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Abstract 
 
We present a procedure that gives us an SOS (sum of squares) decomposition of a given real polynomial in 
n  variables, if there exists such decomposition. For the case of real polynomials in n  non-commutative 
variables we extend this procedure to obtain a sum of hermitian squares SOHS) decomposition whenever 
there exists any. This extended procedure is the main scientific contribution of the paper. 
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1. Introduction 
 
Operations research, especially mathematical program- 
ming as subfield, very often makes progress by using re- 
sults from other (“pure”) areas of mathematics, such as 
analysis, algebra, probability etc. Rarely happens the 
contrary, i.e. that the new methods, developed by mathe- 
matical programming community, inspires further resear- 
ch in pure mathematics. 

One of the main breakthrough in operations research 
in last decades was development of theoretically and pra- 
ctically efficient interior-point methods for convex opti- 
mization problems. These methods were initially deve- 
loped for linear programming (LP) problems and later 
extended to many other convex optimization problems. 
The first non-trivial class of optimization problems, to 
which the interior point methods were extended, was the 
class of linear programs over the cone of positive semi- 
definite matrices or over the second order cone (see Sec- 
tion 2 and [1]). 

Once we became able to solve semidefinite programs 
efficiently (i.e. we can find  -optimal solution in the 
time, which is a polynomial function of log   and the 
size of the input data), the class of instances of the pro- 
blems of this type and the methods to solve them (called 
semidefinite programming ) became very important tool 
in optimization, control and also many other areas of 
applied mathematics and engineering, see e.g. [1]. 

Computing global minimum of a given real polyno- 

mial over the set, defined by polynomial inequalities (we 
call such set a semi-algebraic set) is an NP-hard problem, 
since it includes linear binary problems. Several authors, 
in particular Lasserre [2-4], Parillo [5], Parrilo and Stur- 
mfels [6] and Schweighofer [7,8] have shown how to 
solve such a problem approximately by a sequence of se- 
midefinite programs. 

The main results needed to construct such a sequence 
are the fact that if a given polynomial is a sum of squares 
(SOS), then it is non-negative, and the dual theory of 
moments [2]. Precise and comprehensive overview of the 
results about topic has been done by M. Laurent in [9]. 

Checking whether given polynomial is non-negative is 
an NP-hard problem, but checking if given polynomial is 
SOS can be done efficiently in theory and practise by se- 
midefinite programming. This topic has been well explo- 
ited in recent years and currently there are available soft- 
ware packages to detect SOS polynomials and to do po- 
lynomial optimization. Readers interested in solving sums 
of squares problems for commuting polynomials are re- 
ferred to one of the great existing packages SOSTOOLS 
[10,11], GloptiPoly [12], YALMIP [13,14], and Sparse- 
POP [15]. 

Comparing to commutative polynomials is the problem 
of writing a on-commutative polynomial as a sum of her- 
mitian squares (SOHS) much less exploited—theoreti- 
cally and practically. However, several results show that 
this area is interesting and important. 

Helton [16] proved that real given polynomial in NC 



J. POVH 
 

Copyright © 2011 SciRes.                                                                                  AM 

310

variables is SOHS if and only if it yields a positive semi- 
definite matrix (PSD) after substituting the variable by 
symmetric real matrices of the same size. For a beautiful 
exposition, we refer the reader to [17]. 

Together with coworkers Helton pursued line of re- 
search of NC polynomials further, studied positivity and 
convexity of NC polynomials and gave applications to 
control theory, optimization, systems engineering, etc.; 
see [18] for a nice survey of these beginnings of free se- 
mialgebraic geometry. The first author in [19] connected 
sums of hermitian squares of NC polynomials to an old 
open problem of Connes on von Neumann algebras, and, 
somewhat related, found applications to mathematical 
physics [20]. Many of these results were obtained with 
the aid of computer programs written in an ad-hoc man- 
ner. 

Despite the fast rise of free semialgebraic geometry, it 
seems that [21] is the first publication about theoretical 
algorithm and publicly available software for computing 
(or determining existence) of sums of hermitian squares 
(SOHS) decompositions of NC polynomials. 

In this paper we illustrate the procedures mentioned 
above on a number of well-chosen examples. 
 
1.1. Notation 
 
In the paper we use standard notation from optimization 
and algebra. By 0X   we denote that X is positive se- 
midefinite (i.e. X is symmetric and has only non-negative 
eigenvalues). The scalar product of two matrices X and Y 
of the same size is   ,,

, = =T
ij i ji j

X Y trace X Y x y .By 
I  we denote the identity matrix. 

A set of real polynomials in n  (commutative) vari- 
ables (algebraists call this set algebra of real polyno- 
mials) is denoted by    1= , , nx x x   . Elements of 
 x  are therefore polynomials, which can be written 

as follows  

       1 2
1 2= = ,ni i i i

i i n
i i

p x c x c x x x       

where i  are vectors from n , which define the expo- 
nents of monomials. The degree of monomial x  is 

   =
i

deg x i   and the degree of polynomial  p x  

= i
ii

c x  is    = i ij
deg p jmax  . If all monomials 

in p have the same degree d, we say that p is d -form. 
Note that the coefficient ic  and the exponent vectors 

i  completely determine the polynomial. 
Example 1. Polynomial   5 3 2 7, = 10 2p x y x y x y  

has vectors of exponents  1 = 5,3  and  2 = 2,7 . 
We have   = 9deg p . 

The set (free algebra) of non-commutative polynomi- 
als in variables  1 2= , , , nx x x x  is denoted by x  
and consists of linear combinations of all finite words 

with letters 1, , nx x . We endow x  with the invo-
lution * , which reverses the order of the letters in any 
word, i.e. it holds  * * *=p q p +q and  * * *=pq q p . The 
degree of polynomial is length of the longest word.  

Example 2. Let   2 2 2= 1 ,p x x y xy x x y   . 

We have * 2 2 2= 1p yx x y x   and   = 5deg p .  

Remark 1. In the non-commutative case we can not 
express monomials simply by the vectors of exponents, 
since monomials 2x y  and 2yx , which are in commut-
ative case equal with the same exponent  21, , are no 
more equal in the non-commutative case. Instead of this 
we keep working with monomials, i.e. with the words.  
 

2. Semidefinite Programming 
 

Semidefinite programming consists of problems, where 
we are interested for the optimum of a linear function su- 
bject to linear constraints and additional constraint that 
all variables are taken from positive semidefinite matrix. 
More precisely, given symmetric matrices 1, , , mC A A  
and vector mb , we formulate semidefinite program 
in standard primal form (in the sequel we refer to prob-
lems of this type by PSDP) as follows:  

 min ,

. . , = , = 1, , ,

0.
i i

C X PSDP

s t A X b i m

X




 

The conic dual problem to PSDP is the semidefinite 
program in the standard dual form (DSDP)  

 
max

. . = ,

, 0.

T

i i
i

m

b y

s t y A Z C DSDP

y Z






 

 

As we already mentioned, the importance of semidefi-
nite programming was spurred by development of effici- 
ent methods, which can find  -optimal solution in a po- 
lynomial time of ,n m  and log  , where n  is the or-
der of matrix variables Z  and X . There exist several 
freeware package, which also in practice find such solu- 
tions. If the problem is of the medium size (i.e. 

1000n   and 10.000m  ), these packages are based 
on the interior point methods, while packages for larger 
semidefinite programs use some variant of the first order 
methods (see web page [22] with a comprehensive list of 
state-of-the-art SDP solvers and also [23]). 
 

3. SOS Decompositions of Commutative 
Polynomials by SDP 
 

SOS decomposition appears naturally when we are in- 
terested in finding the global optimum of a given poly- 
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nomial. Indeed, the problem  

  = min : n
popt p x x           (1) 

is equivalent to  

  max : 0 .p x    

Both problems are in general very difficult (i.e. NP- 
hard), therefore we are forced to relax the problems in 
order to obtain a tractable one. One of the possibilities is 
using the SOS decomposition. 

Definition 1. Polynomial  p x  has a sum of 
squares decomposition if there exist polynomials 

1, , kq q  such that 2= ii
p q .  

If the polynomial p  can be written as a sum of 
squares, then clearly we have 0p  , while the converse 
is in general not true. This leads to the following lower 
bound for the problem (1):  

  max :   .popt p x is SOS    

The inequality from above might be strict, as also fol- 
lows from the following example. 

Example 3. Polynomial 

  4 2 2 4 6 2 2 2
1 2 3 1 2 1 2 3 1 2 3, , = 3M x x x x x x x x x x x    

is well-known as Motzkin form and is defined by four 
coefficients and four vectors:  

     1 1 2 2 3 3= 1, = 4,2,0 , = 1, = 2, 4,0 , = 1, = 0,0,6c c c    

in  4 4= 3, = 2, 2, 2c   It has been shown (see [24, 
25]) that  1 2 3, , 0M x x x   while M  has no SOS de- 
composition.  

There exist only few sets of polynomials where it 
holds that a polynomial from this set is non-negative if 
and only if it has SOS decomposition. This is true for all 
polynomials in two variables, for all 2-forms and for 4- 
forms in 3 variables. Obviously the Motzkin form from 
above is not in any of these sets. 

Testing whether a given polynomial has SOS decom- 
position can be done efficiently by semidefinite program- 
ming, as follows from the following theorem. For the 
proof see e.g. a proof of non-commutative version [21, 
Prop. 2.1]. 

Theorem 1. Polynomial  p x  has SOS decom- 
position if and only if there exists a positive semidefinite 
matrix Q  such that  

  = ,Tp x U QU  

where U  is the column containing all monomials of 
degree   2deg p .  

We demonstrate this theorem by the following exam- 
ple.  

Example 4. Let us consider  

  4 3 2 2 4
1 2 1 1 2 1 2 2, = 2 2 5p x x x x x x x x   . 

Since p  if 4-form, it follows from above that p  
has SOS decomposition if and only if it is non-negative. 
Moreover, in the SOS decomposition we can have only 
monomials 2 2

1 2 1 2, ,x x x x . 
Polynomial p  has therefore the SOS decomposition 

if there exists positive semidefinite matrix Q  such that  

 1 2, = Tp x x U QU , for  2 2
1 2 1 2= , ,

T
x x x xU . For the ma- 

trix Q  we have linear constraints that its components 
must coincide with the coefficients of p . We have in 
p  monomial 4

1x  with coefficient 2, therefore it must 
hold 1,1 = 2q  and similarly 2,2 = 5q . Monomial 3

1 2x x  
has coefficient 2 in and can be obtained as 2

1 1 2x x x , 
hence we have also constraint 1,3 3,1 = 2q q  or equiva- 
lently 1,3 3,1= = 1q q . Monomial 2 2

1 2x x  can be obtained 
as a product of 2

1x  in 2
2x  or as a square of 1 2x x , there- 

fore 1,2 2,1 3,3 = 1q q q   . Monomial 3
1 2x x  does not 

appear p , hence 2,3 3,2 = 0q q  and since Q  is sym- 
metric: 2,3 3,2= = 0q q . If we put things together, we are 
looking for a positive semidefinite matrix Q  with com- 
ponents satisfying the constraints above. Note that the 
objective function is not important here, i.e. we have the 
semidefinite feasibility problem. We can solve it by heart: 
by setting 3,3 = 5q  we obtain 1,2 2,1= = 3q q  . The ma- 
trix is now completely defined: 

2 3 1
2 3 1 2 3 11

= 3 5 0 =
0 1 3 0 1 32

1 0 5

T 
                

Q  

We have the following SOS decomposition:  

      2 22 2 2
1 2 1 2 1 2 2 1 2

1
, = 2 3 3 .

2
p x x x x x x x x x     

Remark 2. Even though we have an SDP feasibility 
problem, we usually use the following objective function 

 trace Q , since it is widely accepted as an efficient heu- 
ristics to obtain the feasible solution with lowest rank. 
This is important since the rank of Q  is exactly the 
number of factors in SOS decomposition.  

In general we must include in the vector U  all mono- 
mials of degree d, if the polynomial is 2d-form. We have 

1n d

d

  
 
 

 of such monomials. If the polynomial has 

degree 2d, but is not 2d-form, the vector U  contains all 

possible monomials of degree d -there are n d

d

 
 
 

 

many of them. We can find examples, where we indeed 
need all these monomials. If = 4n  and = 10d , we ob- 

tain
1

286
n d

d

  
 

 
 and 

n d

d

 
 

 
1001 , hence the re- 

sulting SDPs are already on the boundary of the set of in- 
stances, solvable by interior point methods. 

Nevertheless, very often, especially if the polynomial 
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is sparse (has only few monomials) it is possible to con- 
siderable decrease the number of monomials in U . We 
can use a result, first formulated in [26], that characteri- 
zes the monomials that can appear in a sum of squares 
repre- sentation. Define the Newton polytope 

p  of 
given polynomial p  of degree 2d  as the integer 
lattice points in the convex hull of the degrees  , which 
appear in p . Then, it can be shown that the only mono- 
mials x  that can appear in a sum of squares represen- 
tation are those such that 2  is in the 

p  (or 
equivalently 

p
2

1
 ). 

Example 5. If p  is from Example 4, we have  

        2= 4,0 , 3,1 , 2,2 , 0, 4p CONV  

and 

      1
= 2,0 , 1,1 , 0,2

2
  

hence it defines exactly the monomials which appear in 
the SOS decomposition.  

The package SO Stools and some other packages for 
SOS decompositions are essentially based on the Newton 
polytope algorithm. 

 
4. SOHS Decompositions for 

Non-Commutative Polynomials 
 

A non-commutative polynomial p x  has a sum- 
of-Hermitian-squares (SOHS) decomposition if there 
exist polynomials 1, , kq q  such that *= i ii

p q q . One 
can prove a result, similar to Theorem 1: p x  of 
degree 2d  has SOHS decomposition if and only if  

*= ,p U QU                  (2) 

for some 0Q , where U  is vector of all monomials 
of degree d . 

If we consider all possible monomials of degree d , 
then vector U  has    1 1 1dn d    components. This 
is much larger comparing to the commutative case. Ne- 
vertheless, we have also many criteria which tell us when 
we can leave out some of the monomials from U . We 
demonstrate the procedure to find SOHS decomposition 
by the following example.  

Example 6. Let 

 1 2

2 2 2
1 1 2 1 2 1 1 2 1 2 1 2 1 2

, =

1 3 6 3

p x x

x x x x x x x x x x x x x x     
 

Since p  has degree 4, there are 32 1 = 7  monomi- 
als which might appear in the vector U  from the SOHS 
decomposition: 

 2 2
1 2 1 2 2 1 1 2= 1, , , , , , .

T
x x x x x x x xU  

Due to the structure of p we can cross out some com- 

ponents of U : for any monomial from U  of (maxi- 
mum) degree 2 it must hold that its hermitian square 
must be in p . If this is note the case for some monomial, 
we can eliminate it from U . 

Therefore we can cross out 2
1x  in 2

2x  from U  to 
obtain  

 1 2 1 2 2 1= 1, , , , .
T

x x x x x xU  

We have 

  *
1 2, =p x x U QU              (3) 

if and only if Q  satisfies equations:  

1,1

2,2

2,3 3,2 1,4 4,1 1,5 5,1

2,5 5,2

5,5

4,4

= 1

= 3

= 2

= 6

= 3

= 1.

q

q

q q q q q q

q q

q

q

     
 

 

Beside these constraints we get also a bunch of homo- 
genous equations: since 2

2x  does not appear in p , Q  
must satisfy 3,3 = 0q . We also miss 2

1 2x x  and 2
2 1x x  in 

p , hence 2,4 3,5 4,2 5,3 = 0q q q q   . We obtain 13 equa- 
tions in total, hence we have to solve SDP of order 5 
with 13 linear constraints. 

By using objective  trace Q  (note Remark 2) our 
SDP solver (Sedumi [27]) gives the following optimal 
solution  

1 0 0 1 0

0 3 0 0 3

= =0 0 0 0 0

1 0 0 1 0

0 3 0 0 3

T

 
  
 
 
 
  

Q P P  

where  

1 0 0 1 0
= .

0 3 0 0 3

 
 

 
P  

Therefore we obtain  

 
       

1 2

1 2 1 2 1 2 1 1 2 1

, =

1 1 3
* *

p x x

x x x x x x x x x x .    
 

Note that 2x  does not appear in the SOHS decompo- 
sition, therefore we could eliminate it from U .  

Previous example clearly shows the main steps of the 
general algorithm to obtain the SOHS decomposition, 
presented in Figure 1. 

We can obtain in general case much larger SDP in the 
non-commutative case, but we have also much more pos- 
sibilities to exploit the fact that the polynomials are non- 
commutative in order to reduce the size of the SDP. In 
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INPUT: p x   

1) Construct the vector of possible monomials U.  

2) Construct linear equations on matrix Q.  

3) Solve SDP in variable Q.  

4) IF the SDP is infeasible, then p  has no SOHS 

decomposition. 

RETURN.  

5) ELSE compute p  such that T=Q P P . Let iq  be the i th 

component of PX .  

OUTPUT: SOHS decomposition *= i ii
p q q . 

Figure 1. Algorithm to obtain the SOHS decomposition. 
 

particular, we can execute the following: 
 If monomial m  appears in the SOHS decompo- 

sition and must therefore appear in U , then there 
should exist a symmetric monomial in p  which 
coincides with m  in the | |m  rightmost variables 
(letters).  

 At least one of the monomials of highest and of 
lowest degree must be symmetric.  

 p  must be symmetric, i.e. * =p p .  
 For every variable ix  the monomial, where ix  

has highest/lowest degree, must be symmetric.  
The first observation is very important: it leads to the 

so-called Newton chip method [21], where we obtain the 
vector U  simply by taking all possible right chips (tails) 
of all possible symmetric monomials in p , which have 
length between half of the minimum and half of the 
maximum degree in p , see also paper [21]. 

We have also written a Matlab based software package 
NCsostools, which is a non-commutative version of the 
Sostools package. It includes an implementation of the 
algorithm from above and also implementations of most 
important operations from x . It is freely available 
from http://ncsostools.fis.unm.si, see also the detailed 
description of commands [28]. However, since all cons- 
traints in the resulting SDP are always orthogonal, we 
see a strong potential in the boundary point method [23], 
which performs very good on such SDP problems, espe- 
cially if we have large scale SDP. 
 
5. Conclusions 
 
In this paper we demonstrated the power of mathematical 
programming in other, more pure areas of mathematics. 
Semidefinite programming turned out to be a very strong 
tool in approximating optimal values of polynomials, 
since it gives SOS or SOHS decompositions of real 
polynomials, when they exist. The next step of the re- 
search will be publishing the NCsostools package, which 
will contain implementation of the algorithm for finding 
the SOHS decompositions and also implementations of 

most important operations in x . 
A very challenging task for future research is a proce- 

dure to extract an exact rational solution of the SDP from 
the numerical solution Q , obtained by SDP solver. It is 
very important since in practice SDP solvers return only 
approximately feasible solutions, which are sufficient for 
most purposes. But if we want to have correct proof for 
SOS or SOHS decomposition, we need an exact rational 
solution. This is in general very difficult problem (NP- 
hard) and not much research has been done in this dire- 
ction. 
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