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Abstract 
 
The incorporation of fluid flow through modelled normal and stenosed capillary-tissue exchange system has 
highlighted issues that may have major applications for the study of diffusion phenomenon. Results clearly 
demonstrate the important roles played by various physiological characteristics and diffusion variables in-
volved in the analysis on blood flow. Assessment of the severity of the disease could be made possible 
through the variation of a parameter named as retention parameter. An attempt has been made to study the 
effects of local variation of viscosity on flow, wall-shearing stress and distribution of dissolved material in 
diseased artery as compared to the normal. 
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1. Introduction 
 
Atherosclerosis is a chronic disease which involves the 
build up of cholesterol and other fatty deposits within the 
arterial wall leading to the narrowing of the blood vessel 
lumen (Figure 1). This has the consequence of restrict-
ing blood flow to vital organs which can eventually lead 
to various clinical syndromes such as heart attacks and 
strokes. These events are the leading causes of death in 
the developed world [1,2]. 

The early events leading to atherosclerosis occur in the 
space between the endothelial cells and the smooth mus-
cle cells, a region of the blood vessel known as the sub-
endothelium or intima. The process leading to the cho-
lesterol deposits begins with the formation of fatty str- 
eaks. Accumulation of cholesterol within cells leads to 
the formation of ‘foam cells’ which reside in this intimal 
region of the vessel wall and constitute the fatty streak. 
At this stage no symptoms will be observed and in fact 
symptoms of atherosclerosis often do not reveal them-
selves until complications such as angina and coronary 
artery disease arise. The fatty streaks are often present in 
childhood and may not always progress to form the pla-
ques which can be found in affected adults [3]. The dis-
ease may remain asymptomatic for many years. However, 
critical restriction of blood flow or thrombosis leading to 
total occlusion of the vessel may lead to cardiovascular 
events such as heart attack or stroke later in life. 

While modeling blood flow in a stenosed tube, it was 
initially assumed that, the flow obeys Newtonian hypo-
thesis and the flow variables have been computed by 
using basic Navier-Stoke’s equation [4,5]. Later, the 
model has been extended by assuming that, it obeys non- 
Newtonian hypothesis and showed that under low shear 
rates, the model could be best described by this represen- 
tation. 

The papers [6-10] provide a small sample of the re-
search on non-Newtonian effects on blood flow. Perkkio 
and Keskinen [11] studied the effects of the concentra-
tion on viscosity and the effects of the concentration on 
blood flow through a vessel with stenosis and found it an 
important aspect from physiological point of view. Kang 
and Eringen [12] have also discussed the effects of the 
variation of the concentration of the suspended cells of 
the blood. Viscosity depending on the local variation of 
the concentration of the suspended cells has been intro-
duced by Tandon et al. [13,14]. In the present analysis an 
attempt has been made to study the effects of local varia-
tion of viscosity on flow, wall shearing stress and diffu-
sion of dissolved material (nutrients) in diseased artery 
as compared to the normal. This work may help in early 
identification, diagnosis and treatment of cardiovascular 
disorders. Increasing values of M represent growth of 
new cells which interns increases the viscosity. The re-
sistance to flow ( ) increases with the growth of steno- 
sis and with the increasing values of the parameter   
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Figure 1. (a) Cross section of a normal artery lumen. The 
endothelial cells neighbour the lumen and no intimal thick- 
ening is present; (b) Sever atherosclerosis. On the right a 
calcified plaque has formed pushing against the endothelial 
cells them to bulge into the lumen restricting blood flow. 
 
and M . Variation of wall shearing stress ( s ) with the 

developing stenosis for different values of parameter   
are similar as for resistance to flow. It is seen that in-
creasing values of N  describe the increase in retention 
of the solutes within the capillary. 

Consider the flow of blood through a circular tube of 
radius R(z) whose viscosity varies along the radial direc-
tion. In the capillary segment the geometry of the steno-
sis is given by 
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Here the parameter A  is expressed as 
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where   denotes the maximum height of the stenosis at 
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the radius of capillary with and without stenosis respec-
tively (see Figure 2). 
 
2. Formulation of the Problem 

 
The flow is considered to be steady, fully developed and 
laminar viscous flow of suspensions of cells. For dilute 
suspensions, a reasonable approximation to the viscosity 
of the suspension may be described as 

 0 1 C                   (3) 

where   and 0  denote the viscosity of blood and 
plasma respectively. 

The concentration C is determined by the governing 
diffusion equation 
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where D  is the diffusion coefficient and M is the rate 
of production or degeneration. 

The concentration equation for the solute is expressed 
as 
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     (5) 

where 1C  represents the concentration of the solute, 
u is the axial velocity and 1D  the diffusion coefficient 
for the solute under consideration in the blood. 

The equations governing the flow of blood in the ar-
terial system are given by 
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To solve the above system of equations, the following 
boundary and matching conditions are introduced: 

 

 

Figure 2. Flow geometry of stenosed capillary. 
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3. Solution of the Problem 
 
The expression for concentration C is obtained by solv-
ing Equation (4) using the boundary conditions given in 
Equation (8) as 
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The expression for the viscosity is given by 
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On solving Equation (6) with the help of boundary 
conditions mentioned in Equation (8) we obtained the 
velocity distribution 
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The volumetric rate of flow is defined as 
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By performing the integration of Equation (12), using 
Equation (11), one obtains  
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The pressure gradient is thus obtained as 
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Integrating Equation (14) and using the boundary con-

dition given in Equation (8), we have 
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The resistance to flow   is defined by  
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The wall shearing stress is given by 
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which on using Equation (11) and Equation (15) gives 

s , given by 
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Following Tandon and Pal [13] the apparent viscosity 
is expressed as 
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To solve the concentration equation for the solute 
given by Equation (5), following non-dimensional quan-
tities are introduced: 
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so that Equation (5) becomes 
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together with the boundary conditions:  
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where u u   , N  is the retention parameter and 
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and V  is the radial velocity of the wall, given by 
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If the Taylor’s longitudinal condition is valid in this 
problem, the partial equilibrium may be assumed at any 
cross-section of the artery and the variation in 1C  with 
r  is obtained from Equation (22), which may be written 
in the form 

22
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To solve Equation (25), we use boundary condition 
given in Equation (23) and obtain 
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4. Results and Discussions 

 
In this paper the concentration profiles and associated 
physiological diffusion variables involved in the analysis 
for normal and diseased system associated with stenosis 
due to the local deposition of lipids have been deter-
mined. Such models may help in identification, diagnosis 
and treatment of many cardiovascular disorders. 

The results are shown in the Figures 3 to 9 by taking 
the value of parameters based on experimental data in a 
capillary. 

0 (cm) 1; (cm) 1, 2, 5L L  ; 0 0.2,0.3,0.4, 0.8R   ; 

0.5, 1.0, 1.5, 2.0α  ; 1, 2, 3M  ; m = 2 (for symmetric 

stenosis). 
Figure 3 shows the variation of apparent viscosity 

( 0  ) with the stenosis size ( 0R ) for different val-
ues of  . It is seen that increase in  , increases the 
apparent viscosity as the stenosis develops. 

 

 

Figure 3. Variation of apparent viscosity with stenosis for 
different value of α. 

The effects of variations of M representing the gen-
eration or degradation of the cells on apparent viscosity 
( 0  ) has been depicted in Figure 4. Increasing values 
of M represent growth of new cells, i.e. generation. This 
in turn increases the viscosity. The effect of increasing 
values of stenosis size ( 0R ) is also obvious because 
narrowing the arteries would increase concentration of 
the suspended cells owing to the flow of plasma through 
the stenotic region due to the growing stenosis. This ef-
fect is similar to that of collapsing walls symmetrically. 

Figure 5 and Figure 6 describe the variation of the re-
sistance to flow ( ) with stenosis size ( 0R ) for dif-
ferent values of parameters   and M . The resistance 
to flow ( ) increases with the growth of stenosis and 
with the increasing values of the parameter   and M . 
Variation of resistance to flow with developing stenosis 
is similar to that obtained by Shukla et al. [15] and Mi-
shra et al. [16]. 

Variation of wall shearing stress ( s ) with the devel-
oping stenosis for different values of parameter   is 
presented in Figure 7. As the stenosis grows, the wall 
 

 

Figure 4. Variation of apparent viscosity with stenosis size 
for different values of M. 
 

 

Figure 5. Variation of resistance to flow with stenosi size for 
different values of α. 
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shearing stress ( s ) increases. The results for increasing 
values of   are similar to for resistance to flow. 

Figure 8 reveals the effect of retention parameter (N) 
on concentration in capillary. Increasing values of N de-
scribe the increase in retention of the solutes within the 
capillary. N =1 implies the complete retention, i.e., no 
solute or fluid diffuses and as the retention parameter 
decreases from 1 to 0.4 more solute diffuses, which in 
turn, decreases the solute concentration in the capillary 
region. The variation of the values of retention parameter 
in the stenotic region may also be associated with the 
type of plaques deposited on the walls: calcified, fibrous 
or fatty plaques. 

Figure 9 shows the diffusion of large and small mo-
lecular weight nutrients within the capillary for different 
values of stenosis size ( 0R ). 

Large molecular weight nutrients face more resistance 
to diffuse into the tissue and therefore the cells of the 
deeper region are deprived of getting sufficient nutrition. 
Similar results have been obtained by Tandon et al. [13]. 

 

 

Figure 6. Variation of resistance to flow with stenosi size for 
different values of M. 
 

 

Figure 7. Variation of wall shear stress with stenosis size for 
different values of α. 

 

Figure 8. Concentration profiles for different values of re-
tention parameter (N). 
 

 

Figure 9. Concentration profiles for different values of ste-
nosis size δ/R0.  

 
5. Concluding Remarks 
 
The problem relating capillary-tissue exchange pheno-
menon is mixed coupled boundary problem. This model 
has incorporated simultaneous dispersion of solute in 
capillary in normal and stenotic condition depending on 
various parameters including retention parameters. The 
results are more encouraging and correlating well with the 
experimental observation that deeper region cells are de-
prived of the nutrients in the stenotic region. There is a 
need to pursue inter-disciplinary research at a greater pace 
for further development from clinical point of view.  
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