\left(e^{i \theta} / r\right)\right)\right|^{p} d \theta \tag{27}\\
& \leq\left|\left(R^{n}-\beta r^{n}\right)+e^{i \alpha}(1-\bar{\beta})\right|^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
\end{align*}
$$

Proof of Lemma 4. Let $Q(z)=z^{n} \overline{P(1 / \bar{z})}$. Since $P(z)$ does not vanish in $|z|<1$, by Lemma 2, for every real or complex number β with $|\beta| \leq 1, R>r \geq 1$ and $|z|=1$, we have

$$
\begin{aligned}
& |P(R z)-\beta P(r z)| \\
& \leq|Q(R z)-\beta Q(r z)|=\left|R^{n} P(z / R)-\bar{\beta} r^{n} P(z / r)\right|
\end{aligned}
$$

Now(as in the proof of Lemma 2), the polynomial
$H(z)=Q(R z)-\beta Q(r z)=R^{n} z^{n} \overline{P(1 / R \bar{z})}-\beta r^{n} z^{n} \overline{P(1 / r \bar{z})}$
has all its zeros in $|z|<1$ for every real or complex number β with $|\beta| \leq 1$ and $R>r$, it follows that the polynomial

$$
z^{n} \overline{H(1 / \bar{z})}=R^{n} P(z / R)-\bar{\beta} r^{n} P(z / r)
$$

has all its zeros in $|z|>1$. Hence the function

$$
f(z)=\frac{P(R z)-\beta P(r z)}{R^{n} P(z / R)-\bar{\beta} r^{n} P(z / r)}
$$

is analytic in $|z| \leq 1$ and $|f(z)| \leq 1$ for $|z|=1$. Since $f(z)$ is not a constant, it follows by the Maximum Modulus Principle that

$$
|f(z)|<1 \text { for }|z|<1
$$

or equivalently,

$$
\begin{equation*}
|P(R z)-\beta P(r z)|<\left|R^{n} P(z / R)-\bar{\beta} r^{n} P(z / r)\right| \text { for }|z|<1 \text {. } \tag{28}
\end{equation*}
$$

A direct application of Rouche's theorem shows that

$$
\begin{aligned}
\Lambda_{\gamma} P(z) & =(P(R z)-\beta P(r z)) \\
& +e^{i \alpha}\left(R^{n} P(z / R)-\bar{\beta} r^{n} P(z / r)\right) \\
& =\left(\left(R^{n}-\beta r^{n}\right)+e^{i \alpha}(1-\bar{\beta}) a_{n} z^{n}\right. \\
& +\cdots+\left((1-\beta)+e^{i \alpha}\left(R^{n}-\bar{\beta} r^{n}\right)\right) a_{0}
\end{aligned}
$$

does not vanish in $|z|<1$ for every β with $|\beta| \leq 1$, $R>r \geq 1$ and α real. Therefore, Λ_{γ} is admissibe operator. Applying (26) of Lemma 3, the desired result follows immediately for each $p>0$. This completes the proof of Lemma 4.

From lemma 4, we deduce the following more general lemma which is a result of independent interest with variety of application.

Lemma 5. If $P \in P_{n}$, then for every real or complex number β with $|\beta| \leq 1, R>r \geq 1, \quad p>0$ and α real,

$$
\begin{align*}
& \int_{0}^{2 \pi} \mid\left(P\left(R e^{i \theta}\right)-\beta P\left(r e^{i \theta}\right)\right) \\
& +\left.e^{i \alpha}\left(R^{n} P\left(e^{i \theta} / R\right)-\bar{\beta} r^{n} P\left(e^{i \theta} / r\right)\right)\right|^{p} d \theta \tag{29}\\
& \leq\left|\left(R^{n}-\beta r^{n}\right)+e^{i \alpha}(1-\bar{\beta})\right|^{p} \int_{0}^{2 \pi} \mid P\left(\left.e^{i \theta}\right|^{p} d \theta\right.
\end{align*}
$$

The result is sharp and equality in (29) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$
Proof of Lemma 5. Since $P(z)$ is a polynomial of degree at most n, we can write

$$
P(z)=P_{1}(z) P_{2}(z)=\prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(z-z_{j}\right), k \geq 1
$$

where all the zeros of $P_{1}(z)$ lie in $|z| \geq 1$ and all the zeros of $P_{2}(z)$ lie in $|z|<1$. First we suppose that $P_{1}(z)$ has no zero on $|z|=1$ so that all the zeros of $P_{1}(z)$ lie in $|z|>1$. Let $Q_{2}(z)=z^{n-k} \overline{P_{2}(1 / \bar{z})}$, then all the zeros of $Q_{2}(z)$ lie in $|z|>1$ and $\left|Q_{2}(z)\right|=\left|P_{2}(z)\right|$ for $|z|=1$. Now consider the polynomial

$$
g(z)=P_{1}(z) Q_{2}(z)=\prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(1-z \overline{z_{j}}\right)
$$

then all the zeros of $g(z)$ lie in $|z|>1$ and for $|z|=1$,

$$
\begin{equation*}
|g(z)|=\left|P_{1}(z)\right|\left|Q_{2}(z)\right|=\left|P_{1}(z)\right|\left|P_{2}(z)\right|=|P(z)| . \tag{30}
\end{equation*}
$$

By the Maximum Modulus Principle, it follows that

$$
\begin{equation*}
|P(z)| \leq|g(z)| \text { for }|z| \leq 1 \tag{31}
\end{equation*}
$$

We claim that the polynomial $h(z)=P(z)+\lambda g(z)$ does not vanish in $|z| \leq 1$ for every λ with $|\lambda|>1$. If this is not true, then $h\left(z_{0}\right)=0$ for some z_{0} with $\left|z_{0}\right| \leq 1$. This gives

$$
\left|P\left(z_{0}\right)\right|=|\lambda|\left|g\left(z_{0}\right)\right| .
$$

Since $g\left(z_{0}\right) \neq 0$ and $|\lambda|>1$, it follows that

$$
\left|P\left(z_{0}\right)\right|>\left|g\left(z_{0}\right)\right| \text { with }\left|z_{0}\right| \leq 1,
$$

which clearly contradicts (31). Thus $h(z)$ does not vanish in $|z| \leq 1$ for every λ with $|\lambda|>1$, so that all the zeros of $h(z)$ lie in $|z| \geq \rho$ for some $\rho>1$ and hence all the zeros of $h(\rho z)$ lie in $|z| \geq 1$. Applying (28) to the polynomial $h(\rho z)$, we get

$$
\begin{aligned}
& |h(R \rho z)-\beta h(r \rho z)|<\left|R^{n} h(\rho z / R)-\bar{\beta} r^{n} h(\rho z / r)\right| \\
& \text { for }|z|<1, R>r \geq 1
\end{aligned}
$$

Taking $z=e^{i \theta} / \rho, 0 \leq \theta<2 \pi$, then $|z|=(1 / \rho)<1$ as $\rho>1$ and we get

$$
\left|h\left(\operatorname{Re}^{i \theta}\right)-\beta h\left(r e^{i \theta}\right)\right|<\left|R^{n} h\left(e^{i \theta} / R\right)-\bar{\beta} r^{n} h\left(e^{i \theta} / r\right)\right|
$$

$0 \leq \theta<2 \pi, \quad R>r \geq 1$ and $|\beta| \leq 1$. This implies

$$
|h(R z)-\beta h(r z)|<\left|R^{n} h(z / R)-\bar{\beta} r^{n} h(z / r)\right| \text { for }|z|=1 .
$$

An application of Rouche's theorem shows that the polynomial

$$
T(z)=(h(R z)-\beta h(r z))+e^{i \alpha}\left(R^{n} h(z / R)-\bar{\beta} r^{n} h(z / r)\right)
$$

does not vanish in $|z| \leq 1$ for every real or complex number $\quad \beta$ with $|\beta| \leq 1, \quad R>r \geq 1$ and α real. Replacing $h(z)$ by $P(z)+\lambda h(z)$, it follows that the polynomial

$$
\begin{align*}
& T(z)=\left\{P(R z)-\beta P(r z)+e^{i \alpha}\left(R^{n} P(z / R)-\bar{\beta} r^{n} P(z / r)\right)\right\} \\
& \quad+\lambda\left\{(g(R z)-\beta g(r z))+e^{i \alpha}\left(R^{n} g(z / R)-\bar{\beta} r^{n} g(z / r)\right)\right\} \tag{32}
\end{align*}
$$

does not vanish in $|z| \leq 1$ for every β, λ with $|\beta| \leq 1$ and $|\lambda|>1$. This implies

$$
\begin{align*}
& \left|(P(R z)-\beta P(r z))+e^{i \alpha}\left(R^{n} P(z / R)-\bar{\beta} r^{n} P(z / r)\right)\right| \\
& \leq\left|(g(R z)-\beta g(r z))+e^{i \alpha}\left(R^{n} g(z / R)-\bar{\beta} r^{n} g(z / r)\right)\right| \tag{33}
\end{align*}
$$

for $|z| \leq 1,|\beta| \leq 1, \quad R>r \geq 1$ and α real. If Inequality (33) is not true, then there is a point $z=z_{0}$ with $\left|z_{0}\right| \leq 1$ such that

$$
\begin{aligned}
& \left|\left(P\left(R z_{0}\right)-\beta P\left(r z_{0}\right)\right)+e^{i \alpha}\left(R^{n} P\left(z_{0} / R\right)-\bar{\beta} r^{n} P\left(z_{0} / r\right)\right)\right| \\
> & \left|\left(g\left(R z_{0}\right)-\beta g\left(r z_{0}\right)\right)+e^{i \alpha}\left(R^{n} g\left(z_{0} / R\right)-\bar{\beta} r^{n} g\left(z_{0} / r\right)\right)\right| .
\end{aligned}
$$

Since all the zeros of polynomials $g(z)$ lie in $|z|>1$, it follows (as before) that all the zeros of polynomial $(g(R z)-\beta g(r z))+e^{i \alpha}\left(R^{n} g(z / R)-\bar{\beta} r^{n} g(z / r)\right)$ also li-
e in $|z|>1$ for every real or complex number β with $|\beta| \leq 1, \quad R>r \geq 1$ and α real. Hence

$$
\begin{aligned}
& \left.g\left(R z_{0}\right)-\beta g\left(r z_{0}\right)\right)+e^{i \alpha}\left(R^{n} g\left(z_{0} / R\right)-\bar{\beta} r^{n} g\left(z_{0} / r\right)\right) \neq 0 \\
& \text { with }\left|z_{0}\right| \leq 1 .
\end{aligned}
$$

We take
$\lambda=$
$-\frac{\left(P\left(R z_{0}\right)-\beta P\left(r z_{0}\right)\right)+e^{i \alpha}\left(R^{n} P\left(z_{0} / R\right)-\bar{\beta} r^{n} P\left(z_{0} / r\right)\right)}{\left(g\left(R z_{0}\right)-\beta g\left(r z_{0}\right)\right)+e^{i \alpha}\left(R^{n} g\left(z_{0} / R\right)-\bar{\beta} r^{n} g\left(z_{0} / r\right)\right)}$
so that λ is a well-defined real or complex number with $|\lambda|>1$ and with this choice of λ, from (32) we get $T\left(z_{0}\right)=0$ with $\left|z_{0}\right| \leq 1$ This clearly is a contradiction to the fact that $T(z)$ does not vanish in $|z| \leq 1$. Thus for every β with $|\beta| \leq 1, \quad R>r \geq 1$ and α real,

$$
\begin{aligned}
& \left|(P(R z)-\beta P(r z))+e^{i \alpha}\left(R^{n} P(z / R)-\bar{\beta} r^{n} P(z / r)\right)\right| \\
& \leq\left|(g(R z)-\beta g(r z))+e^{i \alpha}\left(R^{n} g(z / R)-\bar{\beta} r^{n} g(z / r)\right)\right|
\end{aligned}
$$

for $|z| \leq 1$, which in particular gives for each $p>0$ and $0 \leq \theta<2 \pi$,

$$
\begin{aligned}
& \int_{0}^{2 \pi} \mid\left(P\left(R e^{i \theta}\right)-\beta P\left(r e^{i \theta}\right)\right) \\
& +\left.e^{i \alpha}\left(R^{n} P\left(e^{i \theta} / R\right)-\bar{\beta} r^{n} P\left(e^{i \theta} / r\right)\right)\right|^{p} d \theta \\
& \leq \int_{0}^{2 \pi} \mid\left(g\left(R e^{i \theta}\right)-\beta g\left(r e^{i \theta}\right)\right) \\
& +\left.e^{i \alpha}\left(R^{n} g\left(e^{i \theta} / R\right)-\bar{\beta} r^{n} g\left(e^{i \theta} / r\right)\right)\right|^{p} d \theta
\end{aligned}
$$

Using lemma 4 and (30), it follows that for every β with $|\beta| \leq 1, \quad R>r, \quad p>0$ and α real,

$$
\begin{align*}
& \int_{0}^{2 \pi} \mid\left(P\left(R e^{i \theta}\right)-\beta P\left(r e^{i \theta}\right)\right) \\
& +\left.e^{i \alpha}\left(R^{n} P\left(e^{i \theta} / R\right)-\bar{\beta} r^{n} P\left(e^{i \theta} / r\right)\right)\right|^{p} d \theta \tag{34}\\
& \leq\left|\left(R^{n}-\beta r^{n}\right)+e^{i \alpha}(1-\bar{\beta})\right|^{p} \int_{0}^{2 \pi} \mid g\left(\left.e^{i \theta}\right|^{p} d \theta\right. \\
& =\left|\left(R^{n}-\beta r^{n}\right)+e^{i \alpha}(1-\bar{\beta})\right|^{p} \int_{0}^{2 \pi} \mid P\left(\left.e^{i \theta}\right|^{p} d \theta .\right.
\end{align*}
$$

Now if $P_{1}(z)$ has a zero on $|z|=1$, then applying (34) to the polynomial $P^{*}(z)=P_{1}(t z) P_{2}(z)$ where $t<1$, we get for every β with $|\beta| \leq 1, \quad R>r \geq 1$, $p>0$ and α real,

$$
\begin{align*}
& \int_{0}^{2 \pi} \mid\left(P^{*}\left(R e^{i \theta}\right)-\beta P^{*}\left(r e^{i \theta}\right)\right) \\
& +\left.e^{i \alpha}\left(R^{n} P^{*}\left(e^{i \theta} / R\right)-\bar{\beta} r^{n} P^{*}\left(e^{i \theta} / r\right)\right)\right|^{p} d \theta \tag{35}\\
& \leq\left|\left(R^{n}-\beta r^{n}\right)+e^{i \alpha}(1-\bar{\beta})\right|^{p} \int_{0}^{2 \pi} \mid P^{*}\left(\left.e^{i \theta}\right|^{p} d \theta .\right.
\end{align*}
$$ desired result follows immediately and this proves Lemma 5.

3. Proofs of the Theorems

Proof of Theorem 1. Since $P(z)$ is a polynomial of degree at most n, we can write

$$
P(z)=P_{1}(z) P_{2}(z)=\prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(z-z_{j}\right), k \geq 1
$$

where all the zeros of $P_{1}(z)$ lie in $|z| \leq 1$ and all the zeros of $P_{2}(z)$ lie in $|z|>1$. First we suppose that all the zeros of $P_{1}(z)$ lie in $|z|<1$. Let $Q_{2}(z)=z^{n-k} \overline{P_{2}(1 / \bar{z})}$, then all the zeros of $Q_{2}(z)$ lie in $|z|<1$ and $\left|Q_{2}(z)\right|=\left|P_{2}(z)\right|$ for $|z|=1$. Now consider the polynomial

$$
F(z)=P_{1}(z) Q_{2}(z)=\prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(1-z \overline{z_{j}}\right)
$$

then all the zeros of $F(z)$ lie in $|z|<1$ and for $|z|=1$,

$$
\begin{equation*}
|F(z)|=\left|P_{1}(z)\right|\left|Q_{2}(z)\right|=\left|P_{1}(z)\right|\left|P_{2}(z)\right|=|P(z)| \tag{29}
\end{equation*}
$$

By the Maximum Modulus Principle, it follows that

$$
|P(z)| \leq|F(z)| \text { for }|z| \geq 1
$$

Since $F(z) \neq 0$ for $|z| \geq 1$ and $|\lambda|>1$, a direct application of Rouche's theorem shows that the polynomial $H(z)=P(z)+\lambda F(z)$ has all its zeros in $|z|<1$ for every λ with $|\lambda|>1$. Applying lemma 1 to the polynomial $H(z)$, we deduce (as before)

$$
|H(r z)|<|H(R z)|
$$

for $|z|=1$ and $R>r \geq 1$.
Since all the zeros of $H(R z)$ lie in $|z|<\frac{1}{R} \leq 1$, we conclude that for every β, λ with $|\beta| \leq 1$ and $|\lambda|>1$, all the zeros of polynomial

$$
\begin{aligned}
G(z) & =H(R z)-\beta H(r z) \\
& =(P(R z)-\beta P(r z))+\lambda(F(R z)-\beta F(r z))
\end{aligned}
$$

lie in $|z|<1$. This implies (as in the case of Lemma 2)

$$
\begin{aligned}
&|P(R z)-\beta P(r z)| \leq|F(R z)-\beta F(r z)| \text { for }|z| \geq 1 \\
& \text { and } R>r \geq 1,
\end{aligned}
$$

which in particular gives for $R>r$ and $p>0$,

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)-\beta P\left(r e^{i \theta}\right)\right|^{p} d \theta \tag{30}\\
& \leq \int_{0}^{2 \pi}\left|F\left(R e^{i \theta}\right)-\beta F\left(r e^{i \theta}\right)\right|^{p} d \theta
\end{align*}
$$

Again, since all the zeros of $F(z)$ lie in $|z|<1$, as before, $F(R z)-\beta F(r z)$ has all its zeros in $|z|<1$ for every real or complex number β with $|\beta| \leq 1$. Therefore, the operator Λ_{γ} defined by

$$
\begin{aligned}
\Lambda_{\gamma} F(z) & =F(R z)-\beta F(r z) \\
& =\left(R^{n}-\beta r^{n}\right) b_{n} z^{n}+\cdots+(1-\beta) b_{0}
\end{aligned}
$$

is admissible. Hence by (26) of Lemma (3), for each $p>0$, we have

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|F\left(R e^{i \theta}\right)-\beta F\left(r e^{i \theta}\right)\right|^{p} d \theta \tag{31}\\
& \leq\left|R^{n}-\beta r^{n}\right|^{p} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} d \theta
\end{align*}
$$

Combining Inequalities (37) and (38) and noting that $\left|F\left(e^{i \theta}\right)\right|=\left|P\left(e^{i \theta}\right)\right|$, we obtain for $R>r \geq 1$ and $p>0$

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)-\beta P\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p} \\
& \leq\left|R^{n}-\beta r^{n}\right|\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p} \tag{32}
\end{align*}
$$

In case $P_{1}(z)$ has a zero on $|z|=1$, the Inequality (39) follows by using similar argument as in the case of Lemma 5. This completes the proof of Theorem 1.

Proof of Theorem 2. By hypothesis $P \in P_{n}$ and $P(z)$ does not vanish in $|z|<1$, therefore, by Lemma 2 for every real or complex number β with $|\beta| \leq 1$, $0 \leq \theta<2 \pi$ and $R>r \geq 1$,

$$
\begin{align*}
& \left|P\left(R e^{i \theta}\right)-\beta P\left(r e^{i \theta}\right)\right| \tag{33}\\
& \leq\left|R^{n} P\left(e^{i \theta} / R\right)-\bar{\beta} r^{n} P\left(e^{i \theta} / r\right)\right|
\end{align*}
$$

Also, by Lemma 5,

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|F(\theta)+e^{i \alpha} G(\theta)\right|^{p} d \theta \\
& \leq\left|\left(R^{n}-\beta r^{n}\right)+e^{i \alpha}(1-\bar{\beta})\right|^{p} \int_{0}^{2 \pi} \mid P\left(\left.e^{i \theta}\right|^{p} d \theta\right. \tag{34}
\end{align*}
$$

where

$$
\begin{array}{r}
F(\theta)=P\left(R e^{i \theta}\right)-\beta P\left(r e^{i \theta}\right) \text { and } \\
G(\theta)=R^{n} P\left(e^{i \theta} / R\right)-\bar{\beta} r^{n} P\left(e^{i \theta} / r\right) .
\end{array}
$$

Integrating both sides of (41) with respect to α from 0 to 2π, we get for each $p>0, R>r \geq 1$ and α real,

$$
\begin{gather*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|F(\theta)+e^{i \alpha} G(\theta)\right|^{p} d \alpha d \theta \\
\leq\left\{\int_{0}^{2 \pi}\left|\left(R^{n}-\beta r^{n}\right)+e^{i \alpha}(1-\bar{\beta})\right|^{p} d \alpha\right\}\left\{\int_{0}^{2 \pi} \mid P\left(\left.e^{i \theta}\right|^{p} d \theta\right\}\right. \tag{35}
\end{gather*}
$$

Now for every real $\alpha, t \geq 1$ and $p>0$, we have

$$
\int_{0}^{2 \pi}\left|t+e^{i \alpha}\right|^{p} d \alpha \geq \int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{p} d \alpha
$$

If $F(\theta) \neq 0$, we take $t=|G(\theta)| /|F(\theta)|$, then by (40) $t \geq 1$ and we get

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|F(\theta)+e^{i \alpha} G(\theta)\right|^{p} d \alpha \\
& =|F(\theta)|^{p} \int_{0}^{2 \pi}\left|1+e^{i \alpha} \frac{G(\theta)}{F(\theta)}\right|^{p} d \alpha \\
& =|F(\theta)|^{p} \int_{0}^{2 \pi}\left|\frac{G(\theta)}{F(\theta)}+e^{i \alpha}\right|^{p} d \alpha \\
& =|F(\theta)|^{p} \int_{0}^{2 \pi}| | \frac{G(\theta)}{F(\theta)}\left|+e^{i \alpha}\right|^{p} d \alpha \\
& \geq|F(\theta)|^{p} \int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{p} d \alpha .
\end{aligned}
$$

For $F(\theta)=0$, this inequality is trivially true. Using this in(42), we conclude that for every real or complex number β with $|\beta| \leq 1, R>r \geq 1$ and α real,

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{p} d \alpha\right\}\left\{\int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)-\beta P\left(r e^{i \theta}\right)\right|^{p} d \theta\right\} \\
& \leq\left\{\int_{0}^{2 \pi}\left|\left(R^{n}-\beta r^{n}\right)+e^{i \alpha}(1-\bar{\beta})\right|^{p} d \alpha\right\}\left\{\int_{0}^{2 \pi} \mid P\left(\left.e^{i \theta}\right|^{p} d \theta\right\}\right. \tag{43}
\end{align*}
$$

Since

$$
\begin{align*}
& \left\{\int_{0}^{2 \pi}\left|\left(R^{n}-\beta r^{n}\right)+e^{i \alpha}(1-\bar{\beta})\right|^{p} d \alpha\right\} \\
& =\left\{\int_{0}^{2 \pi}| | R^{n}-\beta r^{n}\left|+e^{i \alpha}\right| 1-\bar{\beta} \|^{p} d \alpha\right\} \\
& =\left\{\int_{0}^{2 \pi}| | R^{n}-\beta r^{n}\left|+e^{i \alpha}\right| 1-\left.\beta\right|^{p} d \alpha\right\} \tag{44}\\
& =\left\{\int_{0}^{2 \pi}| | R^{n}-\beta r^{n}\left|e^{i \alpha}+\right| 1-\beta \|^{p} d \alpha\right\} \\
& =\left\{\int_{0}^{2 \pi}\left|\left(R^{n}-\beta r^{n}\right) e^{i \alpha}+(1-\beta)\right|^{p} d \alpha\right\},
\end{align*}
$$

the desired result follows immediately by combining (43) and (44). This completes the proof of Theorem 2.

Proof of Theorem 3. Since $P(z)$ is a self-inversive polynomial, we have $P(z)=u Q(z)$ for all $z \in C$ where $|u|=1$ and $Q(z)=z^{n} \bar{P}(1 / \bar{z})$. Therefore, for every real or complex number β and $R>r \geq 1$,

$$
|P(R z)-\beta P(r z)|=|Q(R z)-\beta Q(r z)| \text { for all } z \in C
$$

so that

$$
|G(\theta) / F(\theta)|=\left|\frac{P\left(R e^{i \theta}\right)-\beta P\left(r e^{i \theta}\right)}{R^{n} P\left(e^{i \theta} / R\right)-\bar{\beta} r^{n} P\left(e^{i \theta} / r\right)}\right|=1
$$

Using this in (41) with $|\beta| \leq 1$ and proceeding similarly as in the proof of Theorem 2, we get the desired result. This completes the proof of Theorem 3.

4. References

[1] G. V. Milovanovic, D. S. Mitrinovic and T. M. Rassias, "Topics in Polynomials: Extremal Properties, Inequalities, Zeros," World Scientific Publishing Company, Singapore, 1994.
[2] A. C. Schaffer, "Inequalities of A. Markoff and S. Bernstein for Polynomials and Related Functions," Bulletin American Mathematical Society, Vol. 47, No. 2, 1941, pp. 565-579. doi:10.1090/S0002-9904-1941-07510-5
[3] G. Pólya and G. Szegö, "Aufgaben und Lehrsätze aus der Analysis," Springer-Verlag, Berlin, 1925.
[4] A. Zygmund, "A Remark on Conjugate Series," Proceedings of London Mathematical Society, Vol. 34, 1932, pp. 292-400. doi:10.1112/plms/s2-34.1.392
[5] G. H. Hardy, "The Mean Value of the Modulus of an Analytic Function," Proceedings of London Mathematical Society, Vol. 14, 1915, pp. 269-277.
[6] Q. I. Rahman and G. Schmeisser, "Les in q' Ualitués de Markoff et de Bernstein," Presses University Montréal, Montréal, 1983.
[7] M. Riesz, "Formula d'interpolation Pour la Dérivée d’un Polynome Trigonométrique," Comptes Rendus de l' Academie des Sciences, Vol. 158, 1914, pp. 1152-1254.
[8] V. V. Arestov, "On Integral Inequalities for Trigonometric Polynimials and Their Derivatives," Mathematics of the USSR-Izvestiya, Vol. 18, 1982, pp. 1-17.

doi:10.1070/IM1982v018n01ABEH001375

[9] N. G. Bruijn, "Inequalities Concerning Polynomials in the Complex Domain," Nederal. Akad. Wetensch. Proceeding, Vol. 50, 1947, pp. 1265-1272.
[10] Q. I. Rahman and G. Schmessier, " L^{p} Inequalities for Polynomials," The Journal of Approximation Theory, Vol. 53, 1988, pp. 26-32. doi:10.1016/0021-9045(88)90073-1
[11] R. P. Boas, Jr., and Q. I. Rahman, " L^{p} Inequalities for Polynomials and Entire Functions," Archive for Rational Mechanics and Analysis, Vol. 11, 1962, pp. 34-39. doi:10.1007/BF00253927
[12] A. Aziz and N. A. Rather, " L^{p} Inequalities for Polynomials," Glasnik Matematicki, Vol. 32, No. 52, 1997, pp. 39-43.
[13] P. D. Lax, "Proof of a Conjecture of P. Erdös on the Derivative of a Polynomial," Bulletin of American Mathematical Society, Vol. 50, 1944, pp. 509-513. doi:10.1090/S0002-9904-1944-08177-9
[14] N. C. Ankeny and T. J. Rivlin, "On a Theorm of S. Bernstein," Pacific Journal of Mathematics, Vol. 5, 1955, pp. 849-852.
[15] A. Aziz and N. A. Rather, "Some Compact Generalization of Zygmund-Type Inequalities for Polynomials," Nonlinear Studies, Vol. 6, No. 2, 1999, pp. 241-255.
[16] A. Aziz, "A New Proof and a Generalization of a Theorem of De Bruijn," Proceedings of American Mathematical Society, Vol. 106, No. 2, 1989, pp. 345-350.
[17] K. K. Dewan and N. K. Govil, "An Inequality for SelfInversive Polynomials," Journal of Mathematical Analysis and Application, Vol. 95, No. 2, 1983, p. 490. doi:10.1016/0022-247X(83)90122-1

