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Abstract 
 
The two-dimensional nonlinear shallow water equations in the presence of Coriolis force and bottom topog-
raphy are solved numerically using the fractional steps method. The fractional steps method consists of split-
ting the multi-dimensional matrix inversion problem into an equivalent one dimensional problem which is 
successively integrated in every direction along the characteristics using the Riemann invariant associated 
with the cubic spline interpolation. The height and the velocity field of the shallow water equations over ir-
regular bottom are discretized on a fixed Eulerian grid and time-stepped using the fractional steps method. 
Effects of the Coriolis force and the bottom topography for particular initial flows on the velocity compo-
nents and the free surface elevation have been studied and the results are plotted. 
 
Keywords: Shallow Water Equations, Fractional Steps Method, Riemann Invariants, Bottom Topography, 

Cubic Spline Interpolation 

1. Introduction 
 
Shallow water equations form a set of hyperbolic partial 
differential equations that describe the flow below the 
pressure surface in the fluid, sometimes, but not neces-
sarily, a free surface. The equations are derived from 
depth-integrating the Navier-Stokes equations, in the 
case where the horizontal length scale is much greater 
than the vertical length scale. They can be used to model 
Rossby and Kelvin waves in the atmosphere, rivers, 
lakes and oceans in a large domain as well as gravity 
waves. The rotating shallow water equations including 
topographic effects are a leading order model to study 
coastal hydrodynamics on several scales including in-
termediate scale rotational waves and breaking waves on 
beaches. Also, they are used with Coriolis forces in at-
mospheric and oceanic modeling, as a simplification of 
the primitive equations of atmospheric flow. 

Due to the nonlinearity of the model as well as the 
complexity of the geometries encountered in real-life ap- 
plications such as flow of pollutants, tsunamis, avalan- 
ches, dam break, flooding, potential vorticity field…etc, 
much effort has been made in recent years to develop 

numerical methods to solve the equations approximately. 
Bottom topography plays a major role in determining 

the flow field in the oceans, rivers, shores, coastal sea 
and so on. One of the most important applications of the 
shallow water waves is the tsunami waves [1], usually 
generated by underwater earthquakes which cause an 
irregular topography of increasing or decreasing water 
depth. In particular, the main problem in solving the 
shallow water equations is the presence of the source 
terms modeling the bottom topography and the Coriolis 
forces included in the system. 

The shallow water equations used in geophysical fluid 
dynamics are based on the assumption H/L << 1, where 
H and L are the characteristic values for the vertical and 
horizontal length scales of motion respectively. These 
equations are a two-dimensional hyperbolic system mod- 
eling the depth and the depth-averaged horizontal veloci-
ties for an incompressible fluid. 

Perhaps, rotation is the most important factor that dist- 
inguishes geophysical fluid dynamics from classical fluid 
dynamics. If latitudinal varying Coriolis forces are in-
cluded in the shallow water equations, the resulting sys-
tem can support both Rossby and gravity waves. On the 
other hand, by neglecting the Coriolis forces in the shal-
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low water system, there is no Rossby-wave solution for 
the system. 

The Coriolis force is proportional in magnitude to the 
flow speed and directed perpendicular to the direction of 
the flow. It acts to the left of the flow in the southern 
hemisphere and to the right in the northern hemisphere. 
A somewhat inaccurate but helpful way to see why the 
direction is different in the two hemispheres is related to 
the principle of conservation of angular momentum. For 
a given horizontal motion, the strongest horizontal de-
flection is at the poles and there is no horizontal deflec-
tion at the equator; for vertical motion the opposite is 
true. The magnitude of the Coriolis force proportionally 
depends upon the latitude and the wind speed. The direc-
tion of the Coriolis force always acts at right angles to 
the direction of movement, which is to the right in the 
Northern Hemisphere and to the left in the Southern 
Hemisphere [2]. 

Many authors have used different numerical techniq- 
ues to solve the shallow water equations such as finite 
volume method, finite element method and fractional 
steps method. 

Lukácová-Medvid'ová et al. [3] presented a new well- 
balanced finite volume method within the framework of 
the finite volume evolution Galerkin (FVEG) schemes 
for the shallow water equations with source terms mod-
eling the bottom topography and the Coriolis forces. 

Gallouët et al. [4] studied the computation of the shal-
low water equations with topography by finite volume 
method, in a one-dimensional framework. In their paper, 
they considered approximate Riemann solvers. Several 
single step methods are derived from this formulation 
and numerical results are compared with the fractional 
steps method. 

Dellar and Salmon [5] derived an extended set of sha- 
llow water equations that describe a thin inviscid fluid 
layer above fixed topography in a frame rotating about an 
arbitrary axis. 

Karelsky et al. [6] executed the generalization of clas-
sical shallow water theory to the case of flows over an 
irregular bottom. They showed that the simple self-sim- 
ilar solutions that are characteristic for the classical 
problem exist only if the underlying surface has a uni-
form slope. 

George [7] presented a class of augmented approxim- 
ate Riemann solvers for the one-dimensional shallow 
water equations in the presence of an irregular bottom, 
neglecting the effect of Coriolis force. These methods 
belong to the class of finite volume Godunov type 
methods that use a set of propagation jump discontinui-
ties, or waves, to approximate the true Riemann solution. 

Shoucri [8] applied the fractional steps technique for 
the numerical solution of the shallow water equations 
with flat bottom in the presence of the Coriolis force. 
The method of fractional steps that he presented in his 
paper has the great advantage of solving the shallow wa-

ter equations without the iterative steps involved in the 
multi-dimensional interpolation, and without the iteration 
associated with the intermediate step of solving the 
Helmholtz equation [9]. 

Abd-el-Malek and Helal [10] developed a mathemati-
cal simulation to determine the water velocity in the 
Lake Mariut, taking into consideration its concentration 
and the distribution of the temperature along it, by ap-
plying the fractional steps method for the numerical so-
lution of the shallow water equations. 

Shoucri [11] applied the fractional steps technique for 
the numerical solution of the shallow water equations to 
study the evolution of the vorticity field. The method is 
Eulerian [8], and the different variables are discretized 
on a fixed grid. 

Yohsuke et al. [12] presented two efficient explicit 
schemes with no iterative process for the two-dimen-
sional shallow-water equations of a hydrostatic weather 
forecast model. One is the directional-splitting frac-
tional-step method, which uses a treatment based on the 
characteristics approach (Shoucri [8,11]).The other is the 
interpolated differential operator (IDO) scheme (Aoki 
[13]), which is one of the multimoment Eulerian schemes. 
They compared the forecast geopotential heights ob-
tained from the fractional-step method and the IDO 
scheme after 48 h for various resolutions with those of 
the referenced scheme by Temperton and Staniforth [14]. 

Rotating shallow water equations including topogra- 
phic terms are numerically dealt with the fractional steps 
method. In most real applications there is variable bot-
tom topography that adds a source term to the shallow 
water equations. There are several works, where both the 
Coriolis forces as well as the bottom topography are 
taken into account, see [3,15-17]. A standard and easy 
way to deal with these source terms is to treat them in-
dependently by using the fractional steps method. It has 
the great advantage of solving the equations without the 
iterative steps involved in the multidimensional interpo-
lation problems. 

In this work, we apply the fractional steps method to 
solve the two-dimensional shallow water equations with 
source terms (including the Coriolis force and bottom 
topography) for different initial flows observed in the 
real-life such as the tsunami propagation wave and the 
dam break wave. The objective of the present work is to 
simulate the influence of different profiles of the irregu-
lar bottom in case of neglecting and including the effect 
of the Coriolis force on the velocity component in the 
x-and y-directions, water depth and the free surface ele-
vation for different time. The results are illustrated 
graphically for particular initial flows. 
 
2. Mathematical Formulation of the Problem 
 
The shallow water equations (Saint-Venant equations) 
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describe the free surface flow of incompressible water in 
response to gravitational and rotational accelerations 
(Coriolis accelerations), where the vertical depth of wa-
ter is much less than the horizontal wavelength of the 
disturbance of the free surface [wave motion]. These 
equations are often used as a mathematical model when 
numerical methods for solving weather or climate pre-
diction problems are tested. Figure 1 illustrates the shal-
low water model where, “h” denotes the water height 
above the non-flat bottom, “H” is the undisturbed free 
surface level, ),( yx   denotes the bottom topog-

raphy, “h*” is the water height above the flat bottom and 
Hh    denotes the free surface elevation. 

The Continuity equation and the momentum equations 
for the two-dimensional shallow water equations system 
taking into account the effects of topography and the 
Earth’s rotation are formulated by Pedlosky [2] as 

Continuity equation: 
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The model is run over a rectangular domain centered 
at the earth origin, such that the x-axis is taken eastward 
and the y-axis is taken northward, with u and v the cor-
responding velocity components, respectively, g stands 
for the gravitational constant, sin2f  is the Co- 

riolis parameter,   is the angular velocity of the earth 

rotation,  is the geographical latitude of the earth ori-

gin coordinate and ),( ufvf   represents the Coriolis  

 
   

),( yx   

h* h 

H 

 

Figure 1. Geometry of the shallow water model. 

acceleration which is produced by the effect of rotation. 
Let the geopotential height be 

hg                   (4) 

Substitution (4) into (1)-(3), yields 
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We concern ourselves to approximate the two dimen-
sional shallow water Equations (5)-(7) with source terms 
modelling the bottom topography and the Coriolis 
forces for different initial flows observed in the real-life 
such as the tsunami propagation wave and the dam 
break wave. 
 
3. Solution of the Problem 
 
Our solution is based on applying the fractional steps 
method which was first proposed by Yanenko [18], to 
the system of non-linear partial differential Equations 
(5)-(7) by splitting the equations into two one-dimen-
sional problems that are solved alternately in x- and y- 
directions [19]. 
 
3.1. Fractional Steps Method 
 
Step 1. Solve for 2/t  in the x– direction (without the 

source terms): 
Equations (5)-(7) will be 
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Equations (8) and (9) can be written as 

( ) 0x xR R
u

t x
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       (11) 

where 2xR u     are the Riemann invariants. 

By applying the classical finite difference scheme to 
(11), which is a first-order equation in time and space, 
we get 
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The CFL stability condition is given by ( )u    
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The right-hand side of (13) is the value of the function 
at time tnt   at the departure points of the charac-

teristics. The value of the function at 2/tt   at the 

arrival grid points is obtained using cubic spline interpo-
lation from the values of the function at the grid points at 

tnt  , (i.e. the value xR  after the time 2/t  

from time t is the same value of xR  at that same time 

but after the distance x is shifted by x ). 

Similarly, the solution of (10) for v at 2/tt   is 

written as 
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1,2,3…as the equality 
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where ( ) / 2x x u t       for the first row and 

2/tuxx   for the second row. Hence the CFL 

stability condition will be satisfied automatically at any 
time evolution tn  )2/1( . 

So, The solutions of xR , give the values of h and u 

after time tn  )2/1(  in the x direction. So, the 

interpolated values in (13) and (14) are calculated using 
the cubic spline interpolation, where no iteration is im-
plied in this calculation. 

Step 2. Solve for 2/t  in the y direction (with-

out the source terms): 
Equations (5)-(7) will be 
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Use the results obtained at the end of Step 1, to solve 
(15)-(17) for 2/t . 

Equations (15) and (17) can be rewritten as 
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where  2vR y  are the Riemann invariants. 
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and (20) as 
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where ( ) / 2y y v t       for the first row and 

2/tvyy   for the second row.  

Again, the solutions of yR , give the values of h and 

v after 2/t  in the y-direction. 

Step 3. Solve for t  ( for the source terms): 

Equations (5)-(7) will be 
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Use the results obtained at the end of Step 2, to solve 
(21) and (22) for t . 

Solutions of (21) and (22) are calculated at t  
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where 0U  and 0V  are the values of u and v at the be-

ginning of Step 3. 
Step 4. Repeat Step 2: 
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The results obtained at the end of Step 3 are used to 
solve for 2/t  the equations in the y-direction as in 
Step 2. 
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Step 5. Repeat Step 1: 
The results obtained at the end of Step 4 are used to 

solve for 2/t  the equations in the x- direction as in 
Step 1. 
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Shoucri [11] applied the fractional steps method for 
the numerical solution of the shallow water equations 
over flat bottom. He used the calculated variables (the 
height and the velocity field) in studying the evolution of 
the potential vorticity field. 

Abd-el-Malek and Helal [10] developed a mathemati-
cal simulation to determine the water velocity in the La- 
ke Mariut, taking into consideration its concentration and 
the distribution of the temperature over it, by applying 
the fractional steps method for the numerical solution of 
the shallow water equations. The application they pre-
sented over flat bottom requires the variables at two 
time-levels t and 2/t  according to Strang method 
[20] which is more accurate in time, since it has a sec-
ond-order accurate. They proved the convergence of the 
fractional steps method and verified that the order of 
convergence is of the first order. 

In this problem, we use the same trend as done by 
Abd-el-Malek and Helal [10] and Shoucri [11] in solving 
numerically the two-dimensional nonlinear shallow wa-
ter equations in the presence of Coriolis force and bottom 
topography using the fractional steps method. We study 
the effects of the Coriolis force and the bottom topogra-
phy for particular initial flows on the velocity compo- 

nents and the free surface elevation. 
 
3.2. Cubic Spline Interpolation 
 
To approximate the arbitrary functions on closed interv- 
als by the aid of the polynomials, we used the most com- 
mon piecewise polynomial approximation using cubic 
polynomials between each successive pairs of nodes 
which is called cubic spline interpolation. A general cu-
bic polynomial involves four constants, so, there is a 
sufficient flexibility in the cubic spline procedure to en-
sure that the interpolant is not only continuously differ-
entiable on the interval, but also it has a continuous sec-
ond derivative on the interval, [21]. 
 
4. Results and Discussion 
 
We apply the numerical scheme presented in Section 3 to 
solve the problem at different values of time for different 
initial flows describing the dam break wave and the tsu-
nami propagation wave over two main profiles of the 
non-flat bottom in cases of neglecting and including the 
Coriolis force. We represent the bottom with two differ-
ent shapes which are a hump and rising hill topography 
respectively, as follows. 

Hump topography: (25) 
Rising up hill topography: (26) 
The two forms of )(x are defined for  100,0y . 

We present the bottom topographies considered by a hump 
with maximum height 250  m and rising hill topogra-
phy up to 1850 m, Figures 2 and 3. The problem is solved 
for 2/806.9 smg  and maximum depth 2H  km. 

The scale is based with length 500x  km, and width 
100y  km. The horizontal grid cell length is  x  

1 y  km resulting in 100500  grid cells at time 

step st 1 . We assume the initial velocities ( ,u x  

0)0,,()0,  yxvy . 

The initial flows describing the tsunami propagation 
wave and the dam break wave are illustrated as follows: 
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Tsunami propagation wave: 
Tsunamis are long waves generated by submarine 

earthquakes. Once they reach the open ocean and travel 
through deep water tsunamis which have extremely small 
amplitudes but travel fast. Tsunami propagation velocity 
can be estimated by using the wave speed equation 
C g H . For 2000 m water depth, the speed will be 
about 504 km/hour. The most difficult phase of the dy-
namics of tsunami waves deals with their breaking as 
they approach the shore. This phase depends greatly on 
the bottom bathymetry. As a model of this initial tsunami 
displacement, we consider the wave presented by George 
[7] which is given by (27). 

Dam break wave: 
The dam-break problem is an environmental problem 

involving unsteady flows in waterways. The study of 
flooding after the dam break is very important because of 
the risk to life and property in the potentially inundated 
area below the dam. The initial dam break model as-
sumed is given by (28). 

Figures 4 and 5 represent the tsunami propagation and 
dam break waves, respectively, as initial flows. In case 
of the dam break problem, the water is assumed to be at 
rest on both sides of the dam initially. At 0t  the 

dam is suddenly destroyed, causing a shock wave (bore) 
travelling downstream with 10  on x > 250 and a 

rarefaction wave (depression wave) traveling upstream 
with 10  on x < 250. The water pushing down from 

above acts somewhat like a piston being pushed down-
stream with acceleration. 

 
 

ζ 

 

Figure 2. Profile of hump topography. 

ζ 

 

Figure 3. Profile of rising up hill topography. 
 
 

η 

 

Figure 4. Tsunami propagation initial wave. 

 

η 

 

Figure 5. Dam break initial wave. 
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From the geophysical fluid dynamics point of view, as 
a first step toward understanding the role of bottom to-
pography, consider the flow in a periodic zonal channel 
with solid boundaries to the North and the South with 
idealized topography. Here 01.0f  is chosen such 

that the domain is resides in the northern hemisphere of 
the earth. Sea surface velocities and water height over 
the bottom topography at various time and different ini-
tial conditions are illustrated in the cases of neglecting 
and including the Coriolis force 

Equations (1)-(3) contain the most fundamental bal-
ances of shallow water flows, see [22,23]. The convec-
tive part on the left-hand side is a hyperbolic system of 
conservation laws and the source term on the right-hand 
side is due to gravitational acceleration and rotation of 
the earth (Coriolis force). The steady state results from 
a balance between the advection and decay processes 
[24]. 

This suggests that we may have difficulties with a 
fractional-step method in order to balance between the 
advection terms and the source terms, where we first 
solve the advection equation ignoring the reactions and 
then solve the reaction equation ignoring the advection 
[24]. Even if we start with the exact steady-state solution, 
each of these steps can be expected to make a change in 
the solution. In principle the two effects should exactly 
cancel out, but numerically they typically will not, since 
different numerical techniques are used in each step [24]. 
 
4.1. The Velocity Component in the x-Direction 
 
Figures 6 and 7 illustrate the behavior of the velocity u 
over the topography )(x  represented by a hump given 
by (25) for an initial flow represented by the dam break 
wave given by (28), in case of neglecting and including 
the Coriolis force at 400t , 1200  and 1800 sec res- 
pectively. By neglecting the effect of earth rotation (i.e. 
no Coriolis force), the coupling between Equations (2) 
and (3) due to Coriolis force does no longer exists. Con-
sequently, it is expected that the velocity vector is in the 
direction of wave propagation and that minor oscillations 
will appear in the results when the wave propagates 

 
 

u 

× 10-4 

 
t = 400 sec 

u 

× 10-4

 
t = 1200 sec 

 

u 

× 10-4

 
t = 1800 sec 

Figure 6. Behavior of u with hump topography and dam 
break initial flow without the effect of the Coriolis force at t 
= 400, 1200 and 1800 sec. 

 
over topography. This is in good agreement with the re- 
sult shown in Figure 6. In fact, since the water at x  
250  km seems likely to acquire instantaneously, a ve-
locity different from zero, Figure 6. 

 
 

u 

× 10-4

 
t = 400 sec 

 

u
 

× 10-4

 
t = 1200 sec 
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u 

× 10-4 

 
t = 1800 sec 

Figure 7. Behavior of u with hump topography and dam 
break initial flow with the effect the Coriolis force at t = 400, 
1200 and 1800 sec. 

 
Figures 8 and 9 illustrate the behavior of the velocity 

u over the topography )(x  representing a rising up 
function given by (26) for an initial flow representing the 
tsunami propagation wave given by (27), in case of ne-
glecting and including the Coriolis force at t = 400, 1200 
and 3000 sec respectively. As mentioned before, in case 
of neglecting the Coriolis force, the velocity vector is in 
the direction of the wave propagation and minor oscilla-
tions will appear in the results when the wave propagates 
over the topography, Figure 8. 
 

 

u 

× 10-4 

 
t = 400 sec 

 

u 

× 10-4 

 
t = 1200 sec 

 

u 

× 10-3

 
t = 3000 sec 

Figure 8. Behavior of u with rising up topography and tsu-
nami propagation initial flow without the effect of the Cori-
olis force at t = 400, 1200 and 3000 sec. 

 

u 

× 10-4

 
t = 400 sec 

u 

× 10-4

 
t = 1200 sec 

 

u 

× 10-3

 
t = 3000 sec 

Figure 9. Behavior of u with rising up topography and tsu-
nami propagation initial flow with the effect the Coriolis 
force at t = 400, 1200 and 3000 sec. 
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4.2. The Velocity Component in the y-Direction 
 
Figures 10 and 11 illustrate the behavior of the velocity 
v over the topography )(x  representing a hump given 

by (25) for an initial flow representing the dam break 
wave give n by (28) and a rising up function given by 
(26) for an initial flow representing the tsunami propa-
gation wave given by (27) with the effect of Coriolis 
force. 
 
4.3. The Water Height h* 
 
Figures 12 and 13 illustrate the behavior of the water 
height h* over the topography )(x  representing by a 

hump given by (25) for an initial flow representing by 

 

v 

× 10-4 

 
t = 400 sec 

 

v 

× 10-3 

 
t = 1200 sec 

 

v 

× 10-3 

 
t = 1800 sec 

Figure 10. Behavior of v with hump topography and dam 
break initial flow with the effect of the Coriolis force at t = 
400, 1200 and 1800 sec. 

the dam break wave given by (28) in case of neglecting 
and including the Coriolis force at t = 400, 1200 and 
1800 sec respectively at y = 0. 

 
 

v 

× 10-4

 
t = 400 sec 

 

v 

× 10-4

 
t = 1200 sec 

 

v 

× 10-4

 
t = 3000 sec 

Figure 11. Behavior of v with rising up topography and 
tsunami propagation initial flow with the effect the Coriolis 
force at t = 400, 1200 and 3000 sec. 
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 h

*  

 
t = 1200 sec 

 

 h
*  

 
t = 1800 sec 

 

ζ 

 

Figure 12. Behavior of h* with hump topography and dam 
break initial flow without the effect of the Coriolis force at t 
= 400, 1200 and 1800 sec. 

 
Figures 14 and 15 illustrate the behavior of the water 

height h* over the topography )(x  representing a 

rising up function given by (26) for an initial flow repre-
senting by the tsunami propagation wave given by (27) 
in case of neglecting and including the Coriolis force at t 
= 400, 1200 and 3000 sec respectively at y = 0. 
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t = 400 sec 

  

 h
*  

 
t = 1200 sec 
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*  

 
t = 1800 sec 

 
ζ 

 

Figure 13. Behavior of h* with hump topography and dam 
break initial flow with the effect the Coriolis force at t = 400, 
1200 and 1800 sec. 
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 h

*  

 
t = 3000 sec 

 

ζ 

 

Figure 14. Behavior of h* with rising up topography and 
tsunami propagation initial flow without the effect of the 
Coriolis force at t = 400, 1200 and 3000 sec. 
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t = 400 sec 

  

 h
*  

 
t = 1200 sec 

  

 h
*  

 
t = 3000 sec 

 

ζ 

 

Figure 15. Behavior of h* with rising up topography and 
tsunami propagation initial flow with the effect the Coriolis 
force at t = 400, 1200 and 3000 sec. 
 

Since the water at 250x  km seems likely to ac-
quire instantaneously, it is plausible that a shock would 
be created instantly on the upstream side and a relatively 
small propagated wave in the negative X-direction due to 
bottom topography as shown in the circle in Figure 12. 

By taking the Coriolis force ),( ufvf   into con-
sideration, it becomes responsible for the oscillatory mo-
tion according to the solutions of Equations (23) and (24) 
obtained in Step 3 in the fractional steps method. The 
coupling between the velocity components u and v 
causes the deflection of fluid parcels which are oscillat-
ing back and forth in the direction of wave motion and 
causes gravity waves to disperse as shown in Figures 13 
and 15. The magnitude of this deflection proved to be 
independent of the absolute depth and depends only on 
the slope of the bottom, as demonstrated in the momen-
tum Equations (2) and (3). 

In case of the tsunami wave, the initial waves split into 
two similar waves, one propagates in the positive x-di-
rection and the other in the negative x-direction. The hei- 
ght above mean sea level of the two oppositely traveling 
tsunamis is approximately half that of the original tsu-
nami, as shown in Figure 14. This happened because the 
potential energy that results from pushing water above 
mean sea level is transferred to horizontal propagation of 
the tsunami wave (kinetic energy) (i.e. the tsunami con-
verts potential energy into kinetic energy). It is well 
known when the local tsunami travels over the continen-
tal topography, that the wave amplitude increases and the 
wavelength and velocity decreases, which results in 
steepening of the leading wave, see Figure 14. 

In case of the dam break problem, the effect of the Co- 
riolis force on the water height at a sequence of times 
after the breakage of a dam causes a wave travelling do- 
wnstream and a wave travelling upstream as shown    
in Figure 13. The rarefaction wave that developed in 
Figure 13 is overtaken by dispersive wave which should 
form shocks on both sides of propagation. 

In case of the tsunami waves, they propagate in coh- 
erent wave packets, with little loss of amplitude over 
very long distances as shown in Figure 15. As the water 
depth decreases, the wave amplitude increases and the 
wavelength and velocity decreases, resulting in steepen-
ing of the dispersed wave. 
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4.4. The Free Surface Elevation (η ) 

 
Figures 16 and 17 illustrate the effect of the Coriolis 
force on the free surface elevation   when travelling 

over the topography )(x  representing a hump given 

by (25) and a rising up function given by (26) for an ini-
tial flow representing the dam break wave given by (28) 
at 1200t sec. 

The 500 kilometers long dam wall, which runs parallel 
to the y-axis is 10 meters wide and is centered at x = 250 
kilometers. Along the boundaries, at x = 0 kilometers and 
x = 500 kilometers and   is fixed at the upstream and 
downstream water depth respectively. All other bounda-
ries are considered as reflective boundary conditions. In 
case of neglecting the Coriolis force, a shock front al-
ways exists as shown in Figure 16, while the free surface 
elevation   under the effect of the Coriolis force has no 
shock travelling downstream and hence travelled in the 
direction of propagation over the topography )(x  as 
seen in Figure 17. 

As seen in Figure 16, the jump at the generated shock 
first decreases and then it increases as the shock ap-
proaches the bottom topography. It is observed that the 
increasing in the shock wave when travelling over the 

rising up hill topography is greater than when travelling 
over hump topography. 

It can be observed that the free surface elevation   

in Figure 17 clearly differs from that in Figure 16 due to 
the effect of the Coriolis force which is responsible for 
the oscillatory motion in the direction of wave motion 
which causes gravity waves to disperse. 

Figures 18 and 19 illustrate the effect of the Coriolis 
force on the free surface elevation   when travelling 

over the topography )(x  representing a hump given 

by (25) and a rising up function given by (26) for an ini-
tial flow representing the tsunami propagation wave 
given by (27), at t = 2400 sec. 

The effect of the Coriolis force on the tsunami propa-
gation wave is responsible for some part of the energy, 
which is transmitted to the ocean with the seismic bottom 
motions, to accumulate in the region of the disturbance. 
This leads to a reduction of the barotropic wave energy 
and tsunami amplitude. The direction of the tsunami ra-
diation varies and the energy flow transferred by the 
waves is redistributed. 

The effect of Coriolis force on transoceanic tsunami 
with and without Coriolis terms shows differences in 
wave height but not much difference in arrival time as 
observed in Figure 18 and Figure 19. 

 
 

η 

 
(a) 

 

η 

 
(b) 

Figure 16. Behavior of η  for the dam break initial flow without the effect of the Coriolis force at t = 1200 sec over: (a) Hump 
topography; (b) Rising up hill topography. 

 
 

η 

 
(a) 

η 

 
(b) 

Figure 17. Behavior of η  for the dam break initial flow with the effect of the Coriolis force at t = 1200 sec over: (a) Hump 
topography; (b) Rising up hill topography. 
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η

 

 
(a) 

 

η 

 
(b) 

Figure 18. Behavior of η  for the tsunami propagation initial flow without the effect of the Coriolis force at t = 2400 sec over: 
(a) Hump topography; (b) Rising up hill topography. 

 
 

η 

 
(a) 

 

η 
 

(b) 

Figure 19. Behavior of η  for the tsunami propagation initial flow with the effect of the Coriolis force at t = 2400 sec over: 
(a) Hump topography; (b) Rising up hill topography. 

 
Therefore the dispersion effects become more signifi-

cant as the wave energy is more spatially spread out and 
scattered. The variability of the bathymetry is also quite 
variable being an important parameter of wave disper-
sion as it controlled in the speed and the height of the 
tsunami wave when there was a sudden change in the 
depth of water as seen in Figure 18 and Figure 19. 

As seen from Figures 16-19, the wave propagated 
faster when travelling over the hump topography than 
travelling over the increasing hill topography. This was 
expected due to the wave speed equation HgC   

which is proportional to the water depth and inversely 
proportional to the bottom bathymetry. 
 
5. Conclusions 
 
The fractional steps method for the numerical solution of 
the shallow water equations is applied to study the evo-
lution of the height and the velocity field of the flow un-
der the effect of Coriolis force and bottom topography. 
The method consists of splitting the equations and suc-
cessively integrating in the x-and y-directions along the 
characteristics using the Riemann invariants, associated 
with the cubic spline interpolation. In this work, we ap-
plied the fractional steps method to solve the two-dim- 
ensional shallow water equations with source terms (in-

cluding the Coriolis force and bottom topography) for 
two different initial flows namely dam break wave and 
tsunami wave. The presence of the Coriolis force in the 
shallow water equations causes the deflection of fluid 
parcels in the direction of wave motion and causes grav-
ity waves to disperse. As water depth decreases due to 
bottom topography, the wave amplitude increases, the 
wavelength and wave speed decreases resulting in steep- 
ening of the wave. The effect of the Coriolis force is res- 
ponsible for the oscillatory motion in the direction of 
wave motion which causes gravity waves to disperse. 
The overall performance of the fractional steps method 
in solving the shallow water equations with source terms 
is particularly attractive, simple, efficient and highly ac-
curate as our results verified the reality about the nature 
of the dam break problem and the tsunami propagation 
wave. In future, we shall apply the fractional steps 
method to the shallow water equations with the source 
term including Coriolis force and a movable topography 
as it appears in oceanographic modeling as well as in the 
river flow modeling is underway and compare the results 
analytically using Lie-group method, [25-29]. 
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