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Abstract 

In this paper, an analytical solution for the rotation problem of an inhomogeneous hollow cylinder with 
variable thickness under plane strain assumption is developed. The present cylinder is made of a fiber- 
reinforced viscoelastic inhomogeneous orthotropic material. The thickness of the cylinder is taken as 
parabolic function in the radial direction. The elastic properties varies in the same manner as the thickness of 
the cylinder while the density varies according to an exponential law form. The inner and outer surfaces of 
the cylinder are considered to have combinations of free and clamped boundary conditions. Analytical 
solutions are given according to different types of the hollow cylinders. An extension of the present solutions 
to the viscoelastic ones and some applications are investigated in Part II. 

Keywords: Rotating, Inhomogeneous Cylinders, Orthotropic, Variable Thickness and Density  

1. Introduction 

The rotation problem of inhomogeneous cylinder has 
been important applications, particularly in mechanical 
engineering, aerospace industry, underwater vehicles and 
biomechanics. The pertinent literature on the investiga 
tion of stresses and displacements in an inhomogeneous 
hollow circular cylinder may be reviewed here. The plane 
strain problem of a rotating inhomogeneous orthotropic 
hollow cylinder is solved by Senitskii [1]. Horgan and 
Chan [2] analyzed two-dimensional plane stress/strain 
deformations by assuming Youngs modulus to be a power 
law function of the radial direction of the cylinder and 
constant Poisson's ratio. Vasilenko and Klimenko, [3] 
have analyzed the stress state of a rotating cylinder, 
inhomogeneous in the radial direction, having one plane 
of elastic symmetry and loaded with centrifugal forces. 
Rooney and Ferrari [4] have examined the tension, ben- 
ding, and flexure of cylinders with functionally graded 
(FG) cross-section. The effect of inhomogeneity of elastic 
properties and density in the circumferential direction on 
the distribution of stress and displacement in orthotropic 
cylindrical panels using load in the axial direction is 
investigated by Grigorenko and Vasilenko [5]. Oral and 
Anlas [6] have analyzed the effect of continuous in- 
homogeneity on the stress distribution in an anisotropic 

cylinder. Pan and Roy [7] have solved a plane-strain 
problem for a FG cylinder by dividing it into several 
homogeneous cylinders. Tutuncu [8] has gave the power 
series solution for stresses and displacements in FG 
cylinders with exponentially-varying elastic modulus 
through the radial direction. Theotokoglou and Stam- 
pouloglou [9] have studied axisymmetric problems for 
radially inhomogeneous circular cylinders. The effect of 
varying Poisson's ratio on deformation fields in FG 
cylinders has been investigated by Mohammadi and 
Dryden [10]. Li and Peng [11] have analyzed axisy- 
mmetric deformations of FG hollow cylinders and disks 
with arbitrarily varying material properties. 

In recent years considerable attention has been given 
to solutions for the cylinders with variable thickness. 
Variable-thickness hollow cylinder is a common struc- 
ture type which can be used in some applications in- 
volving aerospace, submarine structures, nuclear reactors 
as well as chemical pipes. Grigorenko and Rozhok [12] 
have studied the stress problem for non-circular hollow 
cylinder with variable thickness under uniform and local 
loads. Zenkour [13] has established the stresses in a 
rotating variable-thickness orthotropic cylinder cont- 
aining a solid core of uniform-thickness. Also, Zenkour 
[14] has analytically investigated the behavior of com- 
posite circular cylinders subjected to internal and ex- 
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ternal surface loading. The cylinder consists of a number 
of homogeneous ply groups of axially variable thickness. 
Duan and Koh [15] have derived analytical solutions for 
axisymmetric transverse vibration of cylindrical shells 
with thickness varying monotonically in arbitrary power 
form due to forces acting in the transverse direction. Nie 
and Batra [16] have studied plane-strain static defor- 
mations of a cylinder with elliptical inner and circular 
outer surfaces composed of a material that is polar-or- 
thotropic and its moduli vary exponentially in the radial 
direction. 

In this paper, the rotating fiber-reinforced viscoelastic 
hollow cylinder is analytically studied. The thickness of 
the cylinder, the elastic properties and density are taken 
to be functions in the radial coordinate. The governing 
second-order differential equation is derived and solved 
with the aid of some hypergeometric functions. The dis- 
placement and stresses for rotating variable-thickness 
inhomogeneous orthotropic hollow cylinder subjected to 
various boundary conditions are obtained. Special cases 
of the studied problem are established. 

2. Formulation of the Problem 

Consider an elastic hollow cylinder made of an inhomo 
geneous, orthotropic material and rotates about its axis. 
The cylindrical coordinates ( , , )r z  are chosen such that 
the axial coordinate z  coinciding with the axis of rota- 
tion, r  is the radial coordinate. Assuming the cylinder 
is symmetric with respect to the z  axis, we have only 
the radial displacement u  which is independent of the 
circumferential coordinate  . Furthermore, in the planes 
perpendicular to the z  axis in plane strain, u  is a fun- 
ction of r  alone. Consequently, the Cauchy's relations 
under considerations can be written in the following 
form:  

= , = , = = = = 0,rr zz r rz z
du u

dr r           (1) 

where ij  are the strain components. 
From the generalized Hooke's law and using the above 

geometric relations, we can obtain the stress components 
for an orthotropic cylinder in the following form:  

11 12 12 22

13 23

= , =

= , = = = 0

rr

zz r rz z

du u du u
c c c c

dr r dr r
du u

c c
dr r



 

 

   

 


    (2) 

where ijc  are the elastic properties. Let us assume now 
that the thickness h  of the cylinder varies in the radial 
direction in a parabolic form given by:  

   0= 1 / , 0 < 1 , > 0,
k

h r h n r b n k         (3) 

where 0h  is the thickness at the axis of the cylinder, n  

and k  are geometric parameters and b  is the external 
radius of the cylinder. The parameter k  determines the 
shape of the thickness profile while n  determines the 
thickness at the surface of the cylinder relative to 0h . 
For three sets of geometric parameters n  and k , the 
dimensionless thickness 0/h h  as a function of the 
dimensionless radius /r b  is described by the profiles 
shown in Figure 1 for = 5b a  in which a  is the inner 
radius of the cylinder. In Figure 1(a) the thickness 
profile is concave for < 1k  while in Figures. 1(b) and 
1(c) it is convex for > 1k . Furthermore, the thickness of 
the cylinder is linearly decreasing by setting = 1k . 

As the effect of thickness variation of rotating cylin- 
ders can be taken into account in their equilibrium 
equation, the theory of the cylinders of variable thickness 
can give excellent results as that of the uniform thickness  
 

 
 

 
 

 

Figure 1. Parabolic cylinder profiles: (a) k = 0.6; n = 0.8; (b) 
k = 2.5; n = 0.8; (c) k = 2.5; n = 0.4. 
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cylinders as long as they meet the assumption of plane 
strain. After considering this effect, the equilibrium 
equation of rotating cylinder with variable thickness can 
be written as:  

  2 2 = 0,rr
d

hr h h r
dr              (4) 

where   is the constant angular velocity and   is the 
density of the cylinder material. 

We characterize the elastic properties ijc  and the ma- 
terial density   of inhomogeneous cylinder by:  

   /
0= 1 / , = ,

kk m r b
ij ijc n r b e           (5) 

where ij  and 0  are the values of ijc  and   in the 
homogeneous case, respectively, and m  is a rational 
number. 

3. Elastic Solution 

Substituting from Equation (2) into Equation (4) with the 
aid of the expressions given in Equation (5) and the 
cylinder profile given in Equation (3), we can get the 
following confluent hypergeometric differential equation 
for the radial displacement ( )u r :  

2 3 ( / )2
2 2 0

2
11

2 ( / ) 2 ( / )
1 = 0,

1 ( / ) 1 ( / ) 1 ( / )

km r bk k

k k k

r ed u nk r b du n k r b
r r u

drdr n r b n r b n r b




    
                

                 (6) 

 
where  

22 11 12 11= / , = / .                  (7) 

Introducing the dimensionless radius = /r r b  in 
Equation (6), then its general solution can be written as  

(1/2 / ) (1/2 / )
1 1 2 2

ˆ ˆ( ) = ( ) ( ) ( ),k ku r n C P r n C P r R r      (8) 

where 1Ĉ  and 2Ĉ  are arbitrary integration constants and  

   
   

( )
1

( )
2

= , , , ,

= 1, 1,2 , ,

k

k

P r r M i j nr

P r r M i j nr







       
    (9) 

in which  

 
2 22

= 1 , = 1 , = 1 , = 2 .i j k k
k k k

     
    

 
                       (10) 

 
Note that, the function ( , , , )M z    is the generalized 

hypergeometric function defined by [17]:  

=0

( , , , ) = , = ,
!

q
q q k

qq

z
M z z nr

q

 
  





        (11) 

where q , for example, is the Pochhammer's symbol 

given by  
( )

= ( 1)( 2) ( 1) = ,
( )q

q
q

    


 
   


     (12) 

in which   represents Gamma function. It is to be 
noted that, for real values of the upper parameters   
and  , and non-zero real value of the lower parameter 
  the generalized hypergeometric function ( , , , )M z    
converges for | |< 1z . 

The particular solution ( )R r for Equation (8) is  
 
 
 

obtained using variation of parameters as  

1 1 2 2( ) = ( ) ( ) ( ) ( ),R r U r P r U r P r          (13) 

where  

2 1
1 20 0

( ) ( ) ( ) ( )
( ) = , ( ) = ,

( ) ( )

r rP f P f
U r d U r d

    
 


    (14) 

in which  

 
2 3

0

11

( ) = ,
1

kmr

k

b re
f r

nr








            (15) 

and ( )r  is the Wronskian given by  

2 1
1 2

( ) ( )
( ) = ( ) ( ) .

dP r dP r
r P r P r

dr dr
          (16) 

Therefore,  

       
   

     
   

2 22 3
2 10

1 20 0
11

= ,
1 1

k km m
r r

k k

e M e Mb
R r r M r d r M r d

n F n F

   
      

    

   


   
   

                 (17) 

 
where  

             2 1
1 2 1 2= 2 .

dM r dM r
F r r M r M r M r M r

dr dr


 
  

 
 (18) 

Note that, the first derivative of the general hypergeo- 
metric function is given by:  

   , , , = 1, 1, 1, .
d dz

M z M z
dr dr

     


      (19) 
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Consequently, the exact general solution for the radial 
displacement can be written as  

             1 1 1 2 2 2= ,u r r M r C F r r M r C F r            

(20) 

where  
   1/2 / 1/2 /

1 1 2 2
ˆ ˆ= , = ,k kC n C C n C          (21) 

and  

   
   

   
   

22 3
20

1 0
11

22 3
10

2 0
11

= ,
1

= .
1

km
r

k
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r

k

e Mb
F r d

n F

e Mb
F r d

n F

 

 

  
  

  
  

 

 













     (22) 

Substituting from Equation (20) into Equation (2) 
yields the radial, circumferential and axial stresses for 
the rotating variable thickness and density inhomogen- 
eous orthotropic hollow cylinder in the following form: 

 
         ( )1 1 1 2 2 2

1 1 11 11 12 11 1 2 2 11 11 12 11 2

=

1

rr

k

r

nr dM M dF dM M dF
r C F M r C F M

b dr r dr dr r dr
 



                              
       

 

(23) 

 

   ( ) ( )1 1 1 2 2 2
1 1 12 12 22 12 1 2 2 12 12 22 12 2

=

1
( ) ( )

k

r

nr dM M dF dM M dF
r C F M r C F M

b dr r dr dr r dr



 



                              
       

 
(24) 

 

         ( ) 1 1 1 2 2 2
1 1 13 13 23 13 1 2 2 13 13 23 13 2

=

1
.

zz

k

r

nr dM M dF dM M dF
r C F M r C F M

b dr r dr dr r dr




                              
       

(25) 
 

Note that, if = = 0n m  then 0 0( ) = , = , =ij ijh r h c     

and the radial displacement given in Equation (20) for 
the rotating uniform thickness and density homogeneous 
orthotropic hollow cylinder is reduced to  

     

 
2 3 3

0
1 2 2

11

= ,
9

b r
u r C r C r  

 
 

 


      (26) 

also, the corresponding stresses in this case are given by:  

 

         
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 

1 1 2 2 211 12
1 11 12 2 11 12 02
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1 1 2 2 212 22
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1 1 2 2 213 23
1 13 23 2 13 23 02

11

1 3
= ,

9

1 3
= ,

9

31
= .

9

rr

zz

r C r C r b r
b

r C r C r b r
b

r C r C r b r
b

 

 


 

      
 

      
 

      
 

  

  

  

       

       

       

               (27) 

 
In addition, for isotropic cylinder we have [18]  

 
     11 22 12 13 23

1
= = , = = = ,

1 1 2 1 1 2

E E     
   


   

(28) 

where E  and   are Young's modulus and Poisson's 
ratio of the cylinder material. Using Equation (28) we 
find that the solution given in Equations (26) and (27) for 
the rotating uniform thickness and density homogeneous 
isotropic hollow cylinder takes the form:  

    
 

    
   

 

    
   

 

    
  

 

2 3 32
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2 2 2
1 2 02

2 2 2
1 2 02

2 3 2
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1 1 2
= ,

8 1

1 2 3 2
= ,

1 1 2 8 1

1 2 1 2
= ,

1 1 2 8 1

1 1 22
= .

1 1 2 4 1

rr

zz

C
u r C r b r

r E

E
r C C b r

b r

E
r C C b r

b r

E
r C b r

b E
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 




 
 

  

 
 

  

  
  

 
  



   
      

   
      

  
  

    

 

(29) 
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The previous elastic solutions will be completed by 
calculating the integration constants iC using various bo- 
undary conditions on the surfaces of the hollow cylinder. 

4. Rotation of Elastic Hollow Cylinders 

In the present section, we will obtain the elastic solutions 
for the rotating hollow cylinder. For the present hollow 
cylinder, the solution requires that one boundary con- 
dition be satisfied at each surface. The radial stress must 
be vanished at the free surface (F) of the cylinder while 
the radial displacement must be equal to zero at the  
 

clamped surface (C) of the cylinder. 

4.1. Free-Free (FF) Hollow Cylinder 

When the inner and outer surfaces ( = , =r a r b  or 
= / = , = 1)r a b a r  of the cylinder are free of any traction, 

the boundary conditions are given by:  

 
 

= 0 = ,

= 0 = 1.
rr

rr

r at r a

r at r




            (30) 

Using the above conditions into Equation (23), the 
constants 1C  and 2C  are given by 

       

       

1 21 2 22 23 12 1 11 2 12 13 22
1

11 22 12 21

1 11 2 12 13 21 1 21 2 22 23 11
2

11 22 12 21

1 1
= ,

1 1
= ,

F S F S S S F a S F a S S S
C

S S S S

F a S F a S S S F S F S S S
C

S S S S

           


           


                      (31) 

where 

       1
11 11 1 11 12=

M a
S a M a

a
   
 

   
 

 

       2
12 11 2 11 12=

M a
S a M a

a
     

   
 

 

           13 11 1 1 2 2=S a M a F a a M a F a                                  (32) 

     21 11 1 11 12 1= 1 1S M M      

     22 11 2 11 12 2= 1 1S M M      

       23 11 1 1 2 2= 1 1 1 1S M F M F       

 

in which the prime ( )  means differentiation with 
respect to r . 

The radial displacement and stresses for the rotating 
variable thickness and density inhomogeneous orthotro- 
pic hollow cylinder with free surfaces can be calculated 
from Equations (20), (23)-(25) and (32). 

The solution given in Equations (26) and (27) for the 
rotating uniform thickness and density homogeneous 
orthotropic hollow cylinder with free surfaces can be 
obtained with the help of the following constants:  

   

      

   

      

3 2 2 3
11 12 0

1 1 12
11 11 12

3 2 2 3
11 12 0

2 1 12
11 11 12

3 1
= ,

9

3 1
=

9

a a b
C

a a

a a b
C

a a



 



 

  

   

  

   

 

  



  

    
    

    
    

    (33)
 

Also, the radial displacement and stresses given in 
Equation (29) for the rotating uniform thickness and 
density homogeneous isotropic hollow cylinder with free 
surfaces can be written as  

    
    

2
2 2 2 3

02

1 1 2 3 2
= 1 3 2

8 1 1 2

a
u r a r b r

E r

   
 

   
       

 

   
2

2 2 2 2
02

3 2
= 1

8 1rr
a

r a r b
r

 


 
      

 

   
2

2 2 2 2
02

3 2 1 2
= 1

8 1 3 2

a
r a r b

r


  
 

  
      

                          (34)

 

      2 2 2 2
0= 1 3 2 2

4 1zz r a r b
  


     
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This is the well-known solution of the rotating uni- 
form thickness cylinder [19]. 

4.2. Clamped-Clamped (CC) Hollow Cylinder 

When the inner and outer surfaces  = , = 1r a r  of the  
cylinder are clamped, the boundary conditions are given  
 

by:  

 
 

= 0 = ,

= 0 = 1.

u r at r a

u r at r
             (35) 

From these conditions and Equation (20), the con- 
stants 1C  and 2C  are given by  

             
   

             
   

1 1 2 2 41 1 14 2 41 2
1

2 14 1 41

1 14 2 41 1 1 1 2 2 14
2

2 14 1 41

1 1 1 1 1
= ,

1 1

1 1 1 1 1
= ,

1 1

M F M F S F a S F a S M
C

M S M S

F a S F a S M M F M F S
C

M S M S

         


         


                   (36) 

 
where  

       14 1 41 2= , = .S a M a S a M a        (37) 

With the help of Equations (20), (23)-(25) and(36) ,we 
can obtain the radial displacement and stresses for the 
rotating variable thickness and density inhomogeneous 
orthotropic hollow cylinder with clamped surfaces. 

The solution given in Equation (27) for the rotating 
uniform thickness and density homogeneous orthotropic 
hollow cylinder with clamped surfaces can be calculated  
 

with the aid of the following constants:  
 

     

 

     

3 33 2 3 3 2 3
0 0

1 22 2
11 11

1 1
= , = .

9 9

a a b a a b
C C

a a a a

 

   

 

   

  

 

          
         

(38) 

Finally, the radial displacement and stresses given in 
Equation (29) for the rotating uniform thickness and 
density homogeneous isotropic hollow cylinder with 
clamped surfaces becomes  

    
 

   
   

   
   

   

2
2 2 2 3

02

22 2
2 20

2

22 2
2 20

2

2 2 2 2
0

1 1 2
= 1 ,

8 1

1 2
= 1 3 2 ,

8 1

1 2
= 1 1 2 ,

8 1

= 1 2 .
4 1

rr

zz

a
u r a r b r

E r

ab
r a r

r

ab
r a r

r

r a r b



 




 


 


 


  
      

 
    

   
 
    

   

    

                         (39) 

 
4.3. Free-Clamped (FC) Hollow Cylinder 

When the inner surface of the cylinder  1 =C r a  is 
free of any traction and the outer surface  = 1r  is 
clamped, the boundary conditions are given by:   

 
 

= 0 = ,

= 0 = 1.
rr r at r a

u r at r


             (40) 

From Equations (40), (20) and (23), the constants 1C  
and 2C  are given by  

             
   

           
   

1 1 2 2 12 1 11 2 12 13 2
1

2 11 1 12

1 11 2 12 13 1 1 1 2 2 11
2

2 11 1 12

1 1 1 1 1
= ,

1 1

1 1 1 (1) 1
= .

1 1

M F M F S F a S F a S S M
C

M S M S

F a S F a S S M M F M F S
C

M S M S

          


          


                    (41) 

 
Substituting from these constants into Equations (20), 

(23)-(25), we can get the radial displacement and stresses 
for the rotating variable thickness and density inhomo- 
geneous orthotropic hollow cylinder with free inner and 
clamped outer surfaces. 

In addition, the solution for the rotating uniform 
thickness and density homogeneous orthotropic hollow 
cylinder with free inner and clamped outer surfaces can 
be obtained from Equations (26) and (27) with the help 
of the following constants: 
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     

         

     

         

3 2 2 3
11 12 11 12 0

1 1 12
11 11 12 11 12

3 2 2 3
11 12 11 12 0

2 1 12
11 11 12 11 12

3
=

9

3
=

9

a a b
C

a a

a a b
C

a a



 



 

    

     

    

     

 

  



  

      
     

      
     

(42)
 

Also, the radial displacement and stresses given in 
Equation (29) for the rotating uniform thickness and 
density homogeneous isotropic hollow cylinder with free 
inner and clamped outer surfaces can be obtained in the 
following form:  

    
 

   

   
       

   
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4 2 2
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2 2 2
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0

2 2

1 1 2 1 2 3 2 1 3 2
= ,
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1 2 3 2 1 3 2 1 2
= 3 2 ,
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1 2 3 2 1 3 2 1 2
=

8 1 1 2 1 2

rr

a a a
u r r b r

E a a r

a a ab
r r

a a r

a a ab
r
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

    


  

    
  

   
  

       
   

      
      

   
      
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
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 
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 

2
2

4
2 2 2

02

1 2 ,

1 2 3 2
= 2 .

4 1 1 2
zz

r
r

a
r r b

a



  
 

 
  

  
   

  
    

                 (43) 

 
4.4. Clamped-Free (CF) Hollow Cylinder 

When the inner surface of the cylinder  =r a  is 
clamped and the outer surface  = 1r  is free of any 
traction, the boundary conditions are given by:  

 
 

= 0 = ,

= 0 = 1.rr

u r at r a

r at r
            (44) 

From Equations (20), (23) and (44), the constants 1C  
and 2C  are given by  

       

       

1 21 2 22 23 41 1 14 2 41 22
1

22 14 21 41

1 14 2 41 21 1 21 2 22 23 14
2

22 14 21 41

1 1
= ,

1 1
=

F S F S S S F a S F a S S
C

S S S S
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C

S S S S

          


          


                        (45) 

 

The radial displacement and stresses for the rotating 
variable thickness and density inhomogeneous orthotr- 
opic hollow cylinder with clamped inner and free outer 
surfaces can be obtained from Equations (20), (23)-(25) 
and (45). 

Also, the solution given in Equation (27) for the 
rotating uniform thickness and density homogeneous 
orthotropic hollow cylinder with clamped inner and free 
outer surfaces can be calculated with the help of the 
following constants:  

     

         
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C
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

 
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(46) 

Finally, one can obtain easily the radial displacement 
and stresses given in Equation (29) for the rotating 
uniform thickness and density homogeneous isotropic hollow 
cylinder with clamped inner and free outer surfaces in the 
following form: 
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5. Conclusions 

The rotation problem of a variable-thickness inhomogen- 
eous, orthotropic, hollow cylinder has been studied. 
Analytical solution for rotating variable-thickness, in- 
homogeneous, orthotropic, hollow cylinder subjected to 
different boundary conditions are derived. The displace- 
ment and stresses for rotating uniform-thickness, homo- 
geneous, isotropic, hollow cylinder are obtained as 
special cases of the investigated problem. In the second 
part of this paper we will present the corresponding 
viscoelastic solutions and some applications concerning 
the effects due to many parameters on the radial displace- 
ment and stresses. 
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