

L^p Inequalities for Polynomials

Abdul Aziz, Nisar A. Rather

Department of Mathematics, Kashmir University, Srinagar, India E-mail: dr.narather@gmail.com Received July 9, 2010; revised January 14, 2011; accepted January 17, 2011

Abstract

In this paper we consider a problem of investigating the dependence of $||P(Rz) - \beta P(rz)||_p$ on $||P(z)||_p$ for every real or complex number β with $|\beta| \le 1$, $R > r \ge 1$, p > 0 and present certain compact generalizations which, besides yielding some interesting results as corollaries, include some well-known results, in particular, those of Zygmund, Bernstein, De-Bruijn, Erdös-Lax and Boas and Rahman as special cases.

Keywords: L^p-Inequalities, Polynomials, Complex Domain

1. Introduction

Let $P_n(z)$ denote the space of all complex polynomials $P(z) = \sum_{j=0}^n a_j z^j$ of degree at most n. For $P \in P_n$, define

$$\left\|P(z)\right\|_{p} := \left\{\frac{1}{2\pi} \int_{0}^{2\pi} \left|P(e^{i\theta})\right|^{p}\right\}^{1/p}, 1 \le p < \infty$$

and

$$\left\|P(z)\right\|_{\infty} \coloneqq \max_{|z|=1} \left|P(z)\right|.$$

A famous result known as Bernstein's inequality(for reference, see[1] or [2]) states that if $P \in P_n$, then

$$\left\|P'\left(z\right)\right\|_{\infty} \le n \left\|P\left(z\right)\right\|_{\infty} \tag{1}$$

whereas concerning the maximum modulus of P(z) on the circle |z| = R > 1, we have

$$\left\|P\left(Rz\right)\right\|_{\infty} \le R^{n} \left\|P\left(z\right)\right\|_{\infty}, \qquad (2)$$

(for reference, see [3]). Inequalities (1) and (2) can be obtained by letting $p \rightarrow \infty$ in the inequalities

$$\left\|P'\left(z\right)\right\|_{p} \le n \left\|P\left(z\right)\right\|_{p}, p \ge 1$$
(3)

and

$$\left\|P\left(Rz\right)\right\|_{p} \le R^{n} \left\|P\left(z\right)\right\|_{p}, R > 1, p > 0, \qquad (4)$$

respectively. Inequality (3) was found by Zygmund [4] whereas inequality (4) is a simple consequence of a result of Hardy [5] (see also [6]). Since Inequality (3) was deduced from M.Riesz's interpolation formula [7] by

Copyright © 2011 SciRes.

means of Minkowski's inequality, it was not clear, whether the restriction on *p* was indeed essential. This question was open for a long time. Finally Arestov [8] proved that (3) remains true for 0 as well. Boththe Inequalities (3) and (4) can be sharpened if we restrict ourselves to the class of polynomials having no zeroin <math>|z| < 1. In fact, if $P \in P_n$ and $P(z) \neq 0$ in |z| < 1, then Inequalities (3) and (4) can be respectively replaced by

$$\left|P'(z)\right\|_{p} \le n \frac{\left\|P(z)\right\|_{p}}{\left\|1+z\right\|_{p}}, p > 0$$
 (5)

and

$$\left|P(Rz)\right\|_{p} \leq \frac{\left\|R^{n}z+1\right\|_{p}}{\left\|1+z\right\|_{p}}\left\|P(z)\right\|_{p}, R > 1, p > 0. (6)$$

Inequality (5) is due to De-Bruijn [9] for $p \ge 1$ and Rahman and Schmeisser [10] extended it for 0whereas the Inequality (6) was proved by Boas and $Rahman [11] for <math>p \ge 1$ and later it was extended for $0 by Rahman and Schmeisser[12]. For <math>p = \infty$, the Inequality (5) was conjectured by Erdös and later verified by Lax [13] whereas Inequality (6) was proved by Ankeny and Rivlin [14].

Recently the Authors in [12] (see also [15]) investigated the dependence of

$$\left\|P(Rz)-P(z)\right\|_{p}$$
 on $\left\|P(z)\right\|_{p}$

for R > 1, $p \ge 1$. As a compact generalization of Inequalities (3) and (4), they have shown that if $P \in P_n$, then for every R > 1 and $p \ge 1$,

$$\left\|P(Rz) - P(z)\right\|_{p} \le \left(R^{n} - 1\right)\left\|P(z)\right\|_{p}.$$
(7)

It is natural to seek the corresponding analog of (7) for polynomials $P \in P_n$ having no zero in |z| < 1 and which is a compact generalization of Inequalities (5) and (6). In the present paper we consider a more general problem of investigating the dependence of

$$\left\|P(Rz) - \beta P(rz)\right\|_{p}$$
 on $\left\|P(z)\right\|_{p}$

for every real or complex number β with $|\beta| \le 1$, $R > r \ge 1$, p > 0 and develop a unified method for arriving at these results. We first present the following interesting result and a compact generalization of Inequalities (3) and (4), which also extends Inequality (7) for 0 as well.

Theorem 1. If $P \in P_n$, then for every real or complex number β with $|\beta| \le 1$, $R > r \ge 1$ and p > 0,

$$\left\|P(Rz) - \beta P(rz)\right\|_{p} \le \left|R^{n} - \beta r^{n}\right| \left\|P(z)\right\|_{p}.$$
 (8)

The result is best possible and equality in (8) holds for $P(z) = az^n, a \neq 0$.

Remark 1. For $\beta = 0$, Theorem 1 reduces to Inequality (4) and for $\beta = 1$, r = 1, it validates Inequality (7) for each p > 0.

If we set $\beta = 1$ in Inequality (8), we immediately get the following generalization of Inequality (7).

Corollary 1. If $P \in P_n$, then for $R > r \ge 1$ and p > 0

$$\left\|P(Rz) - P(rz)\right\|_{p} \le \left(R^{n} - r^{n}\right)\left\|P(z)\right\|_{p}.$$
 (9)

The result is best possible and equality in (9) holds for $P(z) = az^n, a \neq 0.$

If we divide the two sides of Inequality (9) by (R-r) and let $R \rightarrow r$, we get:

Corollary 2. If $P \in P_n$, then for $r \ge 1$ and p > 0,

$$\left\|P'(rz)\right\|_{p} \le nr^{n-1} \left\|P(z)\right\|_{p}.$$
 (10)

Remark 2. For r = 1, Corollary 2 reduces to Zygmund's Inequality (3) for each p > 0.

The following result which is a compact generalization of Inequalities of (1) and (2) follows from Theorem 1 by letting $p \rightarrow \infty$ in Inequality (8).

Corollary 3. If $P \in P_n$, then for every real or complex number β with $|\beta| \le 1$ and $R > r \ge 1$,

$$\left|P(Rz) - \beta P(rz)\right| \le \left|R^n - \beta r^n\right| \max_{|z|=1} \left|P(z)\right| \text{ for } |z| = 1.$$
(11)

The result is best possible and equality in (11) holds for $P(z) = az^n, a \neq 0$.

Remark 3. For $\beta = 0$, Corollary 3 reduces to Inequality (2) and for $\beta = 1$, if we divide the two sides of (11) by R-r and let $R \to r$, it follows that if $P \in P_n$, then for $r \ge 1$,

$$|P'(rz)| \le nr^{n-1} \max_{|z|=1} |P(z)| \text{ for } |z| = 1.$$
 (12)

Inequality (12) reduces to Bernstein's Inequality (1) for r = 1.

For polynomials $P \in P_n$ having no zero in |z| < 1, we next prove the following interesting improvement of (8) which among other things include De-Bruijn's theorem (Inequality (5)) and a result of Boas and Rahman (Inequality (6)) as special cases.

Theorem 2. If $P \in P_n$ and P(z) does not vanish in |z| < 1, then for every real or complex number β with $|\beta| \le 1$, $R > r \ge 1$ and p > 0

$$\left\|P(Rz)-\beta P(rz)\right\|_{p} \leq \frac{\left\|\left(R^{n}-\beta r^{n}\right)z+\left(1-\beta\right)\right\|_{p}}{\left\|1+z\right\|_{p}}\left\|P(z)\right\|_{p}.$$

(13)

The result is best possible and equality in (13) holds for $P(z) = az^n + b$, |a| = |b| = 1.

For $\beta = 0$, Theorem 2 reduces to Inequality (6). A variety of interesting results can be easily deduced from Theorem 2. Here we mention a few of these. The following corollary immediately follows from Theorem 2 by taking $\beta = 1$.

Corollary 4. If $P \in P_n$ and P(z) does not vanish in |z| < 1, then for $R > r \ge 1$ and p > 0,

$$\left\|P(Rz) - P(rz)\right\|_{p} \leq \frac{\left(R^{n} - r^{n}\right)}{\left\|1 + z\right\|_{p}} \left\|P(z)\right\|_{p}.$$
 (14)

The result is sharp and equality in (14) holds for $P(z) = az^n + b$, |a| = |b| = 1.

Remark 4. For r = 1, if we divide the two sides of (14) by R-1 and let $R \rightarrow 1$, we immediately get De-Bruijn's theorem (Inequality (5)) for each p > 0.

Next we mention the following compact generalization of a theorem of Erdös and Lax (Inequality (5) for $p = \infty$) and a result of Ankeny and Rivlin (Inequality (5) for $p = \infty$) which immediately follows from Theorem 2 by letting $p \to \infty$ in (13).

Corollary 5. If $P \in P_n$ and P(z) does not vanish in |z| < 1, then for every real or complex number β with $|\beta| \le 1$ and $R > r \ge 1$,

$$\left|P(Rz) - \beta P(rz)\right| \le \frac{\left|R^n - \beta r^n\right| + \left|1 - \beta\right|}{2} \max_{|z|=1} \left|P(z)\right| \quad (15)$$

for $|z| = 1$.

The result is best possible and equality in (15) holds for $P(z) = az^n + b$, |a| = |b| = 1. **Remark 5.** For $\beta = 1$, if we divide the two sides of (15) by R-r and let $R \rightarrow r$, we get

$$|P'(rz)| \le \frac{n}{2} r^{n-1} \max_{|z|=1} |P(z)| \text{ for } |z| = 1.$$
 (16)

For r = 1, Inequality (16) was conjectured by Erdös and later verified by Lax[10]. If we take $\beta = 0$ in (15),we immediately get

$$\left\|P\left(Rz\right)_{\infty}\right\| \leq \frac{R^{n}+1}{2} \left\|P\left(z\right)\right\|_{\infty}, R > 1.$$
(17)

Inequality (17) is due to Ankeny and Rivlin [1].

A polynomial $P \in P_n$ is said to be self-inversive if P(z) = uQ(z) for all $z \in C$ where |u| = 1 and $Q(z) = z^n \overline{P(1/\overline{z})}$. It is known[16, 17] that if $P \in P_n$ is self-inversive polynomial, then for every $p \ge 1$,

$$\left\|P'(z)\right\|_{p} \le n \frac{\left\|P(z)\right\|_{p}}{\left\|1+z\right\|_{p}},$$
(18)

Finally, we present the following result which include some well-known results for self-inversive polynomials as special cases.

Theorem 3. If $P \in P_n$ is self-inversive polynomial, then for every real or complex number β with $|\beta| \le 1$, $R > r \ge 1$ and p > 0,

$$\left\|P(Rz)-\beta P(rz)\right\|_{p} \leq \frac{\left\|\left(R^{n}-\beta r^{n}\right)z+\left(1-\beta\right)\right\|_{p}}{\left\|1+z\right\|_{p}}\left\|P(z)\right\|_{p}.$$

(19) The result is best possible and equality in (19) holds for $P(z) = z^n + 1$.

Remark 6. Taking $\beta = 0$ in Theorem 3, it follows that if $P \in P_n$ is self-inversive polynomial, then for R > 1 and p > 0,

$$\|P(Rz)\|_{p} \leq \frac{\|(R^{n}z+1)\|_{p}}{\|1+z\|_{p}} \|P(z)\|_{p}.$$
 (20)

The result is sharp.

Many interesting results can be deduced from Theorem 3 in exactly the same way as we have deduced from Theorem 2.

2. Lemmas

For the proofs of these theorems, we need the following lemmas.

Lemma 1. If $P \in P_n$ and P(z) has all its zeros in $|z| \le k$ where $k \le 1$, then for every $R \ge r \ge 1$ and |z| = 1,

$$\left|P\left(Rz\right)\right| \ge \left(\frac{R+k}{r+k}\right)^n \left|P\left(rz\right)\right|.$$
(21)

Proof of Lemma 1. Since all the zeros of P(z) lie in $|z| \le k$, we write

$$P(z) = C \prod_{j=1}^{n} \left(z - r_j e^{i\theta_j} \right)$$

where $r_j \leq k$. Now for $0 \leq \theta < 2\pi$, $R \geq r \geq 1$, we have

$$\left|\frac{Re^{i\theta} - r_j e^{i\theta_j}}{re^{i\theta} - r_j e^{i\theta_j}}\right| = \left\{\frac{R^2 + r_j^2 - 2Rr_j \cos\left(\theta - \theta_j\right)}{r^2 + r_j^2 - 2rr_j \cos\left(\theta - \theta_j\right)}\right\}^{1/2}$$
$$\geq \left\{\frac{R + r_j}{r + r_j}\right\} \ge \left\{\frac{R + k}{r + k}\right\}, \ j = 1, 2, \cdots, n.$$

Hence

$$\left|\frac{P(Re^{i\theta})}{P(re^{i\theta})}\right| = \prod_{j=1}^{n} \left|\frac{Re^{i\theta} - r_{j}e^{i\theta_{j}}}{re^{i\theta} - r_{j}e^{i\theta_{j}}}\right|$$
$$\geq \prod_{j=1}^{n} \left(\frac{R+k}{r+k}\right) = \left(\frac{R+k}{r+k}\right)^{n}$$

for $0 \le \theta < 2\pi$. This implies for |z| = 1 and $R > r \ge 1$,

$$|P(Rz)| \ge \left(\frac{R+k}{r+k}\right)^n |P(rz)|,$$

which completes the proof of Lemma 1.

Lemma 2. If $P \in P_n$ and P(z) does not vanish in |z| < 1, then for every real or complex number β with $|\beta| \le 1, R \ge r \ge 1$, and |z| = 1,

$$\left|P(Rz) - \beta P(rz)\right| \le \left|Q(Rz) - \beta P(rz)\right| \quad (22)$$

where $Q(z) = z^n \overline{P(1/\overline{z})}$. The result is sharp and equality in (22) holds for $P(z) = z^n + 1$.

Proof of Lemma 2. For the case R = r, the result follows by observing that $|P(z)| \le |Q(z)|$ for $|z| \ge 1$. Henceforth, we assume that R > r. Since the polynomial P(z) has all its zeros in $|z| \ge 1$, therefore, for every real or complex number α with $|\alpha| > 1$, the polynomial $f(z) = P(z) - \alpha Q(z)$, where $Q(z) = z^n \overline{P(1/\overline{z})}$, has all its zeros in $|z| \le 1$. Applying Lemma 1 to the polynomial f(z) with k = 1, we obtain for every $R > r \ge 1$ and $0 \le \theta < 2\pi$,

$$\left| f\left(Re^{i\theta}\right) \right| \ge \left(\frac{R+1}{r+1}\right)^n \left| f\left(re^{i\theta}\right) \right|.$$
(23)

Since $f(Re^{i\theta}) \neq 0$ for every $R > r \ge 1, 0 \le \theta < 2\pi$ and R+1 > r+1, it follows from (23) that

$$\left| f\left(Re^{i\theta}\right) \right| > \left(\frac{r+1}{R+1}\right)^n \left| f\left(Re^{i\theta}\right) \right| \ge \left| f\left(re^{i\theta}\right) \right|$$

for every $R > r \ge 1$ and $0 \le \theta < 2\pi$. This gives

$$\left|f\left(rz\right)\right| < \left|f\left(Rz\right)\right|,$$

for |z| = 1 and $R > r \ge 1$.

Using Rouche's theorem and noting that all the zeros of f(Rz) lie in $|z| \le \frac{1}{R} < 1$, we conclude that the polynomial

$$T(z) = f(Rz) - \beta f(rz)$$

= {P(Rz) - \beta P(rz)} - \alpha {Q(Rz) - \beta Q(rz)} (24)

has all its zeros in |z| < 1 for every real or complex number β, α with $|\beta| \le 1, |\alpha| > 1$ and $R > r \ge 1$. This implies

$$\left|P(Rz) - \beta P(rz)\right| \le \left|Q(Rz) - \beta Q(rz)\right|$$
(25)

for $|z| \ge 1$ and $R > r \ge 1$. If Inequality (25) is not true, then exist a point z = w with $|w| \ge 1$ such that

$$\left|P(Rw) - \beta P(rw)\right| > \left|Q(Rw) - \beta Q(rw)\right|.$$

But all the zeros of Q(z) lie in $|z| \le 1$, therefore, it follows (as in case of f(z)) that all the zeros of $Q(Rz) - \beta Q(rz)$ lie in |z| < 1. Hence

 $Q(Rw) - \beta Q(rw) \neq 0$ with $|w| \ge 1$. We take

$$\alpha = \frac{P(Rw) - \beta P(rw)}{Q(Rw) - \beta Q(rw)},$$

then α is a well defined real or complex number with $|\alpha| > 1$ and with this choice of α , from (24) we obtain T(w) = 0 where $|w| \ge 1$. This contradicts the fact that all the zeros of T(z) lie in |z| < 1. Thus

$$|P(Rz) - \beta P(rz)| \le |Q(Rz) - \beta Q(rz)|$$

for $|z| \ge 1$ and $R > r \ge 1$. This proves Lemma 2.

Next we describe a result of Arestov.

For
$$\gamma = (\gamma_0, \gamma_1, \dots, \gamma_n)$$
 and $P(z) = \sum_{j=0}^n a_j z^j \in P_n$,
we define

$$\Lambda_{\gamma} P(z) = \sum_{j=0}^{n} \gamma_j a_j z^j.$$

The operator Λ_{γ} is said to be admissible if it preserves one of the following properties:

1) P(z) has all its zeros in $\{z \in C : |z| \le 1\}$,

2) P(z) has all its zeros in $\{z \in C : |z| \ge 1\}$,

The result of Arestov may now be stated as follows.

Lemma 3. [8] Let $\phi(x) = \psi(logx)$ where ψ is a convex nondecreasing function on R. Then for all

 $P \in P_n$ and each admissible operator Λ_{γ} ,

$$\int_{0}^{2\pi} \phi \left(\left| \Lambda_{\gamma} P\left(e^{i\theta} \right) \right| \right) d\theta \leq \int_{0}^{2\pi} \phi \left(C\left(\gamma, n \right) \left| P\left(e^{i\theta} \right) \right| \right) d\theta$$

where $C(\gamma, n) = Max(|\gamma_0|, |\gamma_n|).$

In particular, Lemma 3 applies with $\phi: x \to x^p$ for every $p \in (0, \infty)$. Therefore, we have

$$\left\{\int_{0}^{2\pi} \left(\left|\Lambda_{\gamma} P\left(e^{i\theta}\right)\right|^{p}\right) d\theta\right\}^{1/p} \leq \left(C\left(\gamma,n\right) \left\{\int_{0}^{2\pi} \left|P\left(e^{i\theta}\right)\right|^{p} d\theta\right\}^{1/p}.$$
(26)

We use (26) to prove the following interesting result.

Lemma 4. If $P \in P_n$ and P(z) does not vanish in |z| < 1, then for every real or complex number β with $|\beta| \le 1, R > r \ge 1, p > 0$ and α real,

$$\int_{0}^{2\pi} \left| \left(P\left(Re^{i\theta} \right) - \beta P\left(re^{i\theta} \right) \right) + e^{i\alpha} \left(R^{n} P\left(e^{i\theta} / R \right) - \overline{\beta} r^{n} P\left(e^{i\theta} / r \right) \right) \right|^{p} d\theta$$
(27)
$$\leq \left| \left(R^{n} - \beta r^{n} \right) + e^{i\alpha} \left(1 - \overline{\beta} \right) \right|^{p} \int_{0}^{2\pi} \left| P\left(e^{i\theta} \right) \right|^{p} d\theta.$$

Proof of Lemma 4. Let $Q(z) = z^n P(1/\overline{z})$. Since P(z) does not vanish in |z| < 1, by Lemma 2, for every real or complex number β with $|\beta| \le 1, R > r \ge 1$ and |z| = 1, we have

$$|P(Rz) - \beta P(rz)| \le |Q(Rz) - \beta Q(rz)| = |R^n P(z/R) - \overline{\beta} r^n P(z/r)|$$

Now(as in the proof of Lemma 2), the polynomial

 $H(z) = Q(Rz) - \beta Q(rz) = R^{n} z^{n} \overline{P(1/R\overline{z})} - \beta r^{n} z^{n} \overline{P(1/r\overline{z})}$

has all its zeros in |z| < 1 for every real or complex number β with $|\beta| \le 1$ and R > r, it follows that the polynomial

$$z^{n}\overline{H(1/\overline{z})} = R^{n}P(z/R) - \overline{\beta}r^{n}P(z/r)$$

has all its zeros in |z| > 1. Hence the function

$$f(z) = \frac{P(Rz) - \beta P(rz)}{R^n P(z/R) - \overline{\beta} r^n P(z/r)}$$

is analytic in $|z| \le 1$ and $|f(z)| \le 1$ for |z| = 1. Since f(z) is not a constant, it follows by the Maximum Modulus Principle that

$$|f(z)| < 1$$
 for $|z| < 1$,

or equivalently,

$$\left| P(Rz) - \beta P(rz) \right| < \left| R^n P(z/R) - \overline{\beta} r^n P(z/r) \right| \text{ for } |z| < 1.$$
(28)

A direct application of Rouche's theorem shows that

Copyright © 2011 SciRes.

Since

does not vanish in |z| < 1 for every β with $|\beta| \le 1$, $R > r \ge 1$ and α real. Therefore, Λ_{γ} is admissible operator. Applying (26) of Lemma 3, the desired result follows immediately for each p > 0. This completes the proof of Lemma 4.

From lemma 4, we deduce the following more general lemma which is a result of independent interest with variety of application.

Lemma 5. If $P \in P_n$, then for every real or complex number β with $|\beta| \le 1, R > r \ge 1$, p > 0 and α real,

$$\int_{0}^{2\pi} \left| \left(P\left(Re^{i\theta} \right) - \beta P\left(re^{i\theta} \right) \right) + e^{i\alpha} \left(R^{n} P\left(e^{i\theta} / R \right) - \overline{\beta} r^{n} P\left(e^{i\theta} / r \right) \right) \right|^{p} d\theta$$

$$\leq \left| \left(R^{n} - \beta r^{n} \right) + e^{i\alpha} \left(1 - \overline{\beta} \right) \right|^{p} \int_{0}^{2\pi} \left| P\left(e^{i\theta} \right)^{p} d\theta.$$
(29)

The result is sharp and equality in (29) holds for $P(z) = \lambda z^n, \lambda \neq 0$

Proof of Lemma 5. Since P(z) is a polynomial of degree at most n, we can write

$$P(z) = P_1(z)P_2(z) = \prod_{j=1}^{k} (z - z_j) \prod_{j=k+1}^{n} (z - z_j), k \ge 1$$

where all the zeros of $P_1(z)$ lie in $|z| \ge 1$ and all the zeros of $P_2(z)$ lie in |z| < 1. First we suppose that $P_1(z)$ has no zero on |z| = 1 so that all the zeros of $P_1(z)$ lie in |z| > 1. Let $Q_2(z) = z^{n-k} \overline{P_2(1/\overline{z})}$, then all the zeros of $Q_2(z)$ lie in |z| > 1 and $|Q_2(z)| = |P_2(z)|$ for |z| = 1. Now consider the polynomial

$$g(z) = P_1(z)Q_2(z) = \prod_{j=1}^k (z-z_j)\prod_{j=k+1}^n (1-z\overline{z_j}),$$

then all the zeros of g(z) lie in |z| > 1 and for |z| = 1,

$$|g(z)| = |P_1(z)||Q_2(z)| = |P_1(z)||P_2(z)| = |P(z)|.$$
 (30)

By the Maximum Modulus Principle, it follows that

$$\left|P(z)\right| \le \left|g(z)\right| \text{ for } \left|z\right| \le 1.$$
(31)

We claim that the polynomial $h(z) = P(z) + \lambda g(z)$ does not vanish in $|z| \le 1$ for every λ with $|\lambda| > 1$. If this is not true, then $h(z_0) = 0$ for some z_0 with $|z_0| \le 1$. This gives

$$|P(z_0)| = |\lambda| |g(z_0)|.$$

 $g(z_0) \neq 0$ and $|\lambda| > 1$, it follows that

$$|P(z_0)| > |g(z_0)|$$
 with $|z_0| \le 1$,

which clearly contradicts (31). Thus h(z) does not vanish in $|z| \le 1$ for every λ with $|\lambda| > 1$, so that all the zeros of h(z) lie in $|z| \ge \rho$ for some $\rho > 1$ and hence all the zeros of $h(\rho z)$ lie in $|z| \ge 1$. Applying (28) to the polynomial $h(\rho z)$, we get

$$|h(R\rho z) - \beta h(r\rho z)| < |R^n h(\rho z/R) - \overline{\beta} r^n h(\rho z/r)|$$

for $|z| < 1, R > r \ge 1.$

Taking $z = e^{i\theta} / \rho$, $0 \le \theta < 2\pi$, then $|z| = (1/\rho) < 1$ as $\rho > 1$ and we get

$$\left|h\left(Re^{i\theta}\right)-\beta h\left(re^{i\theta}\right)\right|<\left|R^{n}h\left(e^{i\theta}/R\right)-\overline{\beta}r^{n}h\left(e^{i\theta}/r\right)\right|,$$

 $0 \le \theta < 2\pi$, $R > r \ge 1$ and $|\beta| \le 1$. This implies

$$|h(Rz) - \beta h(rz)| < |R^n h(z/R) - \overline{\beta} r^n h(z/r)|$$
 for $|z| = 1$.

An application of Rouche's theorem shows that the polynomial

$$T(z) = (h(Rz) - \beta h(rz)) + e^{i\alpha} (R^n h(z/R) - \overline{\beta} r^n h(z/r))$$

does not vanish in $|z| \le 1$ for every real or complex number β with $|\beta| \le 1$, $R > r \ge 1$ and α real. Replacing h(z) by $P(z) + \lambda h(z)$, it follows that the polynomial

$$T(z) = \left\{ P(Rz) - \beta P(rz) + e^{i\alpha} \left(R^n P(z/R) - \overline{\beta} r^n P(z/r) \right) \right\} + \lambda \left\{ \left(g(Rz) - \beta g(rz) \right) + e^{i\alpha} \left(R^n g(z/R) - \overline{\beta} r^n g(z/r) \right) \right\}$$
(32)

does not vanish in $|z| \le 1$ for every β, λ with $|\beta| \le 1$ and $|\lambda| > 1$. This implies

$$\left| \left(P(Rz) - \beta P(rz) \right) + e^{i\alpha} \left(R^n P(z/R) - \overline{\beta} r^n P(z/r) \right) \right|$$

$$\leq \left| \left(g(Rz) - \beta g(rz) \right) + e^{i\alpha} \left(R^n g(z/R) - \overline{\beta} r^n g(z/r) \right) \right|$$
(33)

for $|z| \le 1$, $|\beta| \le 1$, $R > r \ge 1$ and α real. If Inequality (33) is not true, then there is a point $z = z_0$ with $|z_0| \le 1$ such that

$$\left| \left(P(Rz_0) - \beta P(rz_0) \right) + e^{i\alpha} \left(R^n P(z_0/R) - \overline{\beta} r^n P(z_0/r) \right) \right|$$

>
$$\left| \left(g(Rz_0) - \beta g(rz_0) \right) + e^{i\alpha} \left(R^n g(z_0/R) - \overline{\beta} r^n g(z_0/r) \right) \right|.$$

Since all the zeros of polynomials g(z) lie in |z| > 1, it follows (as before) that all the zeros of polynomial $(g(Rz) - \beta g(rz)) + e^{i\alpha} (R^n g(z/R) - \overline{\beta} r^n g(z/r))$ also lie in |z| > 1 for every real or complex number β with $|\beta| \le 1$, $R > r \ge 1$ and α real. Hence

$$g(Rz_0) - \beta g(rz_0) + e^{i\alpha} \left(R^n g(z_0/R) - \overline{\beta} r^n g(z_0/r) \right) \neq 0$$

with $|z_0| \le 1$.

We take

 $\lambda =$

$$-\frac{\left(P(Rz_{0})-\beta P(rz_{0})\right)+e^{i\alpha}\left(R^{n}P(z_{0}/R)-\overline{\beta}r^{n}P(z_{0}/r)\right)}{\left(g(Rz_{0})-\beta g(rz_{0})\right)+e^{i\alpha}\left(R^{n}g(z_{0}/R)-\overline{\beta}r^{n}g(z_{0}/r)\right)}$$

so that λ is a well-defined real or complex number with $|\lambda| > 1$ and with this choice of λ , from (32) we get $T(z_0) = 0$ with $|z_0| \le 1$ This clearly is a contradiction to the fact that T(z) does not vanish in $|z| \le 1$. Thus for every β with $|\beta| \le 1$, $R > r \ge 1$ and α real,

$$\left| \left(P(Rz) - \beta P(rz) \right) + e^{i\alpha} \left(R^n P(z/R) - \overline{\beta} r^n P(z/r) \right) \right|$$

$$\leq \left| \left(g(Rz) - \beta g(rz) \right) + e^{i\alpha} \left(R^n g(z/R) - \overline{\beta} r^n g(z/r) \right) \right|$$

for $|z| \le 1$, which in particular gives for each p > 0and $0 \le \theta < 2\pi$,

$$\int_{0}^{2\pi} \left| \left(P\left(Re^{i\theta} \right) - \beta P\left(re^{i\theta} \right) \right) + e^{i\alpha} \left(R^{n} P\left(e^{i\theta} / R \right) - \overline{\beta} r^{n} P\left(e^{i\theta} / r \right) \right) \right|^{p} d\theta$$
$$\leq \int_{0}^{2\pi} \left| \left(g\left(Re^{i\theta} \right) - \beta g\left(re^{i\theta} \right) \right) + e^{i\alpha} \left(R^{n} g\left(e^{i\theta} / R \right) - \overline{\beta} r^{n} g\left(e^{i\theta} / r \right) \right) \right|^{p} d\theta$$

Using lemma 4 and (30), it follows that for every β with $|\beta| \le 1$, R > r, p > 0 and α real,

$$\int_{0}^{2\pi} \left| \left(P\left(Re^{i\theta}\right) - \beta P\left(re^{i\theta}\right) \right) + e^{i\alpha} \left(R^{n} P\left(e^{i\theta}/R\right) - \overline{\beta} r^{n} P\left(e^{i\theta}/r\right) \right) \right|^{p} d\theta$$

$$\leq \left| \left(R^{n} - \beta r^{n}\right) + e^{i\alpha} \left(1 - \overline{\beta}\right) \right|^{p} \int_{0}^{2\pi} \left| g\left(e^{i\theta}\right)^{p} d\theta$$

$$= \left| \left(R^{n} - \beta r^{n}\right) + e^{i\alpha} \left(1 - \overline{\beta}\right) \right|^{p} \int_{0}^{2\pi} \left| P\left(e^{i\theta}\right)^{p} d\theta.$$
(34)

Now if $P_1(z)$ has a zero on |z| = 1, then applying (34) to the polynomial $P^*(z) = P_1(tz)P_2(z)$ where t < 1, we get for every β with $|\beta| \le 1$, $R > r \ge 1$, p > 0 and α real,

$$\int_{0}^{2\pi} \left| \left(P^{*} \left(Re^{i\theta} \right) - \beta P^{*} \left(re^{i\theta} \right) \right) + e^{i\alpha} \left(R^{n} P^{*} \left(e^{i\theta} / R \right) - \overline{\beta} r^{n} P^{*} \left(e^{i\theta} / r \right) \right) \right|^{p} d\theta \qquad (35)$$
$$\leq \left| \left(R^{n} - \beta r^{n} \right) + e^{i\alpha} \left(1 - \overline{\beta} \right) \right|^{p} \int_{0}^{2\pi} \left| P^{*} \left(e^{i\theta} \right)^{p} d\theta.$$

Letting $t \rightarrow 1$ in (35) and using continuity, the desired result follows immediately and this proves Lemma 5.

3. Proofs of the Theorems

Proof of Theorem 1. Since P(z) is a polynomial of degree at most n, we can write

$$P(z) = P_1(z)P_2(z) = \prod_{j=1}^{k} (z - z_j) \prod_{j=k+1}^{n} (z - z_j), k \ge 1$$

where all the zeros of $P_1(z)$ lie in $|z| \le 1$ and all the zeros of $P_2(z)$ lie in |z| > 1. First we suppose that all the zeros of $P_1(z)$ lie in |z| < 1. Let $Q_2(z) = z^{n-k} \overline{P_2(1/\overline{z})}$, then all the zeros of $Q_2(z)$ lie in |z| < 1 and $|Q_2(z)| = |P_2(z)|$ for |z| = 1. Now consider the polynomial

$$F(z) = P_1(z)Q_2(z) = \prod_{j=1}^{k} (z-z_j) \prod_{j=k+1}^{n} (1-z\overline{z_j}),$$

then all the zeros of F(z) lie in |z| < 1 and for |z| = 1,

$$|F(z)| = |P_1(z)||Q_2(z)| = |P_1(z)||P_2(z)| = |P(z)|.$$
(29)

By the Maximum Modulus Principle, it follows that

 $|P(z)| \leq |F(z)|$ for $|z| \geq 1$.

Since $F(z) \neq 0$ for $|z| \ge 1$ and $|\lambda| > 1$, a direct application of Rouche's theorem shows that the polynomial $H(z) = P(z) + \lambda F(z)$ has all its zeros in |z| < 1 for every λ with $|\lambda| > 1$. Applying lemma 1 to the polynomial H(z), we deduce (as before)

$$\left|H\left(rz\right)\right| < \left|H\left(Rz\right)\right|$$

for |z| = 1 and $R > r \ge 1$.

Since all the zeros of H(Rz) lie in $|z| < \frac{1}{R} \le 1$, we conclude that for every β, λ with $|\beta| \le 1$ and $|\lambda| > 1$, all the zeros of polynomial

$$G(z) = H(Rz) - \beta H(rz)$$

= $(P(Rz) - \beta P(rz)) + \lambda (F(Rz) - \beta F(rz))$

lie in |z| < 1. This implies (as in the case of Lemma 2)

$$|P(Rz) - \beta P(rz)| \le |F(Rz) - \beta F(rz)| \text{ for } |z| \ge 1$$

and $R > r \ge 1$,

which in particular gives for R > r and p > 0,

$$\int_{0}^{2\pi} \left| P\left(Re^{i\theta}\right) - \beta P\left(re^{i\theta}\right) \right|^{p} d\theta$$

$$\leq \int_{0}^{2\pi} \left| F\left(Re^{i\theta}\right) - \beta F\left(re^{i\theta}\right) \right|^{p} d\theta$$
(30)

Copyright © 2011 SciRes.

Again, since all the zeros of F(z) lie in |z| < 1, as before, $F(Rz) - \beta F(rz)$ has all its zeros in |z| < 1 for every real or complex number β with $|\beta| \le 1$. Therefore, the operator Λ_{γ} defined by

$$\Lambda_{\gamma}F(z) = F(Rz) - \beta F(rz)$$
$$= (R^{n} - \beta r^{n})b_{n}z^{n} + \dots + (1 - \beta)b_{0}$$

is admissible. Hence by (26) of Lemma (3), for each p > 0, we have

$$\int_{0}^{2\pi} \left| F\left(Re^{i\theta}\right) - \beta F\left(re^{i\theta}\right) \right|^{p} d\theta$$

$$\leq \left| R^{n} - \beta r^{n} \right|^{p} \int_{0}^{2\pi} \left| F\left(e^{i\theta}\right) \right|^{p} d\theta.$$
(31)

Combining Inequalities (37) and (38) and noting that $|F(e^{i\theta})| = |P(e^{i\theta})|$, we obtain for $R > r \ge 1$ and p > 0

$$\begin{cases}
\int_{0}^{2\pi} \left| P\left(Re^{i\theta}\right) - \beta P\left(re^{i\theta}\right) \right|^{p} d\theta \end{cases}^{1/p} \\
\leq \left| R^{n} - \beta r^{n} \right| \left\{ \int_{0}^{2\pi} \left| P\left(e^{i\theta}\right) \right|^{p} d\theta \right\}^{1/p}.
\end{cases}$$
(32)

In case $P_1(z)$ has a zero on |z|=1, the Inequality (39) follows by using similar argument as in the case of Lemma 5. This completes the proof of Theorem 1.

Proof of Theorem 2. By hypothesis $P \in P_n$ and P(z) does not vanish in |z| < 1, therefore, by Lemma 2 for every real or complex number β with $|\beta| \le 1$, $0 \le \theta < 2\pi$ and $R > r \ge 1$,

$$\left| P\left(Re^{i\theta}\right) - \beta P\left(re^{i\theta}\right) \right|$$

$$\leq \left| R^{n} P\left(e^{i\theta}/R\right) - \overline{\beta}r^{n} P\left(e^{i\theta}/r\right) \right|$$
(33)

Also, by Lemma 5,

$$\int_{0}^{2\pi} \left| F\left(\theta\right) + e^{i\alpha} G\left(\theta\right) \right|^{p} d\theta
\leq \left| \left(R^{n} - \beta r^{n} \right) + e^{i\alpha} \left(1 - \overline{\beta} \right) \right|^{p} \int_{0}^{2\pi} \left| P\left(e^{i\theta} \right)^{p} d\theta \right|^{2} d\theta$$
(34)

where

$$F(\theta) = P(Re^{i\theta}) - \beta P(re^{i\theta}) \text{ and}$$
$$G(\theta) = R^n P(e^{i\theta}/R) - \overline{\beta} r^n P(e^{i\theta}/r).$$

Integrating both sides of (41) with respect to α from 0 to 2π , we get for each p > 0, $R > r \ge 1$ and α real,

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| F\left(\theta\right) + e^{i\alpha} G\left(\theta\right) \right|^{p} d\alpha d\theta$$

$$\leq \left\{ \int_{0}^{2\pi} \left| \left(R^{n} - \beta r^{n} \right) + e^{i\alpha} \left(1 - \overline{\beta} \right) \right|^{p} d\alpha \right\} \left\{ \int_{0}^{2\pi} \left| P\left(e^{i\theta} \right|^{p} d\theta \right\}$$
(35)

Now for every real α , $t \ge 1$ and p > 0, we have

Copyright © 2011 SciRes.

$$\int_0^{2\pi} \left| t + e^{i\alpha} \right|^p d\alpha \ge \int_0^{2\pi} \left| 1 + e^{i\alpha} \right|^p d\alpha.$$

If $F(\theta) \neq 0$, we take $t = |G(\theta)|/|F(\theta)|$, then by (40) $t \ge 1$ and we get

$$\int_{0}^{2\pi} \left| F(\theta) + e^{i\alpha} G(\theta) \right|^{p} d\alpha$$

$$= \left| F(\theta) \right|^{p} \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \frac{G(\theta)}{F(\theta)} \right|^{p} d\alpha$$

$$= \left| F(\theta) \right|^{p} \int_{0}^{2\pi} \left| \frac{G(\theta)}{F(\theta)} + e^{i\alpha} \right|^{p} d\alpha$$

$$= \left| F(\theta) \right|^{p} \int_{0}^{2\pi} \left| \frac{G(\theta)}{F(\theta)} \right| + e^{i\alpha} \left|^{p} d\alpha$$

$$\geq \left| F(\theta) \right|^{p} \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^{p} d\alpha.$$

For $F(\theta) = 0$, this inequality is trivially true. Using this in(42), we conclude that for every real or complex number β with $|\beta| \le 1$, $R > r \ge 1$ and α real,

$$\begin{cases}
\int_{0}^{2\pi} \left|1+e^{i\alpha}\right|^{p} d\alpha \right\} \left\{ \int_{0}^{2\pi} \left|P\left(Re^{i\theta}\right)-\beta P\left(re^{i\theta}\right)\right|^{p} d\theta \right\} \\
\leq \left\{ \int_{0}^{2\pi} \left|\left(R^{n}-\beta r^{n}\right)+e^{i\alpha}\left(1-\overline{\beta}\right)\right|^{p} d\alpha \right\} \left\{ \int_{0}^{2\pi} \left|P\left(e^{i\theta}\right)^{p} d\theta \right\}.$$
(43)

Since

$$\begin{cases} \int_{0}^{2\pi} \left| \left(R^{n} - \beta r^{n} \right) + e^{i\alpha} \left(1 - \overline{\beta} \right) \right|^{p} d\alpha \end{cases}$$

$$= \left\{ \int_{0}^{2\pi} \left\| R^{n} - \beta r^{n} \right| + e^{i\alpha} \left| 1 - \overline{\beta} \right\|^{p} d\alpha \end{cases}$$

$$= \left\{ \int_{0}^{2\pi} \left\| R^{n} - \beta r^{n} \right| + e^{i\alpha} \left| 1 - \beta \right\|^{p} d\alpha \end{aligned}$$

$$= \left\{ \int_{0}^{2\pi} \left\| R^{n} - \beta r^{n} \right| e^{i\alpha} + \left| 1 - \beta \right\|^{p} d\alpha \end{aligned}$$

$$= \left\{ \int_{0}^{2\pi} \left\| R^{n} - \beta r^{n} \right| e^{i\alpha} + \left| 1 - \beta \right\|^{p} d\alpha \end{aligned}$$

$$= \left\{ \int_{0}^{2\pi} \left| \left(R^{n} - \beta r^{n} \right) e^{i\alpha} + \left(1 - \beta \right) \right|^{p} d\alpha \end{aligned}$$

the desired result follows immediately by combining (43) and (44). This completes the proof of Theorem 2.

Proof of Theorem 3. Since P(z) is a self-inversive polynomial, we have P(z) = uQ(z) for all $z \in C$ where |u| = 1 and $Q(z) = z^n \overline{P}(1/\overline{z})$. Therefore, for every real or complex number β and $R > r \ge 1$,

$$|P(Rz) - \beta P(rz)| = |Q(Rz) - \beta Q(rz)|$$
 for all $z \in C$

so that

$$\left|G(\theta)/F(\theta)\right| = \left|\frac{P(Re^{i\theta}) - \beta P(re^{i\theta})}{R^n P(e^{i\theta}/R) - \overline{\beta}r^n P(e^{i\theta}/r)}\right| = 1.$$

AM

Using this in (41) with $|\beta| \le 1$ and proceeding similarly as in the proof of Theorem 2, we get the desired result. This completes the proof of Theorem 3.

4. References

- G. V. Milovanovic, D. S. Mitrinovic and T. M. Rassias, "Topics in Polynomials: Extremal Properties, Inequalities, Zeros," World Scientific Publishing Company, Singapore, 1994.
- [2] A. C. Schaffer, "Inequalities of A. Markoff and S. Bernstein for Polynomials and Related Functions," *Bulletin American Mathematical Society*, Vol. 47, No. 2, 1941, pp. 565-579. doi:10.1090/S0002-9904-1941-07510-5
- [3] G. Pólya and G. Szegö, "Aufgaben und Lehrsätze aus der Analysis," Springer-Verlag, Berlin, 1925.
- [4] A. Zygmund, "A Remark on Conjugate Series," *Proceedings* of London Mathematical Society, Vol. 34, 1932, pp. 292-400. doi:10.1112/plms/s2-34.1.392
- [5] G. H. Hardy, "The Mean Value of the Modulus of an Analytic Function," *Proceedings of London Mathematical Society*, Vol. 14, 1915, pp. 269-277.
- [6] Q. I. Rahman and G. Schmeisser, "Les in q' Ualitués de Markoff et de Bernstein," Presses University Montréal, Montréal, 1983.
- [7] M. Riesz, "Formula d'interpolation Pour la Dérivée d'un Polynome Trigonométrique," *Comptes Rendus de l' Academie des Sciences*, Vol. 158, 1914, pp. 1152-1254.
- [8] V. V. Arestov, "On Integral Inequalities for Trigonometric Polynimials and Their Derivatives," *Mathematics* of the USSR-Izvestiya, Vol. 18, 1982, pp. 1-17.

doi:10.1070/IM1982v018n01ABEH001375

- [9] N. G. Bruijn, "Inequalities Concerning Polynomials in the Complex Domain," *Nederal. Akad. Wetensch. Proceeding*, Vol. 50, 1947, pp. 1265-1272.
- [10] Q. I. Rahman and G. Schmessier, "L^p Inequalities for Polynomials," *The Journal of Approximation Theory*, Vol. 53, 1988, pp. 26-32. doi:10.1016/0021-9045(88)90073-1
- [11] R. P. Boas, Jr., and Q. I. Rahman, "L^p Inequalities for Polynomials and Entire Functions," Archive for Rational Mechanics and Analysis, Vol. 11, 1962, pp. 34-39. doi:10.1007/BF00253927
- [12] A. Aziz and N. A. Rather, "L^p Inequalities for Polynomials," *Glasnik Matematicki*, Vol. 32, No. 52, 1997, pp. 39-43.
- [13] P. D. Lax, "Proof of a Conjecture of P. Erdös on the Derivative of a Polynomial," *Bulletin of American Mathematical Society*, Vol. 50, 1944, pp. 509-513. doi:10.1090/S0002-9904-1944-08177-9
- [14] N. C. Ankeny and T. J. Rivlin, "On a Theorm of S. Bernstein," *Pacific Journal of Mathematics*, Vol. 5, 1955, pp. 849-852.
- [15] A. Aziz and N. A. Rather, "Some Compact Generalization of Zygmund-Type Inequalities for Polynomials," *Nonlinear Studies*, Vol. 6, No. 2, 1999, pp. 241-255.
- [16] A. Aziz, "A New Proof and a Generalization of a Theorem of De Bruijn," *Proceedings of American Mathematical Society*, Vol. 106, No. 2, 1989, pp. 345-350.
- [17] K. K. Dewan and N. K. Govil, "An Inequality for Self-Inversive Polynomials," *Journal of Mathematical Analy*sis and Application, Vol. 95, No. 2, 1983, p. 490. doi:10.1016/0022-247X(83)90122-1