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Abstract 
 
This article refers to the “Mathematics of Harmony” by Alexey Stakhov in 2009, a new interdisciplinary di-
rection of modern science. The main goal of the article is to describe two modern scientific discove-
ries—New Geometric Theory of Phyllotaxis (Bodnar’s Geometry) and Hilbert’s Fourth Problem based on 
the Hyperbolic Fibonacci and Lucas Functions and “Golden” Fibonacci λ -Goniometry ( λ    is a given 
positive real number). Although these discoveries refer to different areas of science (mathematics and theo-
retical botany), however they are based on one and the same scientific ideas—the “golden mean”, which had 
been introduced by Euclid in his Elements, and its generalization—the “metallic means”, which have been 
studied recently by Argentinian mathematician Vera Spinadel. The article is a confirmation of interdiscipli-
nary character of the “Mathematics of Harmony”, which originates from Euclid’s Elements. 
 
Keywords: Euclid’s Fifth Postulate, Lobachevski’s Geometry, Hyperbolic Geometry, Phyllotaxis, Bodnar’s 

Geometry, Hilbert’s Fourth Problem, The “Golden” and “Metallic” Means, Binet Formulas,  
Hyperbolic Fibonacci and Lucas Functions, Gazale Formulas, “Golden” Fibonacci λ-Goniometry 

1. Introduction 
 
In the second half of 20 century the interest in the “Gol-
den Section” and Fibonacci numbers increased in mod-
ern mathematics very fastly [1-4]. In 2009 the Interna-
tional Publishing House “World Scientific” published the 
book “The Mathematics of Harmony. From Euclid to 
Contemporary Mathematics and Computer Science” by 
Alexey Stakhov [5]. The book is a reflection of very im-
portant tendency of modern science—a revival of the 
interest in the Pythagorean Doctrine on the Numerical 
Harmony of the Universe, “Golden Mean” and Platonic 
Solids. 

Many original mathematical results were obtained in 
the framework of the mathematics of harmony [5]. Pos-
sibly, the hyperbolic Fibonacci and Lucas functions [6-8] 
and “golden” Fibonacci goniometry [9] are the most im-
portant of them. 

The main goal of the present article is to describe in 
brief form a theory of the hyperbolic Fibonacci and Lu-

cas functions, and “golden” Fibonacci goniometry and to 
show their effectiveness for the solution of Hilbert’s 
Fourth Problem [10] and the creation of new geometric 
theory of phyllotaxis (Bodnar’s geometry) [4]. 

The article consists of three parts: 
Part I. Hyperbolic Fibonacci and Lucas Functions and 

“Golden” Fibonacci Goniometry 
Part II. A New Geometric Theory of Phyllotaxis 

(Bodnar’s Geometry) 
Part III. An Original Solution of Hilbert’s Fourth 

Problem 
 
2. Hyperbolic Fibonacci and Lucas    

Functions 
 
2.1. The Golden Mean, Fibonacci and Lucas 

Numbers and Binet Formulas 
 
A problem of the Golden Section came to us from Euc-
lid’s Elements. We are talking about the problem of the 
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division of line segment in extreme and mean ratio 
(Theorem II.11 of Euclid’s Elements). In modern science 
this problem is named the Golden Section [1-4]. A solu-
tion to this problem is reduced to the simplest algebraic 
equation: 

2 1 0x x                (1.1) 

A positive root of the Equation (1.1) 

1 5

2


                (1.2) 

is the famous irrational number called golden number, 
golden mean, golden proportion, divine proportion and 
so on. 

The algebraic Equation (1.1) and the golden mean (1.2) 
are connected closely with two remarkable numerical 
sequences—Fibonacci numbers  F n  and Lucas num- 
bers  L n  given by the recurrence relations: 

         2 1 ; 0 0, 1 1F n F n F n F F       (1.3) 

         2 1 ; 0 2, 1 1L n L n L n L L        (1.4) 

where 0, 1, 2, 3,n      . 
The arbitrary three adjacent Fibonacci numbers  1 ,F n  
   , 1F n F n   ( 0, 1, 2, 3,n      ) are connected 

between themselves with the following mathematical 
identity: 

        12 1 1 1 .
n

F n F n F n
         (1.5) 

The formula (1.5) is called Cassini formula after the 
French astronomer Giovanni Domenico Cassini (1625- 
1712) who deduced this formula for the first time. 

In 19th century the French mathematician Jacques 
Philippe Marie Binet (1786-1856) deduced two remarka-
ble formulas, which connect Fibonacci and Lucas num-
bers with the golden mean: 

       
1

; 1
5

nn n
nn nF n L n


   

       (1.6) 

Note that these formulas were discovered by de Moi-
vre (1667-1754) and Nikolai Bernoulli (1687-1759) a 
one century before Binet. However, in modern mathe-
matical literature these formulas are called Binet formu-
las. 
 
2.2. Hyperbolic Fibonacci and Lucas Functions 

and a New Comprehension of the “Golden 
Mean” Role in Modern Science 

 
Unfortunately, mathematicians of 19th and 20th century 
could not evaluate the true value of Binet formulas, al-
though these formulas contained a hint on the important 
mathematical discovery—hyperbolic Fibonacci and Lu-
cas functions. 

In 1984 Alexey Stakhov published the book Codes of 
the Golden Proportion [3]. In this book Binet formulas 
(1.6) were represented in the form, which was not used 
earlier in mathematical literature: 

 

 

, 2 1
5

;

, 2
5

, 2

, 2 1

n n

n n

n n

n n

n k

F n

n k

n k
L n

n k









 
 

 
  

   
   

        (1.7) 

A similarity of Binet formulas, presented in the form 
(1.7), in comparison with the hyperbolic functions 

( ) , ( ) ,
2 2

x x x xe e e e
sh x ch x

  
        (1.8) 

is so striking that the formulas (1.7) can be considered as 
a prototype of a new class of hyperbolic functions based 
on the golden mean, that is, Alexey Stakhov already in 
1984 [3] predicted the appearance of a new class of 
hyperbolic functions—hyperbolic Fibonacci and Lucas 
functions. 

According to the recommendation of the famous 
Ukrainian mathematician academician Yury Mitropolsky, 
the article on the hyperbolic Fibonacci and Lucas func-
tions was published by the Ukrainian mathematicians 
Alexey Stakhov and Ivan Tkachenko in the Reports of 
the National Academy of Sciences of Ukraine in 1993 [6]. 
More lately, Alexey Stakhov and Boris Rosin developed 
this idea and introduced in [7,8] the so-called symmetric 
hyperbolic Fibonacci and Lucas functions. 

USymmetric hyperbolic Fibonacci sine and cosine 

   ;
5 5

x x x x

sFs x cFs x
    

         (1.9) 

USymmetric hyperbolic Lucas sine and cosine 

   ;x x x xsLs x cLs x               (1.10) 

Fibonacci and Lucas numbers are determined identi-
cally with the symmetric hyperbolic Fibonacci and Lucas 
functions as follows: 

 
 
 

 
 
 

, 2 , 2 1
;

, 2 1 , 2

sFs n n k sLs n n k
F n L n

cFs n n k cLs n n k

      
    

 

The symmetric hyperbolic Fibonacci and Lucas func-
tions (1.9) and (1.10) are connected among themselves 
by the following simple correlations: 

    ( )
; ( ) .

5 5

sLs x cLs x
sF x cFs x   

Note that the hyperbolic Fibonacci functions (1.9) and 
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(1.10) own the following unique mathematical proper-
ties: 

     

     

2

2

1 1 1

1 1 1

sFs x cFs x cFs x

cFs x sFs x sFs x

      

     
   (1.11) 

Independently on Stakhov, Tkachenko and Rosin, the 
Ukrainian researcher Oleg Bodnar came to the same 
ideas. He has introduced in [4] the so-called “golden” 
hyperbolic functions, which are different from hyperbol-
ic Fibonacci and Lucas functions only constant coeffi-
cients. By using the “golden” hyperbolic functions, 
Bodnar created a new geometric theory of phyllotaxis in 
[4], where he showed that his “geometry of phyllotaxis” 
is a new variant of Non-Euclidean geometry based on the 
“golden” hyperbolic functions. 

Thus, the works of Bodnar, Stakhov, Tkachenko and 
Rosin [4,6-8] can be considered as a contemporary 
breakthrough of “hyperbolic ideas” into theoretical natu-
ral sciences. First of all, in the works [6-8] a new class of 
hyperbolic functions based on Binet formulas (1.10) and 
(1.11) was developed. On the other hand, in Bodnar’s 
book [4] it was shown that these functions are of direct 
relationship to botanical phenomenon of phyllotaxis 
(pine cones, cacti, pineapples, sunflowers, baskets of 
flowers, etc.), that is, the hyperbolic Fibonacci and Lucas 
functions lie in the base of important natural phenome-
non called phyllotaxis. 

However, the most important result of this study is 
comprehension of a new role of the golden mean in the 
structures of Nature. Obviously, the golden mean and the 
related to it Fibonacci and Lucas numbers are expressing 
“hidden harmony” of Nature, the essence of which is 
expressed in its hyperbolic character. Thus, the discovery 
of the golden mean or Fibonacci numbers in some natu-
ral phenomenon is a very clear signal that the geometric 
character of this phenomenon is hyperbolic. 
 
3. Fibonacci and Lucas  -Numbers and 

Metallic Means 
 
A general theory of the hyperbolic Fibonacci and Lucas 
 -functions are stated in [9]. That is why, we restrict 
ourselves to brief statement of mathematical results ob-
tained in [9]. 

Let’s give a positive real number 0   and consider 
the following recurrence relation: 

     
   

2 1 ;

0 0, 1 1.

F n F n F n

F F

  

 

   

 
      (1.12) 

For the case 1   the recurrence formula (1.12) is 
reduced to the recurrence relation (1.3) given the classic-
al Fibonacci numbers. Based on this analogy, we will 

name the numerical sequences generated by more general 
recurrence relation (1.12) the Fibonacci  -numbers. 

Now let’s represent the recurrence relation (1.12) in 
the form: 

 
   

 

2 1
11

F n

F nF n

F n










 


       (1.13) 

For the case n    the expression (1.13) is re-
duced to the quadratic equation 

2 1 0x x              (1.14) 

with the roots 

2

1

4

2
x

  
   and  

2

2

4

2
x

  
    (1.15) 

For the proof of the Equation (1.14) let us consider 
auxiliary point transformation 

  1
s f s

s
               (1.16) 

where s can take arbitrary real values different from zero, 
here at s 0 + 0 s  + , and at s 0 – 0 s  – . 

In particular, if we take      1s F n F n   , 
than by comparing (1.16) and (1.13), we get 

       2 1s f s F n F n     . 

Geometrically the fixed point of the transformation 
(1.16) can be obtained at the intersection of the curve 
(1.16) with the bisector s = s, and algebraically they can 
be obtained as roots of the equation: 

1
s

s
                (1.17) 

The transformations (1.16) have exactly two fixed 
points 1 2,s x s x    of the kind (1.16), and hence 
they are the roots of the square Equation (1.14). 

This consideration allows determining two characte-
ristic fixed points—attractive and repelling. The attrac-
tive point, denoted by  , is a limiting point for the itera-
tions  k

ks f s , where k is a number of iterations. At 
k   , all initial points s belong to any neighborhood 
 U   of the point  . The repelling point is a limiting 

point for the iterations  k
ks f s

  , where k is a num-
ber of iterations. At k   , all initial points s belong 
to any neighborhood  U   of the point  . 

Note that in literature the attractive and repelling iso-
lated fixed points are called zero-dimensional attractor 
and zero-dimensional repeller, respectively. 

Let us denote by  sf ξ the first derivative on s of the 
function  f s at the fixed point ξ . It is proved in 
[11-13], that a sufficient condition for the fixed point ξ  
of the transformation s  = f (s) to be attractive or repel-
ling are the following inequalities for the derivative 
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 sf ξ , respectively: 

  1sf ξ    or    1sf ξ        (1.18) 

This sufficient indication is called Kenig’s theorem 
[11-13]. 

Note, that in [11-13] the more old terms “stable and 
unstable fixed points” are used instead of the terms at-
tractor and repeller. 

Figure 1 demonstrates geometric picture for obtaining 
the fixed points in the transformation (1.16) for the case 

2  . 
Direct calculation at 2   gives the following re-

sults. The transformation (1.16) has two fixed points: 
1) the point 2.41421s   is attractive, because 

  0.171573 1sf s   ; 

2) the point 0.41421s    is repelling, because 

  5.82843 1sf s   . 

In general case for any fixed   ( 0     ), as it is 

stated above, the transformation (1.16) has two fixed 

points 1s x
 and 2s x  of the kind (1.15); at that, 

because   21sf s s  , then after simple calculations we 

get that for the fixed point  2
1 4 2s x       

we have    1sf s  , that is, the fixed point s  is at-

tractive, and hence 

 lim k

k
f s s


              (1.19) 

For the fixed point  2
2 4 2s x       we 

have:   1sf s  , that is, the fixed point s  is repel-
ling and hence 

 lim k

k
f s s


            (1.20) 

Note that for the first case the initial point s should be 
chosen for any neighborhood  U s  of attractive fixed 
point s*; in the second case the initial point s should be 
chosen for any neighborhood  U s  of repelling fixed 
point s . 

 

 

Figure 1. A geometric picture for obtaining the fixed points 
in the transformation (1.16) for the case = 2λ . 

The graphs of the functions 

   
 2

2

4

4
sh f s

 

 
 

   

and 

   
 2

2

4

4
sh f s

 

 
 

   

for all 0   are represented in Figures 2 and 3. It fol-
lows from these figures that     1sh f s     and 

    1sh f s    . 
Then, if we take the ratio      2 1s F F   as 

the initial value, by virtue of (1.13), we get the following 
iterations: 

   
     

     
 

1 23 4 2
, , , ,

2 3 1
kF F F k

f s f s f s
F F F k
  

  


  


  

(1.21) 

Assume that 1n k  , then, taking into consideration 
(1.21), we get from (1.19): 

 
 

2

1

1 4
lim .

2n

F n
s x

F n




 


  
       (1.22) 

 

 

Figure 2. Graph of the function    sh f s= λ . 

 

 

Figure 3. Graph of the function    sh f s= λ . 
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By analogy, if we take into consideration (1.21), we get: 

 
 

2

2

4
lim .

1 2n

F n
s x

F n




 


  
  

 
   (1.23) 

Let us denote a positive root x1 by  and consider a 
new class of mathematical constants given by the fol-
lowing formula: 

24
.

2
  

             (1.24) 

Note that for the case 1   the formula (1.24) takes 
the form (1.2) given the classical golden mean. 

The Argentinean mathematician Vera W. Spinadel [14] 
named the mathematical constants generated by (1.24) 
metallic means. If we take  =1, 2, 3, 4 in (1.24), then 
we get the following mathematical constants having ac-
cording to Vera Spinadel special names: 

 

 

 

 

1

2

3

4

1 5
the Golden Mean, 1 ;

2

1 2 the Silver Mean , 2 ;

3 13
the Bronze Mean, 3 ;

2
2 5 the Cooper Mean, 4 .










  

   


  

   

 

Other metallic means ( 5  ) do not have special 
names: 

5 6

7 8

5 29
; 3 2 10;

2
7 2 14

; 4 17.
2


    


    

 

It is easy to prove that the root x2 can be represented 
by the metallic mean (1.24) as follows: 

2

2

1 4
.

2
x



  
  


         (1.25) 

By using the algebraic Equation (1.14), it is easy to 
prove the following remarkable algebraic properties of 
the metallic means (1.24): 

1
1 1 1 ;

1
1

    





       









 

(1.26) 

They are a generalization of the following mathemati-
cal properties of the golden mean ( 1  ): 

1
1 1 1 ;

1
1

      









 

4. Gazale Formulas for the Fibonacci and 
Lucas  -Numbers 

 
Based on the metallic means (1.24), Midchat Gazale in 
[15] has deduced remarkable formula, which gives Fi-
bonacci  -numbers (1.12) in analytical form: 

   
2

1

4

nn n

F n  




   



          (1.27) 

where n = 0, 1, 2, 3, ··· 
Alexey Stakhov in [9] has deduced the similar analyt-

ical formula for the Lucas  -numbers: 

   1 ,
nn nL n  

              (1.28) 

where n = 0, 1, 2, 3, ··· 
The formulas (1.27) and (1.28) are named in [9] Ga-

zale formulas after Midchat Gazale, who first has de-
duced the formula (1.27) in the book [15]. Note that for 
the case 1   Gazale formulas (1.27) and (1.28) are 
reduced to the Binet formulas (1.6). 

As is shown in [9], the Lucas  -numbers (1.28) can 
be given recursively in the form 

         1 2 ; 0 2, 1 1.L n L n L n L L           

(1.29) 

Note that for the case 1   the Lucas  -numbers, 
given by the recurrence relation (1.29), are reduced to the 
classical Lucas numbers. 

Now let us represent the Gazale formulas (1.27) and 
(1.28) for the negative values of n as follows: 

   
2

1

4

nn n

F n  




   
 


         (1.30) 

   1
nn nL n  

               (1.31) 

Comparing the formulas (1.27) and (1.30) for the even 
(n = 2k) and odd (n = 2k + 1) values of n, we can con-
clude that 

   2 2F k F k      and     2 1 2 1 .F k F k      

(1.32) 

This means that for the given positive real number 
0   the sequence of the Fibonacci  -numbers (1.12) 

in the infinite range n=0, 1, 2, 3, ··· is a symmetrical 
sequence relatively to the Fibonacci  -number  0 0F   
except that the Fibonacci  -numbers  2F k  and 

 2F k   are opposite by sign. 
In Table 1 we can see the Fibonacci -numbers  F n  

for the cases 1, 2, 3, 4  . 
Note that for the case 2   the Gazale formula 

(1.27) generates a numerical sequence known as Pell 
numbers. 
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Table 1. The Fibonacci -sequences  λF n  for the cases = 1, 2, 3, 4λ . 

n 
  -5 -4 -3 -2 -1 0 1 2 3 4 5 

1 5 -3 2 -1 1 0 1 1 2 3 5 

2 29 -12 5 -2 1 0 1 2 5 12 29 

3 109 -33 10 -3 1 0 1 3 10 33 109 

4 305 -72 17 -4 1 0 1 4 17 72 305 

 
Table 2. The Lucas -sequences  λL n for the cases = 1, 2, 3, 4λ . 

n 
  

-5 -4 -3 -2 -1 0 1 2 3 4 5 

1 -11 7 -4 3 -1 2 1 3 4 7 11 

2 -82 34 -14 6 -2 2 2 6 14 34 82 

3 -393 119 -36 11 -3 2 3 11 36 119 393 

4 -1364 322 -76 18 -4 2 4 18 76 322 1364 

 
Comparing the formulas (1.28) and (1.31) for the even 

(n = 2k) and odd (n = 2k + 1) values of n, we can con-
clude that 

   2 2L k L k     and     2 1 2 1L k L k       

(1.33) 

This means that for the given positive real number 
0   the sequence of the Lucas  -numbers in the 

range n=0, 1, 2, 3, ··· is a symmetrical sequence rela-
tive to the Lucas  -number  0 2L   except that the 
Lucas numbers  2 1L k   and  2 1L k    are op-
posite by sign. 

In Table 2 we can see the Lucas  -numbers  L n  
for the cases    . 

Note that for the case 2   the Gazale formula 
(1.28) generates the numerical sequence known as 
Pell-Lucas numbers. 

It is easy to deduce the following identity for the Fi-
bonacci  -numbers similar to the Cassini formula (1.5): 

        12 1 1 1
n

F n F n F n  
         (1.34) 

 
5. “Golden” Fibonacci  -Goniometry 
 
5.1. A Definition of the Hyperbolic Fibonacci 

and Lucas  -Functions 
 
First of all, let us explain the term of goniometry used in 
this article. As is known, a goniometry is a part of geo-
metry, which sets relations between trigonometric func-
tions. In this article we use instead of trigonometric func-
tions the so-called symmetric hyperbolic Fibonacci and 
Lucas  -functions introduced in [9]. Let us consider 
these functions. 

UHyperbolic Fibonacci U  U-sine and U  U-cosine 

 
2

2 2

2

4

1 4 4
          

2 24

x x

x x

sF x  




   







 




            
         

 

(1.35) 

 
2

2 2

2

4

1 4 4
          

2 24

x x

x x

cF x  




   







 



            
         

 

(1.36) 

UHyperbolic Lucas U  U-sine and U  U-cosine 

 
2 24 4

            
2 2

x x

x x

sL x  

   





  

      
    
   
   

   (1.37) 

 
2 24 4

          
2 2

x x

x x

cL x  

   





  

      
    
   
   

    (1.38) 

where x is continuous variable and     is a given 
positive real number. 

The Fibonacci and Lucas  -numbers are determined 
identically by the hyperbolic Fibonacci and Lucas 
 -functions as follows: 
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( ), 2
( ) ;

( ), 2 1

( ), 2
( ) .

( ), 2 1

sF n n k
F n

cF n n k

cL n n k
L n

sL n n k












   


   

       (1.39) 

It is easy to see that the functions (1.35)-(1.38) are 
connected by very simple correlations: 

       
2 2

; .
4 4

sL x cL x
sF x cF x 

 
 

 
 

   (1.40) 

This means that the hyperbolic Lucas  -functions 
(1.37) and (1.38) coincide with the hyperbolic Fibonacci 
-functions (1.35) and (1.36) to within of the constant 
coefficient 21 4  . 

Note that for the case 1   the hyperbolic Fibonacci 
and Lucas  -functions (1.35)-(1.38) are reduced to the 
symmetric hyperbolic Fibonacci and Lucas functions 
(1.9) and (1.10). 
 
5.2. Graphs of the Hyperbolic Fibonacci and 

Lucas  -Functions 
 
The graphs of the hyperbolic Fibonacci and Lucas  - 
functions are similar to the graphs of the symmetric 
hyperbolic Fibonacci and Lucas functions [7] (see Fig-
ure 4). 

It is necessity to note that in the point x = 0, the hy-
perbolic Fibonacci  -cosine  cF x  (36) takes the 
value   20 2 4cF   , and the hyperbolic Lucas 
cosine  cL x  (38) takes the value  0 2cL  . It is 
also important to note that the Fibonacci λ -numbers 

 F n  with the even values of n = 0, 2, 4, 6, ··· are 
“inscribed” into the graph of the hyperbolic Fibonacci 
 -sine  sF x  in the discrete points x = 0, 2, 4, 
6, ··· and the Fibonacci  -numbers  F n  with the 
odd values of n = 1, 3, 5, ··· are “inscribed” into the 
hyperbolic Fibonacci -cosine  cF x  in the discrete 
points x = 1, 3, 5 ···. 

On the other hand, the Lucas  -numbers  L n with 
the even values of n are “inscribed” into the graph of the 
hyperbolic Lucas  -cosine  cL x  in the discrete 
points x = 0, 2, 4, 6 ···, and the Lucas  -numbers 

 L n  with the odd values of n are “inscribed” into the 
graph of the hyperbolic Lucas  -sine  sL x  in the 
discrete points x = 1, 3, 5 ···. 

By analogy with the symmetric hyperbolic Fibonacci 
and Lucas functions [7], we can introduce other kinds of 
the hyperbolic Fibonacci and Lucas  -functions, in 
particular, hyperbolic Fibonacci and Lucas  -tangents 
and  -cotangents,  -secants and  -cosecants and so 
on. 

 
(a) 

 
(b) 

Figure 4. A graph of the symmetric hyperbolic Fibonacci 
functions (a) and Lucas functions (b). 
 
5.3. Partial Cases of the Hyperbolic Fibonacci 

and Lucas -Functions 
 
The formulas (1.35)-(1.38) set an infinite number of the 
different hyperbolic  -functions because every real 
number     generates its own variant of the hyper-
bolic Fibonacci and Lucas  -functions of the kind 
(1.35)-(1.38). 

Let us consider the partial cases of the hyperbolic Fi-
bonacci and Lucas  -functions (1.35)-(1.38) for the 
different values of  . 

For the case   the “golden mean” (1.2) is a base 
of the hyperbolic Fibonacci and Lucas 1-functions, 
which are reduced to the symmetric hyperbolic Fibonacci 
and Lucas functions (1.9) and (1.10). Therefore in further 
we will name the functions (1.9) and (1.10) the “golden” 
hyperbolic Fibonacci and Lucas functions. 

For the case     the “silver mean” 2 1 2    is 
a base of new class of hyperbolic functions. We will 
name them the “silver” hyperbolic Fibonacci and Lucas 
functions: 
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     2 2
2

1
1 2 1 2

8 2 2

x x x x
sF x

          
 

(1.41) 

     2 2
2

1
1 2 1 2

8 2 2

x x x x
cF x

          
 

(1.42) 

     2 2 2 1 2 1 2
x x

x xsL x


           (1.43) 

     2 2 2 1 2 1 2
x x

x xcL x
           (1.44) 

For the case     the “bronze mean”  3 3 13 2    
is a base of new class of hyperbolic functions. We will 
name them the “bronze” hyperbolic Fibonacci and Lucas 
functions: 

  3 3
3

1 3 13 3 13

2 213 13

x xx x

sF x

                      
 

(1.45) 

  3 3
3

1 3 13 3 13

2 213 13

x xx x

cF x

                      
 

(1.46) 

 3 3 3

3 13 3 13

2 2

x x

x xsL x



     
          

   
 (1.47) 

 3 3 3

3 13 3 13

2 2

x x

x xcL x



     
          

   
 (1.48) 

For the case     the “cooper mean” 4 2 5    
is a base of new class of hyperbolic functions. We will 
name them the “cooper” hyperbolic Fibonacci and Lucas 
functions: 

     4 4
4

1
2 5 2 5

2 5 2 5

x x x x
sF x

          
 

(1.49) 

     4 4
4

1
2 5 2 5

2 5 2 5

x x x x
cF x

          
 

(1.50) 

     4 4 4 2 5 2 5
x x

x xsL x
           (1.51) 

     4 4 4 2 5 2 5
x x

x xcL x


           (1.52) 

Note that a list of these functions can be continued ad 
infinitum. Note that, because 0   is a positive real 
number, the number of the hyperbolic Fibonacci and 
Lucas  -functions is equal to the number of positive 

real numbers. 
 
5.4. Comparison of the Classical Hyperbolic 

Functions with the Hyperbolic Lucas 
-Functions 

 
Let us compare the hyperbolic Lucas  -functions (1.37) 
and (1.38) with the classical hyperbolic functions (1.8). It 
is easy to prove [9] that for the case 

24

2
e

  
             (1.53) 

the hyperbolic Lucas  -functions (1.37) and (1.38) 
coincide with the classical hyperbolic functions (8) to 
within of the constant coefficient 1 2 , that is, 

   
2

sL x
sh x    and     

.
2

cL x
ch x     (1.54) 

By using (1.53) after simple transformations we can 
calculate the value of e , for which the expressions 
(1.54) are valid: 

 1
2 1 2.35040238.e e sh

e
            (1.55) 

Thus, according to (1.54) the classical hyperbolic 
functions (1.8) are a partial case of the hyperbolic Lucas 
 -functions for the case (1.55). 
 
5.5. Some Identities for the “Golden” Fibonacci 

-Goniometry 
 
The hyperbolic Fibonacci and Lucas  -functions pos-
sess the recursive properties similar to the Fibonacci and 
Lucas  -numbers given by the recurrence relations 
(1.12) and (1.29). On the other hand, they possess all 
hyperbolic properties similar to the properties of the 
classical hyperbolic functions (1.8). 

First of all, we compare the “golden mean” (1.2) with 
the “metallic mean” (1.24) and the basic formulas gener-
ated by them (see Table 3). 

A beauty of the formulas presented in Table 3 is 
charming. This gives a right to suppose that Dirac’s 
“Principle of Mathematical Beauty” is applicable fully to 
the metallic means (1.24) and hyperbolic Fibonacci and 
Lucas  -functions (1.35)-(1.38). And this, in its turn, 
gives a hope that these mathematical results can be used 
as effective models of many phenomena in theoretical 
natural sciences. 

Table 4 gives the basic formulas for the hyperbolic 
Fibonacci  -functions  sF x  and  cF x  in com-
parison with corresponding formulas for the classical 
hyperbolic functions  sh x  and  ch x . 

Remark. For the hyperbolic Lucas  -functions 
 sL x  and  cL x  the corresponding formulas can be 
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Table 3. Comparative table for the Golden Mean and Metallic Means. 

 

 

2

1 2 1 1 2 1

2

The Golden Mean (  = 1) The Metallic Means (  > 0)

1 5 4

2 2

1 1 1 1 1 1

1 1
1

1 1
1

1 1
1

1

( 1)( 1)
( )

5 4

n n n n n n n n

n n nn n n

F n F n

L n







    

 


 

 

  











     



  
   

         

     
 

 
 

            

      
 



 

 

 
 

2

2

( 1) ( ) ( 1)

( )( )
5 4

( ) ( )
5 4

( )

( )

n n n n n n

x xx x

x x x x

x x x x

x x x x

L n

sF xsFs x

cFs x cF x

sLs x sL x

cLs x cL x

  

 


 


  

  





 



 

 

 

         

   


   
 



     

     

 

 
Table 4. Stakhov’s “golden” Fibonacci -goniometry. 
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sF x y sF x cF x cF x sF x

sF x y sF x cF x cF x sF x

cF x y cF x cF x sF x sF x
ch x y ch x ch y sh x sh y

ch x y ch x ch y sh x sh y cF x y cF x cF x sF x sF x

ch x sh x ch x cF x sF x cF x

ch x sh x ch nx

    

    

    

    

  











  

  


  
   
     



 


              
1

2

2

4

n
n

sh nx cF x sF x cF nx sF nx   



 

           

 

 
got by multiplication of the hyperbolic Fibonacci 
 -functions  sF x  and  cF x  by constant factor 

24   according to the correlations (1.41). 
Table 4 for the hyperbolic Fibonacci  -functions 

 sF x  and  cF x , with regard to the above remark 
for the hyperbolic Lucas  -functions  sL x  and 

 cL x , makes up a base of Stakhov’s “golden” Fibo-
nacci goniometry [9]. This table is very convincing con-
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firmation of the fact that we are talking about a new class 
of hyperbolic functions, which keep all well-known 
properties of the classical hyperbolic functions  sh x  
and  ch x , but, in addition, they posses additional 
(“recursive”) properties, which unite them with remarka-
ble numerical sequences—Fibonacci and Lucas  -num- 
bers  F n and  L n . 

Thus, the main results of the works [6-9] is an intro-
duction of new class of hyperbolic functions—hyper- 
bolic Fibonacci and Lucas functions based on the golden 
mean [6-8]—and a proof of the existence of infinite 
number of similar hyperbolic functions - hyperbolic Fi-
bonacci and Lucas -functions ( > 0 is given real num-
ber) based on the metallic means [9]. These new hyper-
bolic functions are similar to the classical hyperbolic 
functions (1.8) and save all their useful mathematical 
properties (hyperbolic properties). Besides, they are a 
generalization of the classical Fibonacci and Lucas 
numbers and Fibonacci and Lucas -numbers, which 
coincide with hyperbolic Fibonacci and Lucas functions 
and hyperbolic Fibonacci and Lucas -functions for dis-
crete values of continues variable 0, 1, 2, 3,x      , 
and save all their useful mathematical properties (recur-
sive properties). 

At present, Oleg Bodnar in [4], Alexey Stakhov and 
Samuil Aranson in [10] have obtained many interesting 
applications of the hyperbolic Fibonacci and Lucas func-
tions and “golden” Fibonacci goniometry in mathematics, 
theoretical physics and theoretical botany. We are talking 
on the following results: 

1) Fibonacci-Lorentz transformations and “golden” 
interpretation of the Special Theory of Relativity 
(STR). This result has led in [10] to the original como-
logical interpretation of the Universe evolution starting 
from Big Bang. This approach has a direct relation to the 
hyperbolic Fibonacci functions, because the Fibonac-
ci-Lorentz transformations are based on the “golden” 
matrices [16]: 

     
   

     
   

0

1 .

1
;

1

1

1

cFs x sFs x
Q x

sFs x cFs x

sFs x cFs x
Q x

cFs x sFs x

  
   

 
   

        (1.56) 

Note that the matrices (1.56) are functions of the con-
tinuous variable x and their elements are hyperbolic Fi-
bonacci functions (1.9). However, the most unexpected 
property of the matrices (1.56) follows from the proper-
ties (1.11). By using the properties (1.11), it is proved in 
[16] that the determinants of the matrices (1.56) do not 
depend on the continuous variable x and are equal, re-
spectively: 

   0 1det 1, det 1.Q x Q x          (1.57) 

Exactly these properties of the “golden” matrices (1.56) 
determine unusual properties of the Fibonacci-Lorentz 
transformations and unusual interpretation of STR. 

2) A new geometric theory of phyllotaxis (Bodnar’s 
geometry). As Bodnar’s geometry is stated in Russian 
scientific literature [4], we have decided to describe this 
original geometric theory of phyllotaxis as example of 
effective use of the hyperbolic Fibonacci and Lucas 
functions in Part II of the article. 

3) An original solution of Hilbert’s Fourth Problem. 
This solution is stated in the article [10] without proof. In 
Part III of this article for the first time we give a full 
proof of this original solution. 
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