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Abstract 
 
The reconstruction problem for elliptic voids located in the regular (equilateral) triangle is studied. A known 
point source is applied to the boundary of the domain, and it is assumed that the input data is obtained from 
the free-surface input data over a certain finite-length interval of the outer boundary. In the case when the 
boundary contour of the internal object is unknown, we propose a new algorithm to reconstruct its position 
and size on the basis of the input data. The key specific character of the proposed method is the construction 
of a special explicit-form Green’s function satisfying the boundary condition over the outer boundary of the 
triangular domain. Some numerical examples demonstrate good stability of the proposed algorithm. 
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1. Introduction 
 
In the engineering applications of strength theory the 
detection and recognition of voids in elastic materials is 
one of the most important problems of Non-Destructive 
Evaluation. Various methods are used for this purpose, 
and one of them is founded on the theory of inverse pro- 
blems. In order to detect and recognize the image of the 
void, one may apply over a boundary of the sample a 
certain type of load, so that to measure the boundary de-
formation caused by this load. Then one may suppose 
that the presence (or absence) of interior flaws will influ- 
ence the measured obtained data. It is also quite natural 
to suppose that if there is an interior void in the sample 
then its position and geometry can influence significantly 
the shape of the deformed boundary. This idea creates a 
good basis for interior objects reconstruction from the 
measured data over the boundary of the sample. 

A number of theoretical works were devoted to the in- 
verse problems of this kind, with applications to recogni-
tion of cracks [1-3]. Some important papers concern un-
iqueness of the solution, some others develop explicit- 
form analytical results or numerical algorithms [4,5]. Un- 
fortunately, much less results are devoted to reconstruc-
tion of volumetric (non-thin) voids in elastic samples un- 
der the same conditions and with the same type of input 

data. 
In the present work we study a scalar elastic problem 

in the domain of a specific form which is the regular 
(equilateral) triangle. An outer load is applied to its 
boundary surface, so that the deformation of the domain 
under this outer force indicates the presence as well as 
the form of the interior void. We show that so formulated 
direct problem can be reduced to the Laplace partial dif-
ferential equation. Then we construct Green’s function, 
which automatically satisfies the trivial boundary condi-
tion over the faces of the triangular domain. Such 
Green’s function allows us to formulate the direct prob-
lem as a single integral equation holding over the boun-
dary of the void, in the case when a volumetric defect is 
located inside the elastic triangle. Solution of this integ- 
ral equation permits to determine the shape of the boun-
dary surface, if the form of the void is known. Further, 
we formulate the inverse problem, which is to restore the 
geometry of the void from the measured input data taken 
as the known deformation of a certain boundary line over 
some finite-length interval. A specially proposed numer-
ical algorithm is suitable to solve this inverse problem. 
This is reduced to a sort of global minimization of the 
discrepancy functional. Finally, we give some examples 
of application of the proposed method, in the case of the 
reconstruction (location and geometry) of elliptic voids. 
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2. Mathematical Formulation of the Problem 
 

Let us consider the regular (equilateral) homogeneous 
and isotropic elastic triangle under conditions of the 
(two-dimensional) anti-plane stress-strain state. An ellip-
tic flaw with the boundary L  is located in the specimen 
(see Figure 1). The anti-plane formulation implies that 
the Cartesian components of the displacement vector u 
are 

    , , 0,0, ,x y z w x yu ,        (2.1) 

where w  is the component of the displacement vector 
in direction z . Then the system of equations of equili-
brium can be reduced to a single Laplace equation (see, 
for example, [6]) 

    grad div 0,        u u  
2 2

2 2
0,

w w

x y

 
 

 
            (2.2) 

where   and    are elastic constants. As soon as fun- 
ction w  is defined from Equation (2.2), the compo-
nents of the elastic stress tensor can be found in the fol-
lowing form:  xz x, y w x    ,  yz x, y w y    . 
Under condition of the anti-plane problem, the only non- 
trivial component of the stress vector arising at any ele-
mentary area is the tangential stress zT  parallel to 
z -axis: 

, :xz yz

w w
 

x y
    

 
 

 

,

z xz x yz y

x y

T n n

w w w
n n

x y n

 

 

 

   
      

     (2.3) 

 

 

Figure 1. Volumetric flaw in the elastic regular triangle: 
anti-plane problem. 

where n  is the unit normal vector to this area. Hence, if 
we assume that the internal face of the flaw, contour L , 
is free of load, then respective boundary condition is: 

 ,
0

L

w x y

n





          .   (2.4) 

Let us assume that a known tangential point force 
 0 0yx x x     is applied at the point  0 0x ,  of the 

boundary line 0y   (see Figure 1): 

   0
0

0

,

y

w x y
x x

y








 


        (2.5) 

With so formulated governing equations the direct 
problem is to solve Laplace Equation (2.2) with bounda- 
ry condition (2.4) valid over internal contour L. The 
boundary conditions on the outer surface are given by 
Equation (2.5) holding over the lower face of the triangle, 
completed by the Neumann homogeneous boundary con- 
ditions analogous to (2.4) on two side faces of the trian-
gle. 

The problem is studied in frames of linear elasticity. 
Therefore, its solution can be represented as a superposi-
tion of function  0w x, y  corresponding to outer load 
(2.5) applied to perfectly continuous (i.e. without any 
void) triangle, and the one  1w x, y  corresponding to 
defect located in the triangle whose outer boundary l  is 
free of load, with void L  subjected to a certain tangen-
tial stress: 

     0 1, , ,w x y w x y w x y  .      (2.6) 

This results in the following boundary value problem 
for function 1w : 

2 1 2 1

2 2
0

w w

x y

 
 

 
,          (2.7) 

1 0

L L

w w

n n

 
 

 
           (2.8) 

with the homogeneous Neumann boundary condition on 
the outer boundary:    1 , 0, ,w x y / n  x y l    . 
 
3. Green’s Function for the Regular Triangle 
 
In order to reduce the formulated problem to a boundary 
integral equation (BIE), it is required to construct 
Green’s function in the considered domain. For any sin-
gle force applied inside the triangle at point  x, y , this 
Green’s function  , ,x, y    should satisfy the Pois-
son equation 

   

 

2 2

2 2
,

, inside ,

x y

  l

     
 

 

 
    

        (3.1) 
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with the homogeneous free-of-load boundary condition 
on the triangle’s boundary  , l   : 

 ,

0
ln   





             (3.2) 

where n  is the outer unit normal vector to the boundary 
l . 

Following the classical “virtual image” method [8,9], 
it is clear that for ideal faces of the rectangular domain 
the homogeneous Neumann boundary conditions (3.2) 
are automatically satisfied if one arranges a set of del-
ta-function sources symmetrically to the faces, like 
shown in Figure 2. Then the sought Green’s function 
can be defined as a superposition of 12 infinite series 
from the following representation valid for all 
  2, E   : 

   
12

1

3 3
, , , , , , ,

2 2j j
j

S x y a b a c  b c    


      

 (3.3) 
with 

   

 

 

   
   
   

 

1 1

2 2

3 3

4 4 3 3

5 5 2 2

6 6

6 6

, , ;

3 3 3 3
, , ;

4 2 2 4 2 2

3 3 3 3
, , ;

4 2 2 4 2 2

, , ;

, , ;

, , ;

3 3
, , , 1, ,6

2 2j j j j

x y x y

x y
x y c y  c x

x y
x y c y  c x

x y x y

x y x y

x y x y

x y x c y y   j . 



 
      
 
 

      
 

 

 

 

 
     
 



  (3.4) 

Function S  in (3.3) satisfies the Poisson equation in 
 

 
Figure 2. Geometry of virtual images for equilateral trian-
gle. 

the full 2E  space: 

   

     

2 2

2 2

, ,

2 2 , ,
n,m

S S

an bm  .

   
 

     




 


 

    
   (3.5) 

It is evident that any constant summand added to func-
tion S  does not change Equation (3.5). This non-uni- 
queness complicates construction of the sought Green’s 
function. In order to avoid operation with such a singular 
case, let us introduce a small perturbation replacing Lap-
lace operator in Equation (3.5) by the Helmholtz operator 

     

   

2 2
2

2 2

, ,
,

2 2 ,
n,m

S S
S

an bm

 


   
  

 

   




 
 

 

   
     (3.6) 

with a certain small wave number  . Then true solution 
to Equation (3.5) can be obtained as ,  0S S    . 

Let us apply some classical properties of Dirac’s delta- 
function: 

     

   2

1

, 0 ,

1 2 cos 2n i

n n n

x
x  

n e n . 


  



   
  

  

 

     
  (3.7) 

Then Equation (3.6) can be rewritten as follows 

     

 

2 2
2

2 2

0

0

, ,

cos cos ,

; 1, 2, 1,2, ,
4

nm
n,m

n m
nm n

S S
S ,

n m
q

a b

q       n
ab

 


   
  

 
   

 
 





 
 

 

        
   

   





  (3.8) 

hence 

 
   2 2 2

, 0

,
/ /

cos cos

nm

n m

q
S

n a m b

n m

a b

  
  

   







  

       
   


 (3.9) 

The last double series can be transformed to a single 
one if one performs summation over n  or m . The fol-
lowing tabulated series [10] should be taken into account 
for this treatment: 

   
 2 2 2

1

cosh 1cos 1 1
,

2 sinhm

zmz

m




  





      
   

  (3.10) 

therefore, 
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     
 2 2 2 2 2

0 1

cosh 1cos cos1
2

sinhm
m m

zmz mz
.

m m

 
 

   

 

 

    
                  (3.11) 

One thus can see from (3.9)–(3.11), with  

     2 2
b n a a     , that 

   
   

     

   

2 2

2 2 2 20

coshcos
, .

4 sinh

n

n

n a b an a
S

n a b n a a


    
 

   





                

                 (3.12) 

The first term here, 0n  , with asymptotically small 
a  represents itself a certain constant and so, according 

to what was written above, can be neglected. After all 
these transformations, with 0   , the sought Green’s 
function can directly be extracted from (3.12) in the fol-
lowing form: 

 
 
   

1

cosh
cos

2 sinhn

n b a
S , n a .

n nb a

 
   

 





     (3.13) 

It is interesting to control the basic property of any 
Green’s function in the two-dimensional problem: this 
must possess a logarithmic singularity when   and   
both tend to zero, more precisely one should control that 

     2 2

2 2

, 1 4 ln ,

0

S ~

.

    

 

 

 
     (3.14) 

In order to prove asymptotic relation (3.14), let us take 
into account the following table series [10,11] 

   2

1

cos 1
ln 1 2 cos ,

2

0

cn c c

n

nz
e e z e

n

c .


  



   



   (3.15) 

The common term in (3.13) behaves asymptotically as 
n   like in series (3.15) with z a , c a  . 

Then the asymptotic behavior of expression (3.13), as 

 , 0   , becomes:

 

   

/ / 2 /

1

2 2 2 22
/ / 2 2

2 2

cos 1
ln 1 2 cos

2 4

1 1 1
ln 1 2 2 1 cos ln ln ,

4 4 4

n a a a

n

a a

n a
e e e

n a

e e
a a a

     

   

  
 

      
  


  



 

       
 

                    


     (3.16) 

that is to be proved. 
At the end of this section we notice that full structure 

of the sought Green’s function is given by combining 
Equations (3.3) and (3.13): 

 
     

 
12

1 1

cosh cos
, , ,

2 sinh

j j

j n

n b y a n x a
x y

n nb a

   
  

 



 

  
                   (3.17) 

where the set of virtual images is given by Equation 
(3.4). 
 
4. BIE for Direct Problem 
 
Let us come back to the elastic problem shown in Figure 
1. We assume that the lower free face is loaded by a 
known single force at point  0 ,0x , and there is an in-
ternal defect with the boundary L  inside the triangle. 
To resolve this problem, one can apply Green’s function 
constructed in the previous section. 

One can represent the unknown function  1 ,w x y  at 
arbitrary point outside the defect as an integral over its 

boundary curve L , with the use of standard methods of 
potential theory (see, for example, [12]): 

 
1

1 1,
L

w
w x y w dl

n n

 
  

    
       (4.1) 

where both outer unit normal vector  , n  and ele-
mentary arc of length  ,dl    are linked to point 
 , L   , not to  ,x y . It should be noted that for any 
fixed point  ,x y  chosen in the elastic medium the in- 
tegral in (4.1) should contain additional integration over 
the outer boundary of the considered elastic domain, con- 
tour l . However, the second term in such an integrand 
is trivial due to boundary condition (last relation of Sec-
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tion 2), and the first term vanishes due to the specially 
constructed Green’s function satisfying boundary condi-
tion (3.2). 

Let us prove that 
0

0 0
L

w
w dl

n n

 
  

    
        (4.2) 

for any point  ,x y  in the elastic medium. This state-
ment can be proved directly, if one considers Green’s in- 
tegral formula applied to the pair of functions:  0 ,w    
and  , , ,x y    inside contour L . Really, both func-
tions are regular in this domain, if point  ,x y  is out-
side L , and satisfy there the Laplace equation. Then the 
application of Green’s integral formula immediately re- 
 

sults in (4.2) [12]. 
Now, by summation (4.1) and (4.2), we can express 
 1 ,w x y  in terms of boundary values of the full displa- 

cement  ,w x y  and its normal derivative: 

 

 

1 ,

, ,

L

L

w
w x y w dl

n n

w dl
n

 

      








        (4.3) 

due to boundary condition (2.4). 
By using the well known limiting value of the poten-

tial of double layer [12], if any  ,X Y L  and contour 
L  is smooth, then 

   
     

, ,

,
lim , , , , , ,

2x y X Y
L L

w X Y
w x y dl w X Y dl.

n n

    


 
 

                    (4.4) 

With such a limit    , ,x y X Y L  , Equation (4.3) allows us to formulate the basic BIE in the form: 

         0,
, , , , , , , ,

2 L

w X Y
w X Y dl w X Y     X Y L

n

   
  

                  (4.5) 

since 1 0w w w  . 
For the practical usage of formulas (4.3) and (4.5), it is 

helpful to write out explicitly the normal derivative of  

Green’s function. If  ,n n n  is the outer unit nor-
mal vector to the boundary contour L  of the defect, 
then 

     
 

     
 

12 12

1 1 1

cosh sin,

2 sinh

sinh cos sgn

2 sinh

j jj j

j j n

j j j

n n b y a n x aS x y
n n n

n a nb / a

n n b y a n x a y

a nb a



  



      
   

    





  

                          

          


 

 (4.6) 

In order to complete formulation of the basic BIE (4.5) 
for the direct problem, let us note that its right-hand side, 
function  0 ,w X Y  can be obtained similarly to the 
constructed Green’s function. Really, both Green’s func-
tion and function  0 ,w X Y  are some solutions for the 
full triangle caused by a point Dirac’s outer applied force. 
The only difference is that for  0 ,w X Y  Dirac’s delta 
is applied over the boundary contour, not inside the do-
main. Therefore, function  0 ,w X Y  can directly be 
obtained from representation (3.17) for Green’s function, 
if one sets there point  ,x y  approaching the boundary 

point  0 ,0x , and replaces  ,   by  ,X Y . Besides, 
in Equation (3.1) there is sign “minus” in front of Dirac’s 
delta in the right-hand side, hence function  0 ,w X Y  
has to be taken with opposite sign. It should also be 
noted that with the real source image in Figure 2 tending 
to the boundary point  0 ,0x , where the outer force is 
applied, in fact a pair of virtual images (one real and one 
imaginary) approaches the same point  0 ,0x . For this 
reason the final resulting limit value should be taken in 
half. By arranging such a limit, one can obtain the fol-
lowing representation for  0 ,w X Y : 

 
 
   

6
0 0

1 1

cosh /
, cos

4 sinh /

k

k
k n

n b Y y a
w X Y n X x a

n nb a




 



 

           
 

           (4.7) 
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for any  ,X Y  inside the triangle. Note that the dimen- 
sion of the set of virtual images here is in two times less 
when compared to that in Equation (3.17): 

 

   

 

 

 

1 1 0

0
2 2 0

0
3 3 0

3 3

, ,0 ;

3 3 3
, , ;

4 2 4 2

3 3 3
, , ;

4 2 4 2

3 3
, ;

2 2

3 3
, , , 1, ,3

2 2k k k k

x y x

x
x y c  c x

x
x y c  c x

a c    b c

x y x c y c   k . 



 
    
 
 

     
 

 

 
     
 



 (4.8) 

 
5. Reconstruction Problem and Some  

Numerical Results 
 
  If function  0 ,w x y ,  ,x y L  is determined from 

BIE (4.5), the displacement field at arbitrary point of the 
elastic medium can be calculated by using Equation 
(4.3): 

     0, , ,
L

w x y w x y w dl
n

  
 

     (5.1) 

where the quantity n   is given by Equation (4.6). 
After that, the components of the stress tensor can be cal- 
culated as xz w x    , yz w y    . One thus can 
calculate all physical quantities at arbitrary point  ,x y  
inside the medium. In particular, the shape of the lower 
boundary surface  ,0w x l  is directly extracted from 
Equation (5.1). From that representation, we can easily 
observe the contribution given by the two physically dif- 
ferent components: 

1) the deformation of the boundary in the perfect (i.e. 
free of any void) triangle under the applied force 0 , 
that is given by the first term in (5.1); 

2) the contribution given by the influence of presence 
of the flaw, the second integral term in (5.1). 

The latter can be calculated as: 

       

 

12

0 0
1 1

1
,0 , cosh sin

2 sinh

sinh cos sgn ,

j j

j nL

j j
j

b y x
F x F x w n n n

a nb a a a

b y x
n n n y dl

a a





 
   



 
  



 

                 
              


    (5.2) 

and gives, as has been said above, the contribution to the 
deformation of the lower boundary surface given by the 
defect itself. 

The inverse reconstruction problem is formulated as 
follows. Let us assume that a defect of unknown position 
and shape is located somewhere inside the elastic trian-
gle. Let us apply a concentrated single force 0  at a 
certain point on the lower face 0y   and measure the 
deformation of this lower face. Then, by knowing this 
measured deformation, it is necessary to predict the posi-
tion, size, and form of the defect. It is obvious that ma-
thematically the problem is to determine contour L  
from the known function  0F x . Since another un- 

known function    X ,Y L
w X ,Y


is involved in all mathe- 

matical formulas, this means that mathematically one 
needs to solve the system of two integral Equations (4.5) 
and (5.2). This system is nonlinear with respect to any 
defining equation describing contour L. Moreover, since 
Equation (5.2) is of the first kind, the considered system 
is ill-posed (see [13]). 

The proposed approach is founded on the collocation 
technique (see, for example, [12]). If contour L is known, 
then one can arrange a dense set of nodes  , ,m m   

1, ,m N  belonging to this contour:  , ,m m L m    , 
which subdivides it to N  small intervals of length ml . 
Then the approximate numerical solution to Equation 
(4.5) can be obtained by solving the linear algebraic sys-
tem: 

       

     

0

1

6
0 0

0
1 1

, 1, , , , , , , , ,

1
cosh cos ,

4 sinh

N

im m i m m m m x m m m y m m
m

i k k
k n

a w w   i N   w w n n   n n

w n b y a n x x a
n nb a

      


 

 





 

    

         






          (5.3a) 

with the elements of matrix  ima  being given as follows: 
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 

 

12

1 1

1
; if :

2

cosh sin
2 sinh

sinh cos sgn .

ii

m j m jm
im m

j n

m j m j
m m j

a i m

b y xl
a n n n

a nb a a a

b y x
n n n y

a a





 
 



 
  



 

 

               
              

              (5.3b) 

This system is constructed so that the set of the “inner” 
discrete integration points   ,m m  , over which the 
integration is being performed, coincides with the set of 
the "outer" nodes   ,i ix y   , which are used to 
provide the equality between the left- and the right-hand 
sides in (5.3). This implies that the full set of 12 virtual 
images is given by expression (3.4) where one should set 

,i ix y   . 
It should also be noted that elements ima  of a long 

structure are excluded from the diagonal elements (the 
case i m ). These elements correspond to the case 
when    , ,X Y    in the kernel of integral (4.5). It 
can easily be proved that these elements remain always 
bounded for any smooth line L , being related to the 
curvature of the contour at point  ,X Y . However, the 
contribution of such elements to the full sum (5.3) is 
small (as   0mmax l  ) when compared with the con-

tribution of the “outer” term in (5.3) outside the integral, 
which in the discrete form results in the diagonal element 

1 2iia  . Such a treatment allows us to write out the sys- 
tem (5.3) in a shorter form. 

When solving the posed reconstruction problem, in 
practice, the measurements on the deformation of the 
lower boundary surface cannot be carried out with abso-
lute precision. This predetermines the input data to be 
known with a certain error. Therefore, the proposed al-
gorithm should provide stability with respect to small 
perturbations of the input data. 

All above developed formulas are valid for arbitrary 
smooth contour L . However, if the flaw is an elliptic 
cylinder with the semi-axes A  and B , with its center 
being located at the point  ,c h  and with the angle of 
inclination   respectively axis x , then the above for-
mulas can be written in a more concrete form since 

 
   

 
   

 

2 2 2 2

2 2 2 2

cos
,

sin cos

sin
;

sin cos

2
0 5 ;

m
m

m m

m
m

m m

m

AB
d

A B

AB
h

A B

i ,   .
N




   




   

  


 

  

  

  

   


                      (5.4) 

Under such conditions the reconstruction problem be-
comes five-dimensional, because this is to seek five pa-
rameters , , , ,d  h  A  B   . 

Our approach is founded on an explicit (numerical) 
resolution of system (5.3) considered as a linear alge-
braic system for quantities mw . Let us represent this 
system in the operator form 

       0 0 0, ,   , , , 1, , ,im m iw w a w w w w i m N    A  A 
       (5.5) 

then its inversion is 

 1 0 1 0,     .i i
w w w w   A A       (5.6) 

Obviously, operator 1A  depends on five parameters: 
 1 1 , , , ,d h A B  A A , hence the substitution of (5.6) 

into (5.2) results, in the discrete form, in the overdeter-
mined system of nonlinear equations for parameters 

, , , ,d  h  A  B   : 

 

     

 

12

1 1 1

1 0 *
0

*

1
cosh sin

2 sinh

sinh cos sgn , , , , ,

1, , ,    0, ,

N
m j m j

m
m j n

m j m j
m m j m qm

q

b y x
n n n

a nb a a a

b y x
n n n y d h A B w l F x

a a

q Q x a





 
 



 
   



  



              
                   

 



A



    (5.7) 
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where Q  control points    ,0 , 0,* *
q qx  x a  all belong 

to the lower face of the triangle. It should be noted that in 
the case when observation point  ,x y  moves to any 
point  ,0*

qx  belonging to the lower boundary of the 
triangular domain the number of virtual images  ,j jx y  
given by Equation (3.4) reduces again in two times. 

Equation (5.7) can be resolved by a minimization of 
the discrepancy functional [14]: 

   

 

 
   

12

1 1 1 1

1 0

*
0

min , , , , ,     , , , ,

cosh

sin sinh

cos sgn

, , , ,
.

2 sinh /

Q N
m j

m
q m j n

m jm j
m

m j
m j

mm
q

d h A B d h A B

b y
n n

a

b yx
n n n

a a

x
n y

a

d h A B w l
F x

a nb a





 





 


 







   



   

   
  

   

   
        

      

   

 

A

  (5.8) 

It is obvious that in the case of exact input data zero 
minimal value of   corresponds to exact solution of 
the inverse reconstruction problem. However, the prob-
lem under consideration is nonlinear, hence nobody can 
guarantee uniqueness of the solution. It should also be 
noted that, in order to simulate a small error in the input 
data, we first solve respective direct problem when the 
shape of the defect is known, and then perturb the ob-
tained solution by a random perturbation. So constructed 
function 0F  is used as the approximate input data. 

For the minimization of functional   we used in our 
numerical experiments a version of the random search 
method [15]. 

Some examples of the reconstruction are demonstrated 
in Tables below. For all examples we used 1,c   

50N  , 100Q  , 0 0x  . 
Here in Table 1 two different flaws located at the 

same position are considered—a circle and an ellipse 
directed horizontally, both reconstructions—with exact 
input data. It is interesting to note that the slope angle for 
the circle is of no importance in the reconstruction pro- 
cess, and the reconstructed value of   plays no role. 

Then we studied the stability of the proposed algori- 
thm if the input data is given with an error. As commen- 
ted above, we add some small perturbation to the solu-
tion of respective direct problem. More precisely, each 
value of the lower face deformation 0F  is recalculated 
to a new value by the following formula: 

 0 01 2 1F F      , 

where   is the magnitude of the error (which being 

Table 1. Results of the reconstruction with exact input data. 

Input data 
error 

d h A B θ 
Type of 
result 

0% 
0.000
-0.007

0.300
0.296

0.150 
0.148 

0.150 
0.152 

0.000 
0.617 

Exact 
restored 

0% 
0.000
0.009

0.300
0.308

0.250 
0.253 

0.150 
0.157 

0.000 
-0.002 

Exact 
restored 

 
multiplied by 100 can also be expressed in percents), and 
  is a random number distributed uniformly over inter- 
val  1,0 . Some results of such a numerical simulation 
are shown in Table 2. 

It is interesting to notice here that the second example 
is related to the case when the elliptic flaw is located ver- 
tically: in fact, the reconstructed flaw possesses the same 
property, despite inversion of its principal axes. 

Further increase in the error of the input data results in 
the following table: 

Here we notice once again that for the first defect in 
Table 3 the last reconstructed parameter   plays no 
role, as the flaw is in fact a circle. One thus can admit 
that this flaw is restored quite well, despite the error in 
the input data. 

From the presented results of the numerical simulation, 
as well as from many other reconstruction examples per- 
formed, we can come to some important conclusions: 

1) Generally, precision of the reconstruction is less de- 
pendent on the error of the input data than on geometry 
of the void. 

2) The precision of the reconstruction as a rule is good. 
In some cases almost the same results are obtained with 
formally different reconstructed geometries. However, 
with a certain precision, the reconstructed object gives 
the same original geometry but with another combination 
of the reconstructed parameters. 

3) The worst precision takes place in the reconstruc-
tion of prolate ellipses, i.e. with low aspect ratio B A  
(see the second example in Table 3 and the second one 
in Table 2). One can state the following rule natural 
 
Table 2. Results of the reconstruction with relative error 
5% in the input data. 

Input 
data error

d h A B θ 
Type of 
result

5% 
0.200
0.205

0.150
0.144

0.100 
0.102 

0.030 
0.036 

π/4=0.785
0.797

Exact
restored

5% 
0.200
0.196

0.150
0.154

0.200 
0.109 

0.100 
0.208 

π/2=1.571
0.069

Exact
restored

 
Table 3. Results of the reconstruction with relative error 
10% in the input data. 

Input 
data error

d h A B θ 
Type of 
result

10% 
0.250
0.265

0.250
0.270

0.100 
0.095 

0.100 
0.113 

0 
0.514

Exact
restored

10% 
0.150
0.131

0.300
0.227

0.200 
0.176 

0.050 
0.068 

- π/4 
-0.882

Exact
restored
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from physical point of view: the more prolate is the void 
the less is the precision of the reconstruction. 
 
6. Acknowledgements 
 
The paper has been supported in part by Italian Ministry 
of University (M.U.R.S.T.) through its national and local 
(60%) projects. The work is also supported by Russian 
Foundation for Basic Research (RFBR), Project 10-01- 
00557. 
 
7. References 
 
[1] A. Friedman and M. Vogelius, “Determining Cracks by 

Boundary Measurements,” Indiana University Mathe-
matics Journal, Vol. 38, No. 3, 1989, pp. 527-556. 
doi:10.1512/iumj.1989.38.38025 

[2] G. Alessandrini, E. Beretta and S. Vessella, “Determining 
Linear Cracks by Boundary Measurements: Lipschitz 
Stability,” SIAM Journal on Mathematical Analysis, Vol. 
27, No. 2, 1996, pp. 361-375. 
doi:10.1137/S0036141094265791 

[3] A. B. Abda et al., “Line Segment Crack Recovery from 
Incomplete Boundary Data,” Inverse Problems, Vol. 18, 
No. 4, 2002, pp. 1057-1077.  
doi:10.1088/0266-5611/18/4/308 

[4] S. Andrieux and A. B. Abda, “Identification of Planar 
Cracks by Complete Overdetermined Data: Inversion 
Formulae,” Inverse Problems, Vol. 12, No. 5, 1996, pp. 
553-563. doi:10.1088/0266-5611/12/5/002 

[5] T. Bannour, A. B. Abda and M. Jaoua, “A Semi-Explicit  

Algorithm for the Reconstruction of 3D Planar Cracks,” 
Inverse Problems, Vol. 13, No. 4, 1997, pp. 899-917. 
doi:10.1088/0266-5611/13/4/002 

[6] A. S. Saada, “Elasticity: Theory and Applications,” 2nd 
Edition, Krieger, Malabar, Florida, 1993. 

[7] N. I. Muskhelishvili, “Some Basic Problems of the Ma-
thematical Theory of Elasticity,” Kluwer, Dordrecht, 
1975. 

[8] R. Courant and D. Hilbert, “Methods of Mathematical 
Physics,” Interscience Publishing, New York, Vol. 1, 
1953. 

[9] L. Cremer and H. A. Müller, “Principles and Applications 
of Room Acoustics,” Applied Science, London, Vol. 1, 2, 
1982. 

[10] I. S. Gradshteyn and I. M. Ryzhik, “Table of Integrals, 
Series, and Products,” 5th Edition, Academic Press, New 
York, 1994. 

[11] H. Hardy, “Divergent Series,” Oxford University Press, 
London, 1956. 

[12] M. Bonnet, “Boundary Integral Equations Methods for 
Solids and Fluids,” John Wiley, New York, 1999. 

[13] A. N. Tikhonov and V. Y. Arsenin, “Solutions of Ill- 
Posed Problems,” Winston, Washington, 1977. 

[14] P. E. Gill, W. Murray and M. H. Wright, “Practical Op-
timization,” Academic Press, London, 1981. 

[15] M. Corana et al., “Minimizing Multimodal Functions of 
Continuous Variables with the Simulated Annealing Al-
gorithm,” ACM Transactions on Mathematical Software, 
Vol. 13, No. 3, 1987, pp. 262-280.  
doi:10.1145/29380.29864 

 

 
 
 
 
 
 
 
 
 
 
 
 
 


