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Abstract 
 
We revisit the multi-allelic mutation-fitness balance problem especially when fitnesses are multiplicative. 
Using ideas arising from quasi-stationary distributions, we analyze the qualitative differences between the 
fitness-first and mutation-first models, under various schemes of the mutation pattern. We give some sto-
chastic domination relations between the equilibrium states resulting from these models. 
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1. Introduction and Outline 
 
Population genetics aims at elucidating the fate of the 
allelic population composition when various driving ‘for- 
ces’ such as selection or mutation are at stake in the gene 
pool. This requires to identify first the updating mechan- 
isms responsible of the gene frequency-distributions evo- 
lution over time. In this note, we shall briefly revisit the 
basics of the deterministic dynamics arising in discrete- 
time asexual evolutionary genetics when the origin of 
motion is either the fitness or the mutations or both. We 
start with the multi-allelic haploid case before dealing 
with the diploid case. First, we consider general fitness 
mechanisms, then general mutation mechanisms and then 
we shall combine the two. 

The general purpose of the Sections 2-3 is to introduce 
separately the marginal allelic dynamics driven by fitness 
and then the one driven by mutations. These issues are 
of course part of the standard models discussed for exa- 
mple in [1-4]. 

In Section 4, we stress that there are two different 
ways to combine the fitness and the mutation effects. 
One (fitness-first), which is classical, consists in app- 
lying first the fitness mapping and then let mutation act 
on the result. The other (mutation-first) consists in rev- 
ersing the order. Stochastic models pertaining to the 
mutation/selection combination are numerous. See [5,6] 

(and the References therein) for the relation of a muta- 
tion/selection model with ancestral branching processes. 
A recent discussion on a Markov chain evolution to 
study the probability that a new mutant becomes fixed in 
a Moran type model can be found in [7]. A work descri- 
bing phenotypic variation and natural selection by mod- 
eling population as a Markov point process can be found 
in [8]. 

In Section 5, we focus on a model with multiplicative 
fitnesses and general mutation pattern and we analyze 
both the fitness-first and mutation-first dynamics. Starting 
with the fitness-first dynamics, we observe that it has the 
structure of a discrete-time nonlinear master equation of 
some Markov process whose construction we give. In 
this stochastic interpretation, the polymorphic equilibr- 
ium state interprets as a quasi-stationary distribution of 
the Markov process conditioned to be currently alive. It 
is the left eigenvector of some sub-stochastic matrix A  
associated to its spectral radius. The corresponding right 
survival eigenvector makes sense in this interpretation. A 
similar interpretation can be given when dealing with the 
mutation-first dynamics driven now by some sub-stocha- 
stic matrix B  with its own left and right Perron-Frobe- 
nius eigenvectors. The matrices A  and B  are diago- 
nally similar. Using these stochastic tools, we observe 
that the mean fitness at equilibrium of the model B  is 
larger than the one of model A , together with some sto-  
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chastic domination properties between both the left and 
right Perron-Frobenius eigenvectors of the models A  
and B . If we specify the structure of the mutation ma- 
trix to be reversible, then the right and left Perron- 
Frobenius eigenvectors of each model can be related to 
one another by using an appropriate Schur product. Some 
simplifications also occur if we deal with symmetric 
mutations because the right (left) eigenvector of A  
coincides with the left (right) eigenvector of B . 

Section 6 particularizes the study of Section 5 when a 
house of cards condition holds for the mutation matrix. 
Because this mutation model is quite restrictive, some 
simplifications occur and the shapes of the polymorphic 
equilibrium states can be made more explicit. 

The interpretation of the fitness-first and mutation-first 
dynamics in terms of a stochastic process conditioned on 
not being currently absorbed in some coffin state sugg- 
ests that related conditional models for the evolutionary 
dynamics involving multiplicative fitness and mutations 
could also be relevant. In Section 7 we suggest to con- 
dition the process on its non-extinction either locally 
(stepwise) or to condition it globally on not getting ex- 
tinct in the remote future. Models A  and B  lead to 
different conditional dynamics. 
 
2. Evolution under Fitness: The 

Deterministic Point of View 
 
We briefly describe the frequency distribution dynamics 
when fitness only drives the process. We start with the 
haploid case before moving to the diploid case. 
 
2.1. Single Locus: Haploid Population with K   

Alleles 
 
Consider K  alleles kA , = 1, ,k K  attached to a 
single locus. Suppose the current time- t  allelic fre- 
quency distribution is given by the column vector 

: kxx , = 1, ,k K 1. We therefore have  

 =1
= : : = = 1

K

K kk
S x  x x 0 x  the K  simplex. Let  

: = > 0,kww  = 1, ,k K  denote the absolute fitnesses 
of the alleles. Let  

  *: = =l l
l

w w xx w x            (1) 

be the mean fitness of the population at time t . The 
variance in absolute fitness  2 x  and the variance in  

relative fitness  2 x  are given respectively by  
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2.1.1. Dynamics 
The discrete-time update of the allele frequency distri- 
bution on the simplex KS  is given by2:  

   
= : = , = 1, , .' k k

k k

x w
x p k K

w
x

x
         (3) 

As required, the vector    : = kpp x x , = 1, ,k K , 
maps KS  into KS . In vector form, with :=Dx  diag 
 ,  = 1, ,kx k K , the nonlinear deterministic dynamics 
reads3:  

     
1 1

= = ,' D D
w ww xx p x x = w

x x
 

or, with : = ' x x x , the increment of x   

 
1

= D I
w

 
   

 
wx x.

x
 

Without loss of generality, we can assume that  

10 < = 1.Kw w   Thus that allele KA  has largest 
fitness. 

Let , :k l K KS S   be the involution exchanging the 
coordinates k  and l . When =k lw w , we have that 

   , ,= ( )
''

k l k l x x , and so the evolution is symmetric 
under ,k l . In that case, the alleles k  and l  can be 
merged into a single one. 

For KSx , let support    = : > 0 ,kk xx . Let 
 = : = 1kk w  be the set of alleles with maximal 

fitness. Any KSx  such that support   x  is 
called an equilibrium state. A vector  

 = = 0, ,0,1,0, ,0kx e    with k   is called a pure 
(or monomorphic) equilibrium state.  
 
2.1.2. Mean Fitness Increase 
According to the dynamical system (3), unless its equili- 
brium state is attained, the absolute mean fitness  w x  
increases. Indeed, with      = 'w w w x x x :  

   

   
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= = 1

= 0,
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k k k k
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     (4) 

1In the sequel, a boldface variable, say x , will represent a col-
umn-vector so that its transpose, say *x , will be a line-vector. Simi-
larly, *A  will stand for the transpose of some matrix A . 

2The symbol '  is a common and useful notation to denote the up-
dated frequency. 
3 Dxw  clearly is the Schur product of x  and w . See [3] page 238 
for a similar notational convenience. 
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and it is > 0  except when support   x . 
The mean fitness is maximal at equilibrium. The rate 

of increase of  w x  is:  

 
   

   
2 2

2= 1 = = .kk
k

k k k

xw w
x

w w x


  
  

 
 

x
x

x x
 (5) 

These last two facts are sometimes termed the 1930s 
Fisher fundamental theorem of natural selection (FTNS). 
Then, if there is an allele whose fitness is strictly larger 
than the ones of the others starting from any initial state 
of KS  which is not an extremal point, the haploid traje- 
ctories will converge to this fittest state. 
 
2.2. Single Locus: Diploid Population with K   

Alleles 
 
We now run into similar considerations but with diploid 
populations. 
 
2.2.1. Joint Evolutionary Dynamics 
Let , 0k lw  , , = 1, ,k l K  stand for the absolute fit- 
ness of the genotypes k lA A  attached to a single locus. 
Assume , ,=k l l kw w  ( ,k lw  being proportional to the pro- 
bability of an k lA A  surviving to maturity, it is natural to 
take , ,=k l l kw w ). Let then W  be the symmetric fitness 
matrix with ,k l  entry ,k lw . 

Assume the current frequency distribution at time t  
of the genotypes k lA A  is given by ,k lx . Let X  be the 
frequencies array with ,k l  entry ,k lx . The joint evolu- 
tionary dynamics in the diploid case is given by the 
updating:  

,
, , , ,

,

=  where ( ) = .
( )

k l'
k l k l k l k l

k l

w
x x X x w

X


      (6) 

The relative fitness of the genotype k lA A  is 
 ,k lw X . The joint dynamics takes the matrix form:  

   
1 1

= ='X X W W X
X X 

   

where   stands for the (commutative) Hadamard pro- 
duct of matrices. 

Let J  be the K K  matrix whose entries are all 1 
(the identity for  ). Then  
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stand respectively the genotypic variance in absolute fit- 
ness and the diploid variance in relative fitness. The in- 
crease of the mean fitness is given by  
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which vanishes only at the equilibrium states maximizing 

lkw , , with a relative rate of increase:  
     2=w X w X X . This is the diploid version of 

the FTNS.  
 
2.2.2. Marginal Allelic Dynamics 
Assuming a Hardy-Weinberg equilibrium, the frequency 
distribution at time t , say ,k lx , of the genotypes k lA A  
is given by: , =k l k lx x x  where ,=k k ll

x x  is the mar- 
ginal frequency of allele kA  in the whole genotypic 
population. The frequency information is = Xx 1  (1 is 
the unit K-vector) and the mean fitness is given by the 
quadratic form:   *

,,
: = =k l k lk l

x x w W x x x . Let  
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be respectively the genotypic variance in absolute fitness 
and the diploid variance in relative fitness. 

If we first define the frequency-dependent marginal 
fitness of kA  by     ,= : =k k l llk

w W w xx x , the mar- 
ginal dynamics is given as in (3) by:  

 
       1

= = =: , = 1, , .k'
k k k kk

w
x x x W p k K

 
x

x x
x x

  

(10) 

In vector form (10) reads  

     1 1
= = =: ,'

WD W D
 x xx x x p x

x x
 

where p  maps KS  into KS . Iterating, the time- t  fre- 
quency distribution  tx  is the t  times composition 
of p  applied to some  0x . 

In the diploid case, assuming fitnesses to be multi- 
plicative, say with , =k l k lw w w , then selection acts on 
the gametes rather than on the genotypes. Observing  
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 
*

=k k

l ll

w w

w xW 
x

x x
, the dynamics (10) boils down to (3).  

However, the mean fitness in this case is  

   2
= l ll

w x x  and not   = l ll
w x x  as in the 

haploid case. 
 
2.2.3. Increase of Mean Fitness 
Again, the mean fitness   x , as a Lyapunov function, 
increases as time passes by. We indeed have  
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and vanishes only when the process has reached equili- 
brium. 

Its partial rate of increase due to frequency shifts only 
is    : = k kk

x w x x . It satisfies  
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where  2
A x  is the allelic variance in relative fitness  
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2.2.4. An Alternative Representation of the Allelic  

Dynamics 
There is an alternative vectorial representation of the 
dynamics (10) emphasizing its gradient-like character. 
Define the matrix   *=G D xx xx . It is symmetric, 
positive semi-positive whose quadratic form vanishes 
only for the constants.  G x  is partially invertible on 
the space orthogonal to the constants with left-inverse  

  1 11
= .G I J D

K
   

 
xx  

Note     1
G G

 x x δ δ . Looking for a left-inverse in 
the weaker sense of the quadratic form, that is satisfying  

   1* *=G G I


δ x x δ δ δ  

for all δ  with = 0δ , every   1 1=G I J D
K

   
 

xx   

would do the job for any R  . In particular = 0 .  

Introduce the quantity    1
= log

2WV x x . Then, (10)  

may be recast as the gradient-like dynamics:  

       1
= = ,WG W G V


 x x x x x
x

    (13) 

with *= = 0 x 1 x  as a result of  * *=G1 x 0 . Note 

       * *
= 0.W W WV V G V    x x x x x  

Based on [9,10], the dynamics (13) is of gradient-type 
with respect to the Shashahani-Svirezhev distance metric 
given by  

      
1/2

1/2 21* 1

=1

, = = .
K

'
G k k

k

d G x x
     

 
x x x x x  

Its trajectories are perpendicular to the level surfaces 
of WV  with respect to this metric .  From (11) and (12), 

 '
Gd x, x , which is the length of x , is also the square- 

root of half the allelic variance (the standard deviation) 
in relative fitness. 
 
3. The Mutation Mapping 
 
We now briefly describe the frequency distribution dyna- 
mics when mutation is the only driving source of motion. 

Assume alleles mutate according to the scheme: 

k lA A with probability  , 0,1k l  satisfying , = 0k k  
and ,0 < 1k ll k




  for all k . Let ,: = k lM     be 
the mutation pattern matrix; we shall assume that the 
non-negative matrix M  is irreducible. We first con- 
sider the deterministic diploid model involving muta- 
tions. 
 
3.1. Only Mutations 
 
Considering first an updating mechanism of the freq- 
uencies where only mutations operate, we get  

, ,= , = 1, , .'
k k l k l k k l

l k l k

x x x x k K 
 

         (14) 

In matrix form, with *M  the transpose of M   

 *= =: =: ,'
M MM D  1x x x x Mx p x      (15) 

and the update of the frequencies with mutations is given 
by the affine transformation  

*: = .MI D M 1M  

We have 0M  and *= MM  if and only if M  is 
stochastic, =M 1 1 . Also * *=1 M 1  and then M  maps 

KS  into KS  because if * = 11 x , then  
 ** * * *= = = = 1'1 x 1 Mx M 1 x 1 x . The matrix *M  is 

stochastic and irreducible and so, by Perron-Frobenius 
theorem, it has a unique strictly positive probability left- 
eigenvector associated to the real dominant eigenvalue 
1.  Let *

eqx  be this line-vector, then * * *=eq eqx x M , or 
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=eq eqx Mx . Under the irreducibility assumption on M , 
the frequencies dynamics involving only mutations has a 
unique polymorphic equilibrium fixed point >eqx 0 . 
When M  is primitive then *=lim

t
t eqM x 1 . This 

shows that  

     *:= = 0 0 = ,t
eq eq

t
t


x x M x x 1 x x  

regardless of the initial condition  0x  belonging to 

KS . 
Note finally that from (15):  

   = =: ,I V   Mx M x x        (16) 

where    *1
=

2
V IM x x M x  is the quadratic mutation  

potential. The probability right-eigenvector eqx  of M  
uniquely solves   = 0V M x  with   = 0eqVM x  maxi- 
mal .  
 
3.2. Remarks and Special Cases 
 
1) Reversible mutations: Let eqx  solve * * *=eq eqx x M . 

Define  

* 1= .
eq eq

D D
x xM M


 

We have * 1= =eqeq
D

xM 1 Mx 1


, so *M


 is the sto- 
chastic matrix of the time-reversed process at equili- 
brium with invariant measure *

eqx . If * *=M M


, then 
the mutation pattern is said to be time-reversible. In this 
case  

,
, ,

,

= .eq k
k l l k

eq l

x

x
   

2) If *=M M , then *=M M  and M  is doubly sto- 

chastic. In that case,  *1
= 1, ,1 =:eq bK

x x . A model  

with symmetric mutations by assuming for instance mul- 
tiplicative mutations: , =k l k l   . In this case, with μ  
the column vector of the k s,  

*= .I D  μM μμ μ  

Alternatively, assuming ,

1
= 0,

1k l K
     

 for all  

k l  leads to  = 1J K I  M  which is also 
symmetric. 

It is not necessary that *=M M  in order to have M  
doubly stochastic. It suffices to impose *=M M1 1 . In 
that case although *M M , the overall input-output 
mutation probabilities attached to any state coincide and 
the equilibrium state again matches with the barycenter 

bx  of KS . 

3) (Kingman house of cards, [4]). Assume the muta- 
tion probabilities only depend on the terminal state, that 
is: , =k l l   for all k l , still with , = 0k k . Let 

 *
1= ,..., K μ . Then, *=M D μ1μ , =M  1 μ 1 μ  

where *min < := < 1 maxk k μ μ 1 ,  
 *= 1 I M μ1 μ  and  

 *= = = 1 .' M D M   xx Mx x x 1 μ μ x   (17) 

The equilibrium state is =eqx μ μ . Note that  
1

1
1K

 


μ . This model is reversible. In this model  

the coordinates are decoupled:  = 1'
k k kx x   μ , 

depends only on kx . 
4) Assume the mutation probabilities only depend on 

the initial state, that is: , =k l k   for all l k . Then  
*= .I KD μM 1μ  

This mutation model is also reversible and the equi- 
librium state is  

,

1 /
= .

1/
k

eq k
l

l

x



 

5) (Random walk). In this case, M  is tri-diagonal 
with , , 1=k l k ku    and eqx  is a truncated geometric 
distribution with common ratio = u u   :  

1

,
1

=1

= , = 1, , .
k

eq k K
l

l

x k K







  

This model is reversible. 
6) (Cyclic mutation pattern). Here, , , 1=k l k l k    , 
= 1, , 1k K   and , ,1=K l K l   . This model is not 

reversible and  

,

1
= .

1
k

eq k
l

l

x



 

 
4. Combining Fitness and Mutations 
 
Let us now consider the dynamics driven both by fitness 
and mutation. There are two ways to combine the fitness 
and mutation effects. One (fitness-first), which is clas- 
sical, consists in applying first the fitness mapping and 
then let mutation act on the result. The other (mutation- 
first), which seems to be less popular, consists in rever- 
sing the order.  
 
4.1. Fitness-First Dynamics 
 
It is typically obtained by applying first the fitness ope- 
rator and then the mutation one to give the ‘fitness-first’ 
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dynamics [11]:  

* *

1 1
= = ,'

WD D W
W Wx xx M x M x

x x x x
F       (18) 

defining a new nonlinear transformation. Alternatively, 

 ='x p x  where   *

1
= D W

W xp x M x
x x

 is the new  

mapping from KS  to KS  to consider. Component-wise, 
this is also as required  

       , ,

1
= ,

                               = 1, , .

'
k k k l k l l k k k l

l k l k

x x w w x x w

k K

 
  

   
 

 x x x
x


 

(19) 

We have: 

 *,1 , 1 , , 1 ,( ) = , , ,1 , , ,k k k k k l k k k K Kl k
S     

 p e  

and so the extremal states ke  are not invariant under p  

and from the fixed-point theorem, there exists some 
equilibrium state in KS . Using the representation (13) 

and (15):  

     
     

=

= .

W

W

I G V

V G V

   

  M

x M x M x x

x M x x
       (20) 

This is not a gradient-like dynamics in general because 
there is a competition between the mutation and fitness 
potentials VM  and WV . 

When = IM  (no mutation) (20) boils down into (13) 
and when JW =  (no selection), (20) boils down into 
(16). When both = IM  (no mutation) and =W J  (no 
selection), = 0x with corresponding neutral   =p x x .  
 
4.2. Mutation-First 
 
Because W  was assumed symmetric  *=W W , there 
is another way to combine the mutation-selection effects. 
It is obtained by applying first the mutation operator and 
then the fitness operator to give the `mutation-first’ dyn- 
amics:  

   
' 1
=: = ,WD

 Mxx p x Mx
Mx

         (21) 

where    *: = W Mx Mx Mx . We have:  
     ** = = 1W 1 p x Mx Mx Mx  if and only if  

*=W W  and under this condition, this new ( )p x  again 
maps the K  simplex KS  onto itself. The dynamics of 

: =y Mx  is  

 
1

= ,'
WD

 yy M y
y

 

which is of the form (18) and 1= x M y  may be reco- 
vered as an output from y  only if M  is invertible. 

Component-wise, each component  kp x  may be 
read from  

 
  , ,= 1 , = 1, , .' k

k k k l l k l
l k l k

W
x x x k K 

  

     
  

 
Mx

Mx
  

(22) 
Equation (21) may also be recast as:  

     

     

1
=

= ,W

I G W

V G V


  

  M

x M x Mx Mx
Mx

x Mx Mx

      (23) 

where, as before,    = log 2WV x x . The mean fit- 
ness function appearing in (23) is  

   * * *: = ,W W Mx Mx Mx = x M Mx  

or else, the new fitness matrix to consider is  
*: = ,W WM M M which is itself symmetric because 

*=W W . Just like (20), (23) neither is a gradient-like 
dynamics. 

Although natural, this alternative `mutation-first' way 
to combine mutations and fitness effects seems to have 
been less studied in the literature. 
 
5. Multiplicative Fitness 
 
We now focus on the multiplicative fitness model. Fol- 
lowing the previous observations, we shall distinguish 
two cases. 
 
5.1. Fitness-First 
 
In the haploid case or in the diploid case when fitnesses 
are multiplicative, , =k l k lw w w , with   = l ll

w w xx  

    , ,= = ,

= 1, , ,

'
l l k k k l k l l k k k ll

l k l k

w w x w x x w w x x w

k K

 
 

   x x


 

or 

   
1 1

= = ,' D D
w wx wx M w M x

x x
       (24) 

where w  is the constant column-vector of the kw s and 
  *=w x w x . 
When dealing with multiplicative fitnesses models, we 

shall assume > 0min k kw , = 1max k kw  and the second 
largest < 1kw . 

The image of the extremal states = lx e  by the trans- 
formation 'x x  reduces to lMe  which belongs to 
the interior of KS . In that case, there exists a unique, 
globally stable polymorphic equilibrium state which is 
the fixed-point of (24). This follows from the Perron- 
Frobenius theorem commented in the forthcoming para- 
graph. Recall that in the absence of mutations, the multi- 
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plicative fitness model cannot have a polymorphic equili- 
brium state. 
 
5.1.1. Polymorphic Equilibrium and Steady Mean  

Fitness 
Let *=A DwM , the latter ‘selection-first’ recurrence 
may be recast as  

 
 

 * *
*

1
1 = .t t A

t A
x x

x 1
         (25) 

Under our assumptions on w , =A1 w  and therefore 
A  is sub-stochastic. By iteration  

 
 

* *
*

1
= (0) .

0
t

t
t A

A
x x

x 1
 

When M  is primitive, so is 0A   which has Per- 
ron-Frobenius left and right probability eigenvectors 

* > 0Ax  and > 0Ay  associated to its largest eigenvalue 
1 > > 0A . 

Then, *

, ,

1 1
=lim

t

A A
t A A k A kk

A
x y

 
 
  

y x  showing that,  

   0 : = > ,lim A
t

t


x x x 0  

which is the required limiting polymorphic state. The 
value of A  (respectively 2

A ) is the limiting haploid 
(diploid) mean fitness because:  

  * *: = = = =A A A A Aw w A x w x x 1 . When looking at the 
equivalent reformulation (25) of (24), Ax  can be inter- 
preted as a quasi-stationary distribution as developed 
now. For the precise definition, see [12]. 
 
5.1.2. A Stochastic Interpretation of the Deterministic  

Dynamics (25) 
A vector x  of KS  can be thought of as a probability 
vector. The dynamical Equation (24), as a nonlinear 
update mapping from KS  to KS  may be viewed as the 
discrete-time nonlinear master equation of some Markov 
process whose construction we now give. We shall need 
to introduce an extra state, say  = 0  which will be 
absorbing for the process we shall now construct.  It will 
be useful to extend the matrix A  to   in the follow- 
ing way:  

,0 , 0, ,0
=1

= 1 , = .
K

k k l l l
l

A A A   

Let then  L t  be the random labels distribution of an 
individual at time t , with enlarged state-space 
 0,1, , K . Let  : = 1,2tU t  be an i.i.d. driving 
sequence of uniformly distributed random variables on 
[0,1] . Consider the random evolution equation  

          1 ,
1 = , = = < = ,'

t 'L t l
L t l L t l U A L t l 1 1 1  

where  , 0,1, ,'l l K  . 
From this construction   :L s s t  is measurable 

with respect to  :sU s t  and we get  

      ,
1 = = .'

'L t l
L t l L t A        (26) 

Let   be the first time that  L t  hits the absorbing 
state  = 0 . Using the extinction time (26) may be 
recast as  

        ,1 = ,  > 1 = > .L t kL t k t L t A t   1  

Putting     : = = , >kz t L t k t , we get an un-nor- 
malized version of (25):  

         *
,1 = > = , {1, , }.k L t k k

z t A t t A k K 1 z   

We clearly have  

  ,

, ,

> = ,lim
A kt

A k
t A k A k

k

y
t

x y
 

 
          (27) 

and so  1 > > 0t
At    geometrically fast. From 

the last expression, the right-hand-side may be inter- 
preted as the propensity of a type- k  allele to survive to 
its fate: the eventual extinction. If , ,>A k A ly y  indeed, 
the extinction time of the process started at k  is larger 
than the one started at l  (has larger survival asymptotic 
tails). We shall call Ay  the survival probability vector. 

Defining the normalized conditional probabilities  

   

 
  

=1

= = = > ,k
k K

k
k

z t
x t L t k t

z t



  

we obtain the normalized haploid dynamics (25)  

 
 

 
*

*

=1

= , 1, , .' k
k K

k
k

A
x k K

A




x

x
  

It may now be viewed as the nonlinear master equa- 
tion of some stochastic Markovian process. In view of 
this construction, the vector Ax  is the quasi-stationary 
distribution of  L t  given > t . 

We note that the appeal to the coffin state   was a 
necessary step to understand the normalization k kz x , 
and the stochastic interpretation of (25) allows to give 
sense to the right eigenvector Ay  of A . 

Clearly the above construction can be done for N  
particles, in particular = 2N  in the diploid case. 
 
5.2. Mutation-First 
 
If instead of (24) the dynamics is of the type ‘mutation- 
first’  
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*

1
= ,' Dwx Mx

w Mx
           (28) 

because the mutation operator was applied first in the 
composition of the fitnesses and mutation effects, the 
latter recurrence may be recast as:  

 
 

* *
*

1
1 = ( ) ,t t B

t B
x x

x 1
         (29) 

where now *=B DwM . By iteration 

 
 

* *
*

1
= (0) .

0

t

t
t B

B
x x

x 1
 

 
5.2.1. Equilibrium and Mean Fitness at Equilibrium 
Let >Bx 0  and >By 0  be now the left and right 
probability Perron-Frobenius eigenvector of B  asso- 
ciated to its largest eigenvalue > 0B . We have  

*

, ,

1 1
=lim

t

B B
t B B k B kk

B
x y

 
 
  

y x  showing that  

   0 : = > .lim B
t

t


x x x 0  

We have 1=B D AD
w w  and so B  is diagonally similar 

to A . Therefore =B A   and =B A AD wwx x  toge- 
ther with 1 1=B A AD D 

w wy y y . 
The limiting equilibrium mean fitness is now 

* *: = =B B Bw w x x w  (or 2
Bw  in the diploid case). Re- 

calling =B A AD wwx x , we have  

2
,

,

= .
k A k

k
B

k A k
k

w x
w

w x




 

Since ,= =A k A k Ak
w w x  , under the multiplicative 

fitness hypothesis we obtain: 
Proposition 1. = < < 1.A A Bw w   

Remark: The quantity  
2

2
,= 1k

A A kk
A

w
x

w


 
 

 
x  is  

the variance in relative fitness at equilibrium for the 
model A  We therefore have  

    2 2= 1 or = 1 .B
A B A A

A

w
w w

w
   x x  

The equilibrium fitness of the second model is larger 
than the one of the first. Without mutations, only the 
fittest state, say  K  under our hypotheses, will survive, 
leading to an equilibrium mean fitness equal to 
  *0,0, ,0,1 = = 1Kww . Therefore, both mutation mo- 
dels lead to a decrease of the equilibrium mean fitness, 
when compared to the one without mutations. However, 
the first model involves mutations which are more dele- 

terious than the ones relative to the second one where 
mutations appear more advantageously. 

Note finally that  
* * 1 * * 1 *= = = = =B B B B B B B AD B D    

w ww Mx w x w x 1 x  

and, since *=B DwM  then 1 *=BD
w M  so that  

1 =B w 1  if  *1 1 1
1: = , , Kw w  w   is the reciprocal fit- 

ness vector.  As a result, * 1 * 1= = 1B B BB  x w x w  so that  

,* 1 1: = = .B k
B Bk

k

x

w
 x w  

 
5.2.2. A Stochastic Interpretation of the Deterministic  

Dynamics (29) 
We can repeat the above construction substituting B  
for A  and we are done.  
 
5.2.3. The Stochastic Dominations x xB st A  and  

y yA st B  

For two K  dimensional probability vectors a  and b , 
we put sta b  if for each l  

=1 =1

.
l l

k k
k k

a b   

Proposition 2. We have B st Ax x .  
Proof: =B A AD wwx x  and therefore  

,
,

,
=1

= .k A k
B k K

k A k
k

w x
x

w x
 

With ,=1
: =

l

l A kk
x  , we have  

 , ,
,

=1 =1 = 1
, ,

=1 = 1

= 1 .
K l K

A k A k
k A k l k l kl K

k k k l
A k A k

k k l

x x
w x w w

x x
 





   
 

 

Since  ,
1=1

,=1

,
l A k

k llk
A kk

x
w w w

x



 and  

 ,
1= 1

,= 1

, ,
K A k

k l KKk l
A kk l

x
w w w

x







  

,
,

=1 =1
,

=1

,
K l

A k
k A k k l

k k
A k

k

x
w x w

x
 


 

and therefore  

,
=1

, ,
=1 =1

,
=1

= ,

l

k A kl l
k

A k B kK
k k

k A k
k

w x
x x

w x



 


 

which means B st Ax x .  
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We point out that we used the order  

10 < = 1Kw w   on .w Would we have consi- 
dered the reverse order, we would get the opposite 
domination relationship. 

We also have the following stochastic domination pro- 
perty between the two survival probability vectors: 

Corollary 3. A st By y .  

Proof: Because B  and A  are diagonally similar, 
we also have =A B BD Dw wy y y  and the same argu- 
ment applies substituting  ,A By y  for  ,B Ax x  in the 
previous proof.   
 
5.3. Symmetric Mutations 
 
When *=M M , mutations are symmetric and *=B A . 
Therefore =B Ax y  and =B Ay x . The left (right) pro- 
bability eigenvector of B  matches with the right (left) 
probability eigenvector of A .s In this case, there is a 
stochastic domination property between the left and right 
eigenvectors of both models, namely 

Proposition 4. If mutations are symmetric A st Ay x  
and B st Bx y .  
 
5.4. Reversible Mutations 
 
When dealing with reversible mutations with equilibrium 
distribution eqx , we show now that the right eigenvector 
of A  (or B ) can be computed from the left eigen- 
vector by using an appropriate Schur product involving 
w  and eqx  

Let A  be an irreducible non-negative matrix. Let 
 ,A Ax y  be the left and right probability eigenvectors 
of A , associated to the spectral radius A  of A . 

If there exists a positive vector η  such that 

, ,=k k l l l kA A   for all ,  k l , A  is said to be reversible 
with respect to η . 

Consider the stochastic matrix  
1 1

A A
AA D AD  y y            (30) 

Its left probability invariant measure is easily seen to 
be , ,

A
y A A k A kA k

D x y x x , which is the normalized  

Schur product of Ax  and Ay  We have 
Lemma 5. If A  is reversible with respect to η , then 

A  is reversible with respect to 2

A
yD η  the Schur 

product of Ay , Ay  and η   
Proof:  

2
, , ,1 1

, , , , 2
, , ,

.A k A k A kk k
l k A l k A k l k l

A l l A l l A l

y y y
A A A A

y y y

 
 

 
       

As an illustration, we shall consider the fitness-first 
dynamics for which *=A DwM . This A  will be rever- 

sible with respect to η  if and only if *M  itself is rev- 
ersible. Indeed, η  must satisfy  

, ,= ,k k k l l l l kw w               (31) 

and if this is the case *M  must be reversible with 
respect to eqx , leading to ,= .k eq k kx w  

In case *M  is reversible, A  is reversible with respect 
to 2

A
Dy η  with entries proportional to  2

, ,eq k A k kx y w . 

But this must be the invariant measure of A  which, up 
to a normalizing constant, is AA

Dy x  with un-normalized 
entries , ,A k A kx y . For this point, see also [13]. We 
conclude: 

Proposition 6. If the mutation matrix is reversible 
with respect to eqx , then A  is reversible with respect 
to 2 1 1 2=w eq w eqA A

D D D D 
y yx x  and  

1

1
= .

w Aeq
A

w Aeq

D D

D D





x

x

y
x

y
 

Example: If *M  is symmetric, it is reversible with 
respect to the uniform measure , = 1 .eq kx K  Therefore 

1 1= .A w A w AD D x y y  Up to a normalization constant, 
we have  

 2 2 2
, , , , , ,= = = ,eq k A k k A k k k A k A k A kx y w y w w x x y  

the Schur product of Ax  and Ay . 
Substituting B  for A  and  ,B Bx y  for  ,A Ax y , 

the same holds true for *=B DwM  and we get 
If the mutation matrix is reversible with respect to 

eqx , then 1 1

B B
BB D BD  y y

  is reversible with respect to  

2 2=w eq w eqB B
D D D Dy yx x  and  

, ,
,

, ,

=  or = .
w Beq k eq k B k

B B k
k eq k B kw Beq k

D D w x y
x

w x yD D 
x

x

y
x

y
 

 
6. Multiplicative Fitness and the House of  

Cards Condition 
 
We shall again distinguish two cases. 
 
6.1. Fitness-First 
 
Assume the house of cards condition holds, leading to: 

*=A DwM , with  * *= 1 I M 1μ μ . In this case, the 
computations become more explicit. Since for all k , 

, = = 1k l l kl k l k
  

 
   μ , we have  

1
and 1 .

1 1

K

K K
   

 
μ μ  
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Under the multiplicative fitness and the house of cards 
conditions, Equation (19) reads  

 

*

1
=

1
= .

'
k k k k l l k k l

l k l k

k k k

x x w w x x w
w

w x

 



 

   
 




 
x

μ

x w

 

The equilibrium frequency distribution is therefore the 
solution to the equation  

*

1
= ,A A

A

D


w

μ
x x μ

x w
 

which, since *=A A x w , is exactly seen to be:  

 , = , = 1, , ,
1 1 /

k
A k

k A

x k K
w


  μ

       (32) 

where  0,1A   is such that , = 1A kk
x . See [4] 

where these results appear first. Alleles kA  with largest 
frequencies are those for which both  ,k kw  are large. 
The equilibrium mean fitness is  

 
* = ,

1 1 /
k k

A A
k k A

w

w




 
x w =

μ
      (33) 

the spectral radius of A  and *=A DwM  satisfying 
=A1 w . Because >Ax 0 , we have:  

 = > 1 .maxA A k
k

w w  μ         (34) 

If = 1,μ , = ,A k kx  = 1, ,k K  and =A k kk
w  . 

 
6.2. Mutation-First 
 
When fitnesses are multiplicative: *=W ww  is symme-  

tric, (21) is also   *

1
=: = .' Dwx p x Mx

w Mx
 With  

 *1= , , ,kw ww   this simplifies to give:  

, ,*
= 1 , = 1, , .' k

k k k l l k l
l k l k

w
x x x k K 

 

     
  

 
w Mx

 (35) 

When the house of cards condition holds, *=B DwM , 
with  * *= 1 I M 1μ μ . Equation (35) further simpli- 
fies to:  

    * *
= 1 , = 1, , .

1
' k
k k k

w
x x k K  

 
μ

w μ μ w x
 (36) 

From Equation (36), the equilibrium frequency distri- 
bution is the solution to the equations  

    , ,* *
= 1 , = 1, , ,

1
k

B k k B k
B

w
x x k K  

 
μ

w μ μ x w
  

which is exactly seen to be: 

  , *
= , = 1, , ,

1
k k

B k
B k

w
x k K

w w


  w μ μ

   (37) 

where  *= 0,1B Bw x w  is such that , = 1B kk
x . 

Alleles kA  with largest frequencies are those for 
which the product kkw   is largest. Because A and B 
are diagonally similar, we have =B A AD wwx x  where 

= =A A Bw   . From the expression (32) of ,A kx , we get 
the alternative expression  

 , = , = 1, , .
1

k k
B k

B k

w
x k K

w


   μ

       (38) 

We also have  

 
2

* = ,
1

k k
B B

k B k

w
w

w


  

x w =
μ

        (39) 

the equilibrium mean fitness under *=B DwM  . 
Comparing the two expressions (37) and (38) of kBx , , 

this suggests that  *= 1B Bw  w μ μ . Thus  
 *= = = 1A A B Bw w   w μ μ  and  

*= > 0.B A Bw w w μ w μ           (40) 

As a result  

*1
>Bw w μ
μ

               (41) 

gives a lower bound for Bw  in terms of the average of 
w  with respect to the mutation equilibrium probability 
measure = .eqx μ μ  

Because >Bx 0 , from (37), we also have:  

    *1 < 1 , .k Bw w k   μ w μ μ  

If 1 > 0 μ , this means  

 *> 1max kB kw w  w μ / μ  whereas if 1 < 0 μ  this 

means  *< 1 .min kB kw w  w μ / μ  When = 1μ , 
2=B k k k kk k

w w w    is explicit, together with  

, = , = 1, , .k k
B k

k k
k

w
x k K

w




  

Recalling that when = 1:μ = =A A k kk
w w  , we 

can check in this particular case that: >B Aw w . 

 
7. Alternative Conditional Models for the  

Evolutionary Dynamics 
 
The interpretation of (24) and of (29) in terms of a sto- 
chastic process conditioned on not being currently ab- 
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sorbed in   suggests that other conditional models for 
the evolutionary dynamics involving multiplicative fit- 
ness and mutations could also be worth investigating. 

Consider first the fitness-first model (24) driven by 
*=A DwM . Let  1

1AA D A  and consider the updating 
dynamics on the simplex  

    * *1t t A x x              (42) 

Because =A1 w , we have  *A  M  which is the 
pure mutation stochastic matrix. Using the terms of the 
stochastic interpretation of (24), we have:  


    , 0 1 1k l L kA P L l     which is the transition ma- 
trix of a one-step conditioned process. Therefore condi- 
tioning locally  L t  on non-extinction brings one back 
to the pure underlying mutation model with  eqA

x x . 
Let us consider a similar conditioning but for the 

mutation-first dynamics. With now *= ,B DwM let 
 1

1= BB D B  and consider the dynamics  

    * *1t t B x x              (43) 

We have  *
1 1 *
1= BB D B D D  wM w

M  which is stochastic 

but cannot be reduced to mutation effects in general. 
This is an additional illustration of the differences bet- 
ween the two models based on A  or B . Note that B  
and A  are not diagonally similar. 

Let now  1 1

y AA
A yA D AD   and consider the dyna- 

mics on the simplex  

    * *1t t A x x             (44) 

We have:      , 0lim 1k l s L kA P L l s     which 
is the transition matrix of a process conditioned on not 
getting extinct in the remote future (see [14]). Therefore 
conditioning globally ( )L t  on non-extinction in the far 
future brings one back to a standard (linear) Chapman- 
Kolmogorov evolution equation. This conditioning being 
more stringent than the one involved in (24), one expects 
its limiting frequency distribution (which is 

, ,A A A k A kA k
D x y xx y ) to stay away more signifi- 

cantly from the origin {0} . For this model, the mean 

fitness at equilibrium will be:  



, ,
*

, ,

.
A

k A k A k
k

AA
A k A k

k

w x y
w D

x y
 


xw y  

When mutations are reversible,  



1 2
, ,

1 2,
, ,

.k eq k A k

A k
k eq k A k

k

w x x
x

w x x






 

Similar conclusions can be drawn if we define 
 1 1:

B BBB D AD  y y . 

The main interest is that in both conditioning (either 
local or global), the deterministic updating mechanisms 
are now linear in sharp contrast with (24) and (29) in- 
volving rational updating mechanisms. 
 
7. Acknowledgments 
 
The authors are indebted for support of the Basal Conicyt 
project and S. M. to the Guggenheim fellowship. 
 
8. References 
 
[1] W. J. Ewens, “Mathematical Population Genetics. I. 

Theoretical Introduction,” 2nd Edition, Interdisciplinary 
Applied Mathematics, Springer-Verlag, New York, Vol. 
27, 2004. 

[2] R. Bürger, “The Mathematical Theory of Selection, Re-
combination, and Mutation,” Wiley Series in Mathemati-
cal and Computational Biology, John Wiley & Sons, Ltd., 
Chichester, 2000. 

[3] S. Karlin, “Mathematical Models, Problems, and Contro-
versies of Evolutionary Theory,” Bulletin of the American 
Mathematical Society (N.S.), Vol. 10, No. 2, 1984, pp. 
221-273. 

[4] J. F. C. Kingman, “Mathematics of Genetic Diversity,” 
CBMS-NSF Regional Conference Series in Applied Ma-
thematics, 34. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, 1980.  

[5] J. Hermisson, O. Redner, H. Wagner and E. Baake “Mu-
tation-Selection Balance: Ancestry, Load and Maximum 
Principle,” Theoretical Population Biology, Vol. 62, No. 
1, 2002, pp. 9-46. doi:10.1006/tpbi.2002.1582 

[6] E. Baake and H.-O. Georgii, “Mutation, Selection, and 
Ancestry in Branching Models: A Variational Approach,” 
Journal of Mathematical Biology, Vol. 54, No. 2, 2007, 
pp. 257-303. doi:10.1007/s00285-006-0039-5 

[7] G. Sella and A. E. Hirsh, “The Application of Statistical 
Physics to Evolutionary Biology,” Proceedings of the 
National Academy of Sciences, Vol. 102, No. 27, 2005, 
pp. 9541-9546. doi:10.1073/pnas.0501865102 

[8] N. Champagnat, R. Ferrière and S. Méleard, “From Indi-
vidual Stochastic Processes to Macroscopic Models in 
Adaptive evolution,” Stochastic Models, Vol. 24, Suppl. 
1, 2008, pp. 2-44. doi:10.1080/15326340802437710 

[9] S. Shashahani, “A New Mathematical Framework for the 
Study of Linkage and Selection,” Memoirs of the Ameri-
can Mathematical Society, Vol. 17, No. 211, 1979, 
pp.1-34. 

[10] Y. M. Svirezhev, “Optimum Principles in Genetics,” Stu- 
dies on Theoretical Genetics, V. A. Ratner (Ed.), USSR 
Academy of Science, Novosibirsk, 1972, pp. 86-102. 

[11] J. Hofbauer, “The Selection Mutation Equation,” Journal 
of Mathematical Biology, Vol. 23, No. 1, 1985, pp. 41-53. 

[12] J. N. Darroch and E. Seneta, “On Quasi-Stationary Dis-
tributions in Absorbing Discrete-Time Finite Markov 



T. HUILLET  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                  AM 

22 

chains,” Journal of Applied Probability, Vol. 2, No. 1, 
1965, pp. 88-100. doi:10.2307/3211876 

[13] S. Martínez, “Quasi-Stationary Distributions for Birth- 
death Chains. Convergence Radii and Yaglom Limit,” 
Cellular Automata and Cooperative Systems (Les Houches, 
1992), NATO Advanced Science Institutes Series C: Ma-

thematical and Physical Sciences, 396, Kluwer Academic 
Publishers, Dordrecht, 1993, pp. 491-505. 

[14] S. Martínez and M. E. Vares, “A Markov Chain Asso-
ciated with the Minimal Quasi-Stationary Distribution of 
Birth-Death Chains,” Journal of Applied Probability, Vol. 
32, No. 1, 1995, pp. 25-38. doi:10.2307/3214918

 


