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Abstract 
 
In the present work the geodesic equation represents the equations of motion of the particles along the geo-
desics is derived. The deviation of the curved space-time metric tensor from that of the Minkowski tensor is 
considered as a perturbation. The quantities is expanded in powers of 2c . The equations of motion of the 
relativistic three body problem in the PN formalism are obtained. 
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1. Introduction 
 
The Three body problem concerns with the motion of a 
small particle of negligible mass moving under the gravi-
tational influence of two massive objects 1m  and 2m . 
It’s history began with Euler and Lagrange continues 
with Jacobi [1], Hill [2], Poincaré [3], and Birkhoff [4]. 
In 1772, Euler [5] first introduced a synodic (rotating) 
coordinate system, the use of which led to an integral of 
the equations of motion, known today as the Jacobian 
integral. Euler himself did not discover the Jacobia in-
tegral which was first given by Jacobi [1] who, as Wint-
ner remarks, “rediscovered” the synodic system. The ac-
tual situation is somewhat complex since Jacobia pub-
lished his integral in a sideral (fixed) system in which its 
significance is definitely less than in the synodic system. 

Many authors hope to investigate the relativistic effe-
cts in this problem. But unfortunately, the Einstein field 
equations are nonlinear, and therefore cannot in general 
be solved exactly. By imposing the symmetry require-
ments of time independence and spatial isotropy we are 
able to find one useful exact solution, the Schwarzschild 
metric, but we cannot actually make use of the full con-
tent of this solution, because in fact the solar system is 
not static and isotropic. 

Indeed, the Newtonian effects of the planet’s gravita-
tional fields are an order of magnitude greater than the 
first corrections due to general relativity, and completely 
swamp the higher corrections that are in principle pro-
vided by the exact Schwarzschild solution. It is worth 

noting to highlight some important articles in this field. 
Krefetz [6] computed the post-Newtonian deviations 

of the triangular Lagrangian points from their classical 
positions in a fixed frame of reference for the first time, 
but without explicitly stating the equations of motion. 
Contopoulos [7] treated the relativistic (RTBP) in rotat-
ing coordinates. He derived the Lagrangian of the system 
and the deviations of the triangular points as well. Wein-
berg [8] calculated the components of the metric tensor 
by using the post-Newtonian approximation in order to 
obtain the (RTBP) problem equations of motion. Soffel 
[9] obtained The angular frequency ω of the rotating 
frame for the relativistic two-body problem. Brumberg 
[10,11] studied the problem in more details and collected 
most of the important results on relativistic celestial me-
chanics. He did not obtain only the equations of motion 
for the general problem of three bodies but also deduced 
the equations of motion for the restricted problem of 
three bodies. Bhatnagar and Hallan [12] studied the exis-
tence stability of the triangular points 4,5L  in the relati-
vistic (RTBP), they concluded that 4,5L  are always unst-
able in the whole range 0 0.5   in contrast to the 
previous results of the classical restricted three-body 
problem where they are stable for 00     where   
is the mass ratio and 0 0.03852  . Lucas [13] found 
that the difference between Newtonian and post-Newto-
nian trajectories for the restricted three-body problem is 
greater for chaotic trajectories than it is for trajectories 
that are not chaotic. Finally, the possibility of using this 
Chaotic Amplification Effect as a novel test of general 
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relativity is discussed. 
 
2. Expansion Dimensionless Parameter 
 
In the presence of weak gravitational fields and small ve-
locities, the physics of general relativity should become 
Newtonian. This suggest an expansion of the metric, 
Christoffel symbols, other tensors and the field equations 
in powers of small parameter, similar to the perturbation 
expansions of classical and quantum mechanics. 

The nature and value of the expansion parameter is de-
termined by the system at hand. But in general we can 
characterize a self-gravitating system by a characteristic 
mass M, characteristic length L and a characteristic time 
T. The mass could be the mass of the principal body in 
the system. The length could be its physical radius, and 
the time could be the time it takes an object to traverse 
the length scale. Each of these quantities set a scale for 
its particular dimension, and from them we can establish 
the dimensionless quantities. 

In a bound system where motion is periodic, the Virial 
theorem says (for a nonrelativistic velocities) that 

21 1

2 2
mv V  

or, for a Newtonian gravitational potential 
GmM

r
 

2 GM
v

r
   

Dividing both sides by the 2c , where c  is the velocity 
of light yields 

2

2 2

v GM

c c r
   

This very simple equation enables us to identify the 
expansion parameter as 

2
2

2 2

L GM

c T c L
    

 
 

In the following we will set G = c = L = 1, and have 
1 2T M    

As an example, we can compute the parameter   for 
the Sun, taking its radius as the distance scale. 

3
3

8

1.477 10
1.4586 10

6.9598 10
 
  


 

What we need then is not to find more exact solutions, 
but rather to develop some systematic approximation me-
thod that will not rely on any assumed symmetry proper-
ties of the system. 

There are two such methods that have been particular-

ly useful they are called the Post-Newtonian approxima-
tion (PN) and the weak field approximation. The first is 
adapted to a system of slowly moving particles bound 
together by gravitational forces. The second method 
treats the fields in a lower order of approximation but 
does not assume that the matter moves non-relativisti-
cally. A test particle in a circular orbit of radius r about a 
central mass M will have velocity v given in Newtonian 
mechanics by the exact formula  2v GM r . 

The PN approximation may be described as a method 
for obtaining the motions of the system to one higher 
power of the small parameters  GM r  and 2v  than 
given by Newtonian mechanics. It is sometimes referred 
to as an expansion in inverse powers of the speed of light. 
We prefer to say that our expansion parameter is 2c , 
note that geometric units will not be used, so that 1G  , 
and 1c  . We now proceed to find the equations of mo-
tion of the relativistic three body problem in the PN for-
malism, or more precisely the equation of the RTBP.  
 
3. The Geodesic Equation 
 
According to the theory of general relativity a particle 
moving under the influence of gravity follows a Geodes-
ic in a four dimensional space called the space-time ma-
nifold. The path that it follows is called a geodesic. Let 
the coordinate of this manifold be as follows: 0 ,x ct   

1 2,x x x y   and 3 .x z  Consider a particle moving 
along a geodesic  x s  in the space-time manifold, 
where s is the arc length. A straight line is defined as any 
path in which its tangent vectors all points in the same 
direction. Let the tangent to the curve x (s) be defined 

 dx s
A

ds


                   (1) 

The magnitude of this tangent vector is obtained from 
the tensor algebra as; 

 
1

2A g A A 
               (2) 

where g  is the metric tensor, which can be obtained 
from 

2ds g dx dx 
               (3) 

substituting into Equation (2) yields 

1A   

which means that the tangent vectors all have a constant 
length, usually called the unit tangent to the curve. This 
property leads to (when differentiating) 

0
dA

ds



                (4) 



F. A. A. EL-SALAM  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  AM 

157

If a unit tangent A  is parallel displaced from a point 
p  to a point p one can easily get 

A A dx   
                 (5) 

where 
   is the affine connection, to be defined later. 

,A  using the elementary mathematics, can be written 
as 

   
p p

A
A A A ds

s


  




  


         (6) 

substituting from Equation (5) into Equation (6) yields 

0
dA dx

c A
ds ds

 
 
              (7) 

this equation merely represents a division of dA  by ds  
and not to be confused with Equation (4). Substituting 
from Equation (1) into Equation (7) yields directly the 
geodesic equation. In fact that the geodesic equation 
represents the equations of motion of the particles along 
the geodesics 

2

2
0

d x dx dx

ds dsds

  

             (8) 

Since the proper time   is proportional to the arc- 
length these equations can be written as 

2

2
0

d x dx dx

d dd

  

   

              (9) 

where the affine connection 
   is given by 

1

2
p pp

p

g g g
g

x x x
    

   

   
    

   
   (10) 

Now the accelerations can be computed using Equation 
(9) as 

2

2

2 12

2

2 22

2

2 22

2

22

2

i i

i i

i i

i i

i

d x d dx d

dt d dtdt

d x d dx d dt

dt d dt dd

d x d dx dt d dt

dt d d dt dd

d x dt dx dt d d dt

d d d d dt dd

d x dt d

dd





 


  


    







 



 
  

 

       
   

           
     

              
      

   
 

3 2 2

2 2

0

i i

i
i

x dt d d x

d d dt dt

dx dx dx dx dx

dt dt dt dt dt

   

   


 


 
 
 

  

 (11) 

where we made use the geodesic Equation (9) for the 

inboxed terms. 
Remark: We now perform the sums over the dummy 

indices, namely  , and   to separate the time and 

space indexed term, 

2

00 02

0
00 0

2

2

i j k i
i i i

j k

j j k i
i i

j j k

d x dx dx dx dx

dt dt dt dtdt

dx dx dx dx

dt dt dt dt



    

 
      
 

 

In the Newtonian limit we treat all velocities as vani-
shingly small, and so have to zeroth Newtonian order 

 

2

002

00

2

2
2 2

1 1
1

2 2

i
i

i i

d x

dt
g GM

x x c r

GM
O c

c r


  

         

 

 

 
4. The Metric Tensor 
 
Since a body of a mass bm  tends to curve space-time, the 
metric of the space-time will deviate from that of the 
Minkowski tensor which represents the flat space. But 
assuming, without loss of the accuracy required, that the 
mass of the body is so small, so that the departure from 
the Minkowski tensor will be in powers of 1,c  or in 
other words the effect on the space-time can be consi-
dered as a perturbation to the metric of the flat space, i.e. 

is so smallg h h             (12) 

where   , the metric of the flat space-time, is given, in 
matrix representation, by 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



 
 
 
 
 
 

             (13) 

Using the fact that the velocity of a test particle of 
mass pm  relative to the body is ,v c  and assuming 

0,p bm m   so that the effects on space-time originating 
from the particle are negligible, the metric tensor of the 
perturbed flat space-time can generally be described by  

00 00

0 0

1

i j i j i j

i i

g h

g h

g h



 


  
 

              (14) 

We see that the metric tensor is no longer diagonal. 
We would like to find the corrections to the metric ten-  
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sor, induced by the theory of general relativity, that is, to 

determine 00h  to order  6O c  and 0 jh  to order 

 5O c , by solving the Einstein field equations for 00h  

and 0 .jh  Our objective in using the PN approximation 

will be to compute    2 2id x dt  to order 4c . Since 

the i jg  are expected to include powers of  GM r , the 

partial derivatives of the i jg  are significantly smaller 

than i jg  themselves. 
The components of the metric tensor are assumed ex-

pandable as 

2 4

00 00 00

2 4

3 5

0 0 0

1

ij ij ij ij

i i i

g g g

g g g

g g g



    
    

  






 

The symbol 
N

g   denoting the term in g  of order  

1 Nc . Odd powers of 
1

c
c

 occur in 0ig  because 0ig  

must change sign under the time-reversal transforma-
tion t t  . 

The inverse of the metric tensor is defined by the equ-
ations 

0
0 00 0

0 00 0
0 00

0
0

0,

1,

.

i i ij
j

i
oi

i i i k
j j jk ij

g g g g g g

g g g g g g

g g g g g g








 

  
   


   

      (15) 

We expect that 
2 4

00 00 00

2 4

3 5
0 0 0

1

ij ij ij
i j

i i i

g g g

g g g

g g g



    


    

  








         (16) 

Using these expansions into (15) we find 
2 2

00
00

2 2

3 3
0

0

,

,ij
ij

i
i

g g

g g

g g

  
 

 

              (17) 

The affine connection may now be obtained from the 
familiar formula 

1

2
p pp

p

g g g
g

x x x
   

  

   
    

   
      (18) 

Using (15), (16) and (17) we find that 00 ,i i
jk  and 

0
o

i  have the expansions 

2 4
  
                    (19) 

While the components 0
0 00,i

j  and 0
ij  have the ex-

pansions 
3 3

  
                   (20) 

The symbol 
N


 , denoting the non vanishing terms in 


  of order 1 Nc ,  are given by 

2
2

00
00

4 3 2
4 2

00 0 00
00

2 33
3

00
0

2 22
2

2
3

0 00
00

2
2

0 00
0

1

2

1 1

2 2

1

2

1

2

1

2

1

2

i
i

i i
iji j

ij ji i
j j i

ij jki ik
jk k j i

i i

g

x

g g g
g

tx x

g gg

tx x

g gg

x x x

g

t

g

x

   


  

     
  

             


               



    


  
 




    (21) 

 
5. Einstein Field Equations 

 
We are now ready to compute the metric tensor compo-
nents i jg  up to the different orders appeared in Equa-
tions (15) and (16). To do that, the Einstein field equa-
tions will be used in the following form. 

4

8 1

2

G
R T g T

c


   
    

 
       (22) 

where R  is the Ricci tensor and T  is the stress-
energy-momentum tensor. Note that Greek indices range 
from 0 to 3 while roman indices range from 1 to 3. 
 
6. The Ricci Tensor R  

 
The Ricci tensor is defined by 

R
x x

 
   

   
   

 
   
 
   

         (23) 

we find that the components of R  have the expansions, 
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2 4

00 0000

3 5

0 00

2 4

i ii

ij ijij

R R R

R R R

R R R

   


   

  








         （24） 

where 
N

ijR  denotes the term in ijR  of order 1 Nc . The 
terms that we can calculate from the known terms in the 
affine connection are 

2 2

00 00

4 3 4

00 0 00

2 2 2 2
0
0 00 00

3 2 3

0 0

2 2 2
0
0

2

i
i

i i
i i

i i j
i ij

j j
i ij ij

k
ij i ikj j

k
ijk

R
x

R
t x

R
t x

R
x x

x

     
       


      
     

  
 

    
  


  

 

       (25) 

Using Equation (22), we obtain 

2 2
2

00 00

2 3
2 2

4 4
0 2

00 002

2 2 2
2

2
00 00

2 2 2 2

0 0 0

2
2

3

0

1

2

1 1

2 2

1 1

2 2

1 1

4 4

1

2

i j i

i

i j
i j i j j i

i i i i j

i i i i

i j
i

R g

g g
R g

t x t

g g g
g

x x x x

g g g g

x x x x

g
R

 

 
   

  

               
  

                           
     






3 2
2 2

3
0 2

0

2 2
2 2

2
00

2 2
2 2

2
2

1 1 1

2 2 2

1 1

2 2

1 1 1

2 2 2

j i j
ii i j j

k k
i j i j i j

i k k j
i jk j k i

g g
g

x t x x x t

g g
R

x x x x

g g
g

x x x x

















          

 
 
   

 

    
      (26) 

A tremendous simplification can be achieved at this 
point by choosing a suitable coordinates system. 

It is always possible to define the x  so that they obey 
the harmonic coordinate conditions, Weinberg [8] 

0g   
                     (27) 

Using Equations (16), (17), (19) and (21) we find that 
the vanishing of the third-order term in 0g 

  gives 
2 2 2

00 01 1
0

2 2
i ii

i

g g g

t tx

  
  

 
        (28) 

While the vanishing of the second-order term in 
ig  
   gives 

3 22

001 1
0

2 2
ij jj

i j i

g gg

x x x

 
  

  
       (29) 

It follows that 

2 2 2
2 2 2

0 00
2 2

24 2
22

0

2 2
2 2

2 2
2 2

00

1 1
0

2 2

1
0

2

0

ii i
i

ijii i
j i j i

ij kj

k j j i

jj

i k i k

g g g

t t x t

gg g

t x x x x t

g g

x x x x

g g

x x x x

     
   

    
     

  
   

 

   
    

    (30) 

So the simplified formulas for the Ricci tensor will be 
in the form 

2 2
2

00 00

2
24 4 4
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00 00 002

2
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3 33 3
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2 22 2
2
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1 1 1
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1
.

2

i j i j
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ij ij

R g

g
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t

g
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x x
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  

     

 


 
   

  
        

    


            


    (31) 

Substituting into Equation (24), yields 

2 4
2 2

00 00 00

2
22 2

200
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3
2
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2
2

1 1

2 2

1 1

2 2
1

2
1

2

ij i j

i i

ij ij

R g g

g
g g

x x

R g

R g

    

      


  

  

     (32) 
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7. The Energy-Momentum Tensor T   

 
It is assumed that, it is possible to describe the matter of 
a system as a perfect fluid, i.e. an isotropic fluid with a 
diagonal energy-momentum tensor (no shear stress), in 
the rest frame of the system. This energy-momentum ten-
sor which is required in the field equation can be written 
as 

 
12

3

1

1 n n n
n n

n

dx dx d
T M x x

dt dt dtg

 
 






   
 

    (33) 

where g is the determinant of the metric tensor and 
,n nM x  and n  are the mass, space-time position, and 

proper time for the two massive objects. The expression 
is simplified by calculating the energy-momentum tensor 
in the rotating frame, in which the velocity of the prima-
ries is zero. The nonvanishing components of the energy-
momentum tensor are 

 

 

2
00 3

1 1
1

3
2 2

2

c dt
T M x x

dg

dt
M x x

d







     
  

     
  

       (34) 

We expect that 00 0, iT T  and i jT  will have the expan-
sions 

0 2
00 00 00

1 3
0 0 0

2 4

i i i

ij ij ij

T T T

T T T

T T T

  

  

  















           (35) 

where 
N

T   denotes the term in T   of order 1 Nc . In 

particular 
0

00T  is the density of rest-mass, while 
2

00T  is 

the non-relativistic part of the energy density. 
What we need now is 

1

2
S T g T 
                  (36) 

So that Equation (35) gives 

0 2

00 0000

1 3

0 00

0 2

i ii

ij ijij

S S S

S S S

S S S

   


   

  








            (37) 

where 
N

S   denotes the term in S  of order 1 Nc  In 

particular 

0 0
00

00

0 2 2 0 2
00 00

00 00

1 1
0

0

0 0
00

1

2
1

2
2

1

2

ij

i
i

ij ij

S T

S T g T T

S T

S T

 


     


  


 


      (38) 

Using Equations (31) and (37) in the field Equation 
(22), we find that the field equations in harmonic coordi-
nates are indeed consistent with the expansions we have 
been using, and give 

2 0
2 00

00 4

22 2
2 24

2 00 00
00

2 2 0
00 00

004

2 1
2 0

0

2 0
2 00

4

8

8
2

16

8

i j i j i

l

i
i

ijij
l

G
g T

c

g g
g g

x x x

G
T g T

c

g GT

G
g T

c






 

   

          
 
     


  

  




      (39) 

From the first equation in (39) we find as expected 
2

00 2g                  (40) 

where   is the Newtonian potential defined by Poisson’s 
equation 

0
2 00

4

8 G
T

c

               (41) 

Also 
2

00g  must vanish at infinity, so the solution is 

   
0

00
3

4

,
,

T x tG
x t d x

x xc





         (42) 

From the fourth equation in (39) we find that the solu-

tion for 
2

i jg  that vanishes at infinity is 

2

2 ijiig                 (43) 

On the other hand, 
3

0ig  is a new vector potential   

3

0 iig                  (44) 

and the solution of the third equation in (39) that vanish-
es at infinity is 
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   
1

0
3

4

,4
,

i

i

T x tG
x t d x

x xc





        (45) 

Finally, we may simplify the second equation in (39) 
by using (41), (42) and the identity 

2 2 21

2i ix x

     
   

 
         (46) 

the result is 
4

00 22 2g                   (47) 

where   is a second potential 

2 2
2 00

2 4

4 G
T

t c

  
  


           (48) 

Again, 
4

00g  must vanish at infinity, so the solution is 

   
2

00
3

4

,
,

T x tG
x t d x

x xc



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        (49) 

To evaluate these potentials we need the proper time 
derivatives which can be obtained from the static 
Schwarzschild line element (in isotropic coordinates) for 
an observer at the position of 1M  or 2M . 

2 2
00n nd g dt                (50) 

Using Misner, et al. [14] yields 

2 2

00 2 2
1 1

2 2
n n

n
n n

GM GM
g

c r c r


   

     
   

       (51) 

To the order of the required accuracy we find 

2
2

1

2
1

GMdt

d c R
               (52) 

1
2

2

2
1

GMdt

d c R
               (53) 

The determinant of the metric tensor is given by 

2 4

00 001 1 4g g g                 (54) 

1
1 2

g
                  (55) 

Substituting these all into the second potential   
yields 

 
2
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4

1 2

2 1 1
,

G M M
x t

r rc R

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  

 
        (56) 

Returning to the metric tensor components yields 
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2
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4
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1

2 1 1
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 
      
 


     
  


    



 (57) 

 
8. The Equations of Motion of Restricted 

Three-Body Problem 
 

The standard form of Euler-Lagrange equations read 

0
d L L

d x x 
       

           (58)  

It can be shown that the geodesic equations of motion 
can be obtained from the Euler-Lagrange equations by 
defining the Lagrangian L as follows (see Foster, and 
Nightingale, [15]) 

1
, , 0,1,2,3

2
L g x x 

             (59) 

where the dot denotes the derivatives with respect to pro-
per time ,  and g  are the components of the covariant 
metric tensor. Using the components of the metric tensor 
the Lagrangian, after some lengthy computations, can be 
constructed. Then evaluating the derivatives in Euler-
Lagrange equations results in the equations of motion 
(61) and (62) in the following section. 
 
9. The Restricted Three-Body Problem 

Notations 
 
The well known Restricted Three-Body Problem, e.g. the 
Earth-Moon system, (from now on, RTBP) models the 
motion of an infinitesimal particle P under the gravita-
tional attraction of two massive bodies, usually called 
primaries of masses  1 21 , ,M M     under the 
following assumptions: 

1) The particle is of infinitesimal mass that it does not 
affect the motion of the primaries, 

2) The primaries are point masses that revolve in cir-
cular orbits around their common centre of mass. 

It is usual to take a rotating reference frame with the 
origin at the centre of mass, and such that the two mas-
sive bodies are kept fixed on the  axis, the  ,   plane 
is the plane of motion of the primaries, and the  axis is 
orthogonal to the  ,   plane. These coordinates are 
sometimes called synodical. 

In the restricted three-body problem this must be 
transformed from the inertial  , ,x y z  to the rotating 
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coordinate system  , ,    by using the transformation 

cos sin 0

sin cos 0

0 0 1

nt ntx

nt nty

z





    
         

    
    

        (60) 

where n  is the angular frequency of the rotating frame 
The primary coordinates on the x -axis (−µ, 0), (1 − µ, 
0) are kept fixed and the origin at the center of mass. 
Now denoting , 1,2,3x    for , ,    in the Euler- 
Lagrangian Equation (58), we obtain 
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     (61) 
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  (62) 

where t, the coordinate time and K, the constant of motion are given by 
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The coordinate time can be eliminated from the equa-

tions of motion by using Equation (57), the transforma-
tion (60) and the general relativistic line element 

 

2 2 2

2 2 2 2
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c d ds g dx

c dt g dx dy

 
   

  
 

which leads to 
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Thus the line element in the rotating coordinate system 
is 
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Dividing by 2d allows an expression for 
.

t  to be 
obtained. This can then be used to eliminate 

.

t from Eq-
uations (61) and (62) and after some algebraic manipula-
tion, we get 
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U d U
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 


         (65) 

where U  is the potential–like function of the relativistic 
restricted three-body problem, which can be written as 
composed of two components, namely the potential of 
the classical restricted three-body problem cU and the 
relativistic correction ;rU  

c rU U U                   (66) 

where cU and rU  are given by 
2
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  (68) 

 

Figure 1. Inertial and rotating frames. The rotating coordi-
nate system with coordinates   and   moves counter-
clockwise with unit angular velocity relative to the inertial 
frame with coordinates X and Y. 
 
with 

  

 
 

 

2

2 2

2 2
1

2 2
2

1
1 1 3 ,

2

,

,

1 .

n
c

r

r

r

 

 

  

  

    

  

   


    

 

where the parameters 1, 2( , )r r r  are best illustrated in 
Figure 1. 
 
10. Conclusions 
 
An explicit form of the potential-like function of the rela-
tivistic restricted three-body problem is derived. Equa-
tions (65) to (68) represent the equations of motion of the 
relativistic three body problem in the PN formalism. 
These equations will be used in the subsequent works to 
evaluate the locations of the Lagrangian points, and 
therefore to investigate their linear stability. 
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