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Abstract 
 
We consider the problem of approximating two, possibly unrelated probability distributions from a single 
complex-valued function   and its Fourier transform. We show that this problem always has a solution 
within a specified degree of accuracy, provided the distributions satisfy the necessary regularity conditions. 
We describe the algorithm and construction of   and provide examples of approximating several pairs of 
distributions using the algorithm. 
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1. Introduction 
 
In this paper we consider the problem of reconstructing 
two different probability distributions from a single com- 
plex-valued function with a specified degree of accuracy. 
This problem was suggested by the interpretation of the 
wave function   which is a solution of the Schrödinger 
equation. As is well known    x x ★  is the proba- 
bility density in a position space and    ˆ ˆp p ★  is 
the corresponding probability density in a momentum 
space, where  x★  is the complex conjugate of 

 x  and  ˆ p  is the Fourier transform of  x  
[1]. We raise the related question as to whether any two 
distributions can be approximated within a specified error 
from a single function by calculating its modulus or that 
of its Fourier transform, calculations like those used in 
Quantum Mechanics. 

Our answer to this question is affirmative. 
We prove this assertion by constructing a complex- 

valued function   which approximates two given distri- 
butions within a given error, provided the two distribu- 
tions satisfy some regularity requirements specified 
below. In particular, we show that the cumulative distri- 
butions can be approximated pointwise using the indefi- 
nite integral of the modulus of   or of ̂ . 

The paper is organized as follows. In the next section 
we list assumptions, conventions and notation. In Section 
3 we first introduce an expression for evaluating the error 
in the approximation of the two given distributions from 

the modulus of   or its Fourier transform. We then 
show how to construct this function. In the next section 
we list 4 pairs of distributions approximated using cons- 
truction described in Section 3. In Section 5 we discuss 
the method, limitations and possible generalizations. In 
the appendix we sketch a proof that the function   
approximates any two given distributions on subintervals 
as claimed and a proof that the cumulative distributions 
can be approximated pointwise (uniformly on closed 
intervals) using the indefinite integral of the modulus of 
  or of ̂ .  

2. Definitions, Conventions and Assumptions 

2.1. Assumptions 

1) X  and P  are any two variables;  Xf x  is the 
probability density function for X  with corresponding 
cumulative distribution  Xf x ;  Pf p  is the probabi- 
lity density function for P  with corresponding cumula- 
tive distribution  PF p   

2)  Xf x  and  Pf p  have finite variances and 
they (and their square roots) are continuously differen- 
tiable with Fourier transforms in 2L  and in 1L  (for 
definitions of 1L  and 2L  see [2]; throughout, we 
denote the norm in 2L  as 

2
)  

3) for every > 0 , there exist bX  and bP  such 
that: a) for all  ,b bx X X   and for all  ,b bp P P  , 

  > 0Xf x and   > 0;Pf p  and, b)   < /16X bF X  , 
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  < /16P bF P  ,   >1 /16X bF X  , and   >1 /16P bF P  . 
 
2.2. Definitions and Notations 
 
1) Let n  be any integer, set = 2nJ , = /bx X J , and 

= / ,bp P J where bX  and bP  are given in assumption 
3; if necessary, increase n ( and/or bP ) so that 

 / 2 > 1 /16;P bF P p    2J is the number of intervals 
of width x and p in  ,b bX X and 
 / 2, / 2 ;b bP p P p      

2) s  is a number defined in the Construction below; 
it indicates the number of subintervals into which each 
interval x  is divided. It is used to control the size of 
the error in the approximations;  

3)  = /t s x p  ;  
4) j  and k  are integers, between sJ , and 1sJ  ; 

l , m  and m  are integers between J , and 1J   
or J , unless noted otherwise;  

5)  s x  is a function of the form used in the “sinc 
approximation” [3,4]:  

   
1

=

/
= / ,

/

sJ

s X
j sJ

x j x s
x f j x s sinc

x s






     
  

where    sin x
sinc x

x




 ; 

6)  max ,x XQ f x  for  , ;b bx X X   

 min 0,x XP f x   for  , ;b bx X X   

min ( ) > 0,p PP f p  for  / 2, ;b bp P p P     

 max / ,x XQ df x dx   for  , ;b bx X X   

7)  
1/2

/j X

x
a f j x s

s

    
for

= , 1, , 1j sJ sJ sJ     

8) 2
; , =

,
j z

x j z mm j
pr a

   for 0 ;z s J j     

9) ;p lpr =
   1l p

Pl p
f z dz

 

  for 1;J l J      

10) ˆ (.)f denotes the Fourier transform of a function 

(.),f * (.)f denotes the complex conjugate of a function 

(.);f   

11) jM is a function, defined recursively in the constr- 

uction, mapping the integers  , 1, , 1j sJ sJ sJ      

to the numbers  

    / , 1 / , , 1 / , / ;sJ x s J x s J x sJ x         

12) = /j jm M x s  ; jm  is an integer; 

13)   : , 1, , 1lS j j sJ sJ sJ      and

 = /jM l s x   for = , 1, ,l J J J    . Equivalently, 

 1 / ,l MS f l s x   where 1(.)Mf
  is the inverse 

mapping.  
 
3. Construction 
 
Given    ,X Pf x f p ,   and n , and bX  and bP  
with the properties described in Assumptions we cons- 
truct a complex-valued function   which satisfies the 
following two inequalities  

      
1

1 2
*

1=
2

ˆ ˆ <

l p
J

P
l J l p

t qt qt f q dq  

     

    
 

       (1) 

and  

        
1 1 *

=

<
J l x

Xl x
l J

x x f x dx  
  




       (2) 

where t  is a scale parameter defined as  

=
s

t
x p 

                  (3) 

and s  is defined to be the smallest integer so that 
Inequalities (4)-(8) are satisfied: 

<
4x

x
Q

s J


                (4) 

  
 

1/2
3

4
4 3 2 2 <

4 2 1
x

x
Q log sJ

s J

      
   (5) 

     4

2
< / 8 2 1s Xx f x J          (6)

    
 

2
2

4
| | 2 2 2

4 2 1
x

x
x

x Q
J Q log sJ

s P J


   


   

(7) 

   

     

1

=

1 11 /

/
= =

/ =

/
8

sJXb
X XXb j sJ

sJ sJj x s

X Xj x s
j sJ j sJ

x
f x dx f j x s

s

x
f x dx f j x s

s








  


 


 


  



 
  (8) 

Many of the functions already defined, such as ( )s x , 
or to be defined, such as ( )x  and jM , depend on s  
and n . For brevity we suppress explicit notation of that 
dependency. 

The next step in the construction of   is to define 

subintervals. First we split the interval  ,b bX X  into 

2J  intervals of length :x  , 1 ,l x l x      

= , 1, , 1l J J J    . Next we further divide each 

interval  , 1l x l x      into s  subintervals and 
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number them from = , 1, ,j sJ sJ     to 1sJ  . 

Define  = , 1, , 1j sJ sJ sJ      

1/2

=j X

x j x
a f

s s

   
    

              (9) 

We continue the construction by introducing the 
function jM  which maps the integers  

 , 1, , 1j sJ sJ sJ      to the numbers 

    / , 1 / , , 1 / , / ,sJ x s J x s J x sJ x         using 

the following recursive algorithm: initialize j  to sJ  

and l  to J . Then proceed with the following steps:  
1) Set ; , = 0x j zpr  for = 1z   and set 

2
; , =

=
j z

x j z mm j
pr a

  for each integer  0,1, , ,z sJ j   

and set  
1

2
; 1

2

l p

p l P
l p

pr f z dz
   
 
   
 

   for 1J l J      

2) If an integer z  exists between 1  and sJ j  
such that the inequalities  

  ; ; ,0 / 2 2 1 ,p l x j zpr pr J     

and ; , 1 ; > 0x j z p lpr pr   hold, then set =k z ; otherwise, 

set =k sJ j   

3) If 0k   then set all , ,j j kM M   equal to 
/ls x   
4) Set = 1j j k   and = 1l l  ; if = ,j sJ  stop, 

otherwise go to step 5)  
5) If 1 =l J , set 1, 1, ,j j sJM M M    all to 
/sJ x  and stop; otherwise return to step 1).  

Step 2) always returns a value of k . The iterative 
algorithm continues until stopping, either at step 4) or 5). 

Properties of jM  that will be used subsequently 
include: for each , , 1j sJ sJ  , the mapping jM  
is a non-decreasing function of j ; each /jM s x   is 
an integer (i.e., / =j jM x s m   for some integer 

, ,jm J J  ). 
Using this definition of jM , we can now define 
 x  appearing in Equations (1)-(2) as:  

1 2

=

1 2

=

/
( ) =

/

/
=

/

sJ i M xj
j

j sJ

sJ i M xj
X

j sJ

s x j x s
x a sinc e

x x s

j x x j x s
f sinc e

s x s














  
   

     
      




   (10) 

Apart from  exp 2 ji M x  and the sJ th term in the 

series (10), the function  x  represents the 

Whittaker-Shannon interpolation formula [5,6] for 

 Xf x . 

In addition to approximations given in (1)-(2) we also 

prove uniform approximations to the cumulative distri- 
butions: let us define  

   
/ 2

=
p

P PP pb
F p f q dq

   

     *

/2
ˆ ˆ=

p

P P pb
F p t qt qt dq 

 
        (11) 

and    =
x

X XXb
F x f z dz

  

     *=
x

X Xb
F x z z dz 


           (12) 

Then, it can be shown that with    ,X Pf x f p , and 
*  given and with bX  and bP  having the properties 

described in Assumptions, one can choose n  large 
enough that the complex-valued function   given by 
the construction can be used to uniformly approximate 
the cumulative distributions  XF x  and  PF p  for 

 ,b bx X X  , and for  / 2, / 2b bp P p P p    : 

    *
X XF x F x              (13) 

and  

    *
P PF p F p              (14) 

For derivation of (1) and (13) see Appendix. 
Approximations (2) and (14) are derived in a similar 
fashion.  
 
4. Examples 

To illustrate the approximation, we compare the integral 
of the probability density function over a series of 
intervals with the correpsonding approximation 
generated by   from (1), (2) and (10). Specifically, in 

P  space we plot  /2

/2

p p

Pp p
f q dq



  and the correspon- 

ding approximation    /2 *

/2
ˆ ˆ

p p

p p
t qt qt dq 




 . Similarly, 

in X  space we plot  /2

/2

x x

Xx x
f q dq



  and the corres- 

ponding approximation    /2 *

/2

x x

x x
q q dq 




 ; we app- 

roximate the last integral by    *x x x   , as x  is 

small. 
We applied the method to four pairs of distributions; 

for each pair, we use a single   (and its Fourier tran- 
sform) to approximate them with n  = 7, s  = 64 and 

n= = 5 / 2 0.039x p   :  
1) Figure 1 illustrates the approximation using 

Equation (10), for the distributions  

 
2 21 1

8 8
2 24

= 0.75 0.25
2

x x

Xf x e e
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Figure 1. Approximation to the integrals  
2

2

p p
p

p p
f q dq



  

(top) and  
2

2

x x
X

x x
f q dq



  (bottom) based on Equation (10) 

for the pair of distributions    2exp 2pf p p   , and 

 
2 21 1

8 8
2 24

0.75 0.25
2

x x

Xf x e e


         
   

 
    
 

. 

 

  2 /21
and =

2
p

Pf p e


  

2) Figure 2 illustrates the approximation using 
Equation (10), for the distributions 

    2 /2= , 0 and = 1 2x p
X Pf x e x f p e   

3) Figure 3 illustrates the approximation using 
Equation (10), for the distributions 

   2 /21
= and = , 0

2
x p

X Pf x e f p e p


    

4) Figure 4 illustrates the approximation using 

 

 

Figure 2. Approximation to the integrals  
2

2

p p
p

p p
f q dq



  

(top) and  
2

2

x x
X

x x
f q dq



 (bottom) based on Equation (10) 

for the pair of distributions  
2 21

2
p

pf p e


  and 

  x
Xf x e  for 0x   and   0Xf x   for < 0x . 

 

Equation (10), for the distributions 

   2 2/2 /21 1
= and =

2 2
x p

X Pf x e f p e
 

   

5. Discussion 

Based on the algorithm described in Section 3 we have 
shown how to approximate two given distributions from 
a single complex-valued function with a specified 
accuracy. The main result of our paper is given in 
expressions (1-2), (10) and (13-14). Expression (10) can 
be viewed as an extension of well-known numerical 
methods based on the sinc function [3], providing a  



W. D. FLANDERS  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                  AM 

443

 

 

Figure 3. Approximation to the integrals  
2

2

p p
p

p p
f q dq



  

(bottom) and  
2

2

x x
X

x x
f q dq



  (top) based on Equation (10) 

for the pair of distributions  
2 2

X
1

2
xf x e


 , and 

   expPf p p   for 0p   and   0Pf p   for < 0p . 

 

 

 

Figure 4. Approximation to the integrals  
2

2

x x
X

x x
f q dq



  

(bottom) and  
2

2

x x
X

x x
f q dq



  (top) based on Equation (10) 

for the pair of distributions  
2 21

2
p

pf p e


 , and 

 
2 21

2
x

Xf x e


 . 

 
method for approximating two distributions simulta- 
neously. 

The construction and arguments given here show that 
there always exists a function of the form given by (10) 
which approximates two given distributions with aspe- 
cified degree of accuracy provided our assumptions (1-3) 
are satisfied. For successively higher degrees of accuracy, 
the method allows construction of a sequence of appro- 
ximating functions but this sequence may not necessarily 
converge, say in 2L , to a limiting function. 

A modification of our approach or a similar method 
based not on the sinc function but on some other basis or 
wavelet series [7] might be used to approximate the two 
distributions and converge to a limiting function. For 
example, one might attempt to use the Hermite poly- 
nomials multiplied by the appropriate Gaussian function 
as a basis. 

It remains speculative, however, whether our approach 
can be modified so as to approximate arbitrary pairs of 
distributions with a basis other than the sinc functions. 
Further speculation about this potential generalization is 
beyond the scope of this paper. We would like to stress 
that the main goal of the present work is not to find the 
best numeric approximation (though we can always meet 
an increasing demand in accuracy) but to establish the 
existence of an algorithm allowing uniform approxi- 
mation of the cumulative distributions. 
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Appendix 
 
We sketch the derivation of (1) and (13). First we write 
down the Fourier transform of  x :  

   

   

2

1 2 2

=

1 2

=

ˆ =

/
=

/

=

i x q

sJ i M x i x qj
j

j sJ

xsJ i j q M js
j j

j sJ

q x e dx

s x j x s
a e sinc e dx

x x s

x x
a R q M e

s s



 



     

        



    



  
   

   
 







 (1) 

In (1) R  is a rectangular function:  

 

1 1
1 when <q< ,

2 2
1 1

whenq= ,=
2 2

0 otherwise

R q

 

 





          (2) 

We consider  

     
1

*2
1

2

ˆ ˆ ,
l p

l p
I l t qt qt dq 

   
 
   
 

           (3) 

the integral of    *ˆ ˆt qt qt    over the interval 

1 1
,

2 2
l p l p

               
,for each , 1, , 1l J J J    . 

Using expression (1), rescaling the integration variable, 
and using definition of integer : = /j j jm m xM s , for 

this integral we obtain:  

 

      

1 1
2

1
, =2

2

( ) =
sJl

' '
j k j

l j k sJ

'i j k q j m k mj k'
k

I l dq a a R q m

R q m e


   
 
    

     






 

where   1/2
= / /j Xa xf j x s s    . 

Property (2) of the rectangular function R  implies 
that each ,j k  term in the integrand is either 0 for the 
full range of integration or vanishes for all but a 
subinterval of length 1. The latter holds only if =j km m  

and we have:  1
1

2jl m l     if and only if = jl m , 

for some integer jm . After interchanging the order of 
integration and summation, each integral in the sum is 0 
due to the factor  2 'i j k qe     , unless =j k . On the other 
hand, if =j k  the integral is just 2

ja . Thus, we can 
write  = , 1, , 1l J J J    :  

     
1

* 22
1

2

ˆ ˆ= = ,
l p

j
l p j Sl

I l t qt qt dq a 
   
 
     

       (4) 

where we recall the definition of lS : lS  is the set of all 

, 1, ,j sJ sJ sJ     for which  / =jM x s l  . 

There are 2J  terms  I l  of the form given in (4); 
the approximation given by Inequality (1) will be proven 
if we can show that for = , 1, , 1j J J J     the 
following relation holds:  

 
1

2 2 2
; 1

2

=
2

l p

j p l j P
l pj S j Sl l

a pr a f z dz
J

   
 
      

        (5) 

Either Inequality (5) holds for = , 1, , 1l J J J    , 

and we are done, or there is a smallest l  violating (5), 

say 1l , such that    
1

2 2
1

1 2

| |> / 2 .
l p

j pj Sl l p
a f z dx J

   
 
    
 

   

This implies that 1 1j sJ  , where 

 1 = max : lj j j S . Indeed, if this were not the case 

(i.e., 1 < 1j sJ  ), than 11j
M   would have been defined 

by the algorithm described in section 3 as 1l  since 

 11
/ 2 1ja J    and 1 1j   would also have been in 

1l
S . This would be a contradiction since 1j  was 

supposed to be the largest element of 
1l

S . Therefore, 

1 1j sJ  . 
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By choice of s  in section 3, requirement (8): 
   1 /1 2

= /

j x sJ

j Xl J j S j x sl
a f x dx

 

  
    is less or equal 

/ 8,  and because  Xf x  integrates over the interval 

 ,b bX X  to at least 1 /16  (Assumption 3), we 

have:  
1

2

=

1 /16 / 8 > 1 / 4
sJ

j
j sJ

a   




           (6) 

Since ( )Pf p  is a probability density function and by 

Assumption 3 and the algorithm described in section 3:  

 

 

1
1 2

12

1 11 1
2 22

1
= = =2

1 =

= 1 / 4.

l p

PP pb

l l sJl p

P j j
l pl J l J j S j sJl

f z dz

f z dz a a 

   
 
  

    
 
       



  



   
 (7) 

The last inequality above is simply Inequality (6). By 

the Construction,  
1

22
1

2

l p

P jj Sll p
f z dz a

   
 
    
 

   for every 

l . This fact and (7) imply:  

 

 

1
1

22
1

=2

1
1

22
1

= 2

=

1

4

ll p

P j
P pb l J j Sl

l l p

P j
l pl J j Sl

f z dz a

f z dz a 

   
 

    

   
 
     



 

 

 
        (8) 

Further, the upper bound of 1 in expression (6) implies 
that:  

   
11 1
22

1 1
1 = 12 21

3
=

4

J l pP pb
P P

l p l pl l

f z dz f z dz 
      
 

            

       (9) 

Now lS  is empty for 1>l l  since 1 1=sJM l  and 

jM  is non-decreasing. In other words 2 = 0jj Sl
a

  for 

1>l l . This fact and the inequality in Expression (9) 

yield:  

     
11 11 2 2
1

= 1 = 1 21 1

3
= 0

4

J J l pl p

P j Pl p l pl l j S l ll

f z dz a f z dz 
        
        

       

(10) 

Finally, Inequalities (8) and (10) lead to the desired  
result, proving Inequality (1). 

Proof of Inequality (2) requires no new qualitative 
features but straightforward tedious calculations; we do 
not cite it here. 

To prove the uniform approximation for the 
cumulative distributions, Inequality (13), choose n  

large enough that *= / 2 < / 2n
x x bQ x Q X   , constr- 

uct ( )x  so that Inequalities (1) and (2) hold with 
* / 2  and let      = X Xx F x F x   . We now show 

that   *x   for all  ,( 1)x j x j x     and for 

= , 1, , 1j J J J    . Suppose the maximum of 

   X XF x F x  occurs at 0= ,X x for  0 , 1x j x j x     . 

Let Fj
M  denote     max , , 1 .XF x x j x j x       If 

   0 0>X XF x F x , then  

   F Xj
x M F j x               (11) 

since ( )XF x  is non-decreasing. Further, the mean 

value theorem implies  F X xj
M F j x Q x     since 

xQ  is the maximum of  Xf x . Using this result in (11) 

gives  

      * * */ 2 / 2 =X x Xx F j x Q x F j x          

 
(12) 

since     * / 2X XF j x F j x      follows from (1) 

and *| | / 2xQ x    by choice of n . 

On the other hand, if    0 0<X XF x F x , then  

         
   

 

*

* * *

1 1

/ 2

/ 2 / 2 =

X X X

X X x

X

x F j x F j x F j x

F j x F j x Q x

F j x



 

  

       

       

   



  

(13) 

The chain of estimates above follows from the fact 

that  XF x  is non-decreasing, xQ n  is the maximum 

of  Xf x , and by choice of n . 

The proof for    P PF p F p   is similar.

 


