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Abstract

In this paper, astochastic predator-prey systems with nonlinear harvesting
and impulsive effect are investigated. Firstly, we show the existence and uni-
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queness of the global positive solution of the system. Secondly, by construct-
ing appropriate Lyapunov function and using comparison theorem with an

impulsive differential equation, we study that a positive periodic solution ex-
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ists. Thirdly, we prove that system is globally attractive. Finally, numerical
simulations are presented to show the feasibility of the obtained results.
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1. Introduction

It is well known that the dynamic relationship between predator and prey has
always been one of the main topics in ecology and mathematical ecology. In the
past decades, many predator-prey models have been proposed and widely used
to describe the food supply relationship between two species [1] [2]. At the
same time, it has attracted great attention in many different fields, such as
bio-economics. Recently, the interaction of predator-prey with harvesting has
been studied. The effect of harvest on population is beneficial to sustainable de-
velopment and renewable resource management, so many scholars take harvest
into account in their models. The capture intensity depends largely on the cap-
ture strategy being implemented. Common harvest functions are: constant
harvest, proportional harvest and nonlinear harvest. Gupta et al proposed a

predator-prey model with nonlinear predator in harvest [3] and discussed the
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dynamical properties of the following system:

dx = x(t)(r, —bx(t))—ax(t) y(t)dt,
by <y () ()10 -

1+by(t)

On the other hand, the growth of species in nature is often limited by envi-

(1.1)

ronmental factors. Generally speaking, there are two main types of environmen-
tal noise: white noise and colored noise. Wenjie Zuo et al [4] considered the
white noise and studied the stationary distribution and periodic solution. How-
ever, reading the literature found that studies on the non-linear harvesting of
predators and prey are very few literatures [5] [6] [7]. Therefore, the following
model is proposed.

(1) 3(1) 58 010)- 2, ()
o (0x(0)d8, 1),
B9(0) = (0) 5 20X -2 (DY) i Jdt o

—aAUy@NBAU—?%%%%%%?d%@)

In real life, however, ecosystems are often disturbed by human development

or by activities related to natural factors such as drought, floods, earthquakes,
and planting. In order to describe this phenomenon more accurately, impulses
perturbation is added into the model. To sum up, this paper mainly studies the
effects of impulse effect and nonlinear harvesting on predator and prey popula-
tions, and proposes the following interesting stochastic system.

dx(t) = x(t) fl(t)—au(t)x(t)—aﬂ(t)y(t)_ﬁ()ti(t)}dt

+0,(t)x(t)dB, (1),
t£t,

dy(t)z y(t) —-h (t)+a21(t)X('[)—a22 (t)y(t) 1+b('E)y( )i|dt (1.3)

(1) =x(t) = anx(t). (1)

where X(t) and y(t) represent the density of prey and predator populations
3 (t),(i, j =1,2) are positive, and 1, is the
internal growth rate of prey, and r, is the mortality rate of predator. &, (t)

Y(tk)zﬂkY(tk),t=tk,k=1,2,3,...

respectively. The parameters [ (t),

and a,, (t) represent the intra-specific competition coefficients of prey and
predator populations, respectively. The coefficient a,, (t) is the predator’s
capture rate and a,, (t) stands for the rate at which nutrients are converted to
H(t) ht)
1+b(t)x(t) 1+b(t)y(t)

predators. In addition, are the nonlinear harvesting.
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Throughout this paper, unless otherwise specified, we suppose (Q, F, {]—"t }[ZO ,IP)
be a complete probability space with a filtration {ﬁ }tzo satisfying the usual
conditions and it is right continuous and increasing, while 7, contains all [P
-null set. All the coefficients are assumed to be 7-periodic continuous functions.

The remainder of this paper is organized as follows. In Section 2, we show that
the model (1.3) existence of the global positive solution. In Section 3, sufficient
conditions are achieved to guarantee the existence of a positive periodic solution
of the stochastic system (1.3) by using It6’s formula. In Section 4, we discuss the
globally attractive of stochastic model (1.3). In Section 5, we use numerical si-
mulation to illustrate our results.

2. Existence and Uniqueness of Global Positive Solution

First, to facilitate the analysis that follows, we make the following tags. When

f (t) is a continuous 7-periodic function, we define:
f' =sup,, f(t), f' =inf,, f(t)

Moreover, we assume that a product equals unity if the number of factors is
zero.

Definition 2.1. [8] Consider an impulsive stochastic differential equation
dx(t)= f (t,x(t))dt+g(t,x(t))dB(t),t =t,,t>0,

2.1
X(t)=x(t) = ax(t,),t =tk =1,2,3,--. 2.1)

A stochastic process X(t)= (x1 (1), % (1), X, (t))T ,t€[0,+00) is said to be a
solution of ISDE (2.1), if X(t) satisfies

1) x(f) is 7, adapted and is continuous on (0,t1) and each interval
(tota) keN and f(tx(t))el!(R",R"),g(t,x(t)) e’ (R",R");

2) x(f) obeys the equivalent integral equation of (2.1) for almost every
teR, \t, and satisfies the impulsive conditions ateach teR,,keN as.;

3) For each t,,keN, X(tk*)z limx(t) and X(tk’)) =limx((t)) exist and
X(tk’ ) =x(t,) with probability one. o

We give the main results of system (1.3) as follows.

Theorem 2.1. For any initial value (XO, yO) e R? the system (1.3) has a
unique global positive solution (x(t), y(t)) for t>0 and the solution re-
mains in R, with probability one.

Proof. First, we construct the following SDE without impulses:
1P
66040 5 0+ Sn(L ) -, (O A ()% ()2 (DA ()% ()
-1

KO
1eb(1) A (1)

dx, (t) = %, (t){—rz (t)+lep:|n(1+ By )+ 8 (1) A (1) X (1) =2y, (1) A, (1) %, (1)

h(t) } o, (H)h(t)x, (t)
_1+b(t) A, (1) %, (t)}dt — 0, (1) %, (1)dB, (t)_Wng (1),

Jdtml(t)xl(t)dsl(t),

2.2)
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with the initial value (Xl, X, ) = (X0 Yo ) , where

Al(t){lﬂ[(lw,- )J; [T (@+e), Az(t):[jpl(l"'ﬂj)j; [1 @A)

j=1 <ty <t o<t <t

Then it is obvious that Ai(t) , A (t) are positive 7-periodic functions. In

fact,
t+T

Ai (t +T) _ (H?:l(l—‘rai )) T Hthtk<t+T (1+ak)
A e Ty ) .
=[ﬁ(1+a,- )} 1 (t+a)

j=1 t<ty <t+T

For any t >0, there is an integer 1, such that

nT <t<(n+1)T.

The limited mathematical induction procedures, together with t, =t +T,
o, =@, induce that
tk+np = tk+(n—].)p +T ==t +nT, Hyinp = ak+(n—1)p == oy (2.4)

According to [0,T)N{t keZ}= {tl,tz,'--,t
such that

p}, there exists |={12,--,p}

tI+np 'tl+1+np '”"tp+np € [t,(n +1)T),
t1+(n+1)p ’t2+(n+1)p’.“ ’tl—1+(n+1)p € |:(n +1)T,t +T)

Thus, combining (2.2)-(2.4), we obtain

Ai(t+T):Ai(t)£H(l+aj )] f[(l+ak+np)ﬂ(l+ak+(n+l)p)

(2.5)

Similarly, A, (t +T) =A (t) .

By the same method as [9] and standard proof [10], Equation (2.2) has a
unique global positive Solution (X, (t), X, (t)).

Next we will show that (X(t), y(t)) is the solution of system (2.2), which is
continuous on each interval (t,t,,;)€R". Forany t#t, .

Let
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dy(t)= y(t){—rz (t)+ay (t)x(t)—ay, (t) y(t)—*t) dt

And, forevery ke N,

fc

x(tk*)z lim Ai(t)xl(t):[jpl(1+aj)]y 11 (1+ak)xl(tk):(1+aj)x(tk),

i
ot 0<ty <t

X(t, ) =lim A ()% (t) = A (6 )% (t ) = A (t) % (8) = x(t,) -

toty

Similarly, we can show that,
y()=(1+8)y(t) (8 ) = v (t).-

Therefore, (X(t),y(t)) is a solution that satisfies system (1.3) Finally, we
prove the nonnegative uniqueness of the solution of system (1.3) (more details
see [11]).

Then the proof is completed.

3. Existence of Periodic Solutions of the System

In this section, we give the existence of the positive periodic solution of the sto-
chastic system (1.3) with impulses. For convenience of readers, we first give the
definition of the periodic solution of the impulsive stochastic differential equa-
tion in the sense of distribution and the results of the existence of periodic solu-
tions (see [10] [11]).

Definition 3.1. [12] A stochastic process f(t) = éf(t,W) is said to be period-
ic with period T, if for every finite sequence of numbers t,t,,---,t, the joint
distribution of random variables &(t,+h),&(t, +h), -+, &(t, +h) is indepen-
dent of A, where h=KT (k =], iZ,---) .

Consider the following periodic stochastic differential equation without im-

pulse:

dx(t)= f (t,x(t))dt+g(t,x(t))dB(t),t =0 (3.1)

where ¢ (t, X(t))nxl is a nx| matrix function, f (t, X(t)) and the matrix
g (t, x('[))nxl are 7-periodic in ¢

Lemma 3.1. [12] [13] Assume that the system (3.1) has a global solution, and
there exists a 7-periodic function V (t,X) such that the following conditions
hold:

1) LV (t, X) <-1 on the outside of some compact set;

2) inf‘

Then Equation (3.1) has a 7-periodic solution.

xR > %538 R—> .

According to Lemma 3.2, we can obtain the main result in this section.

Theorem 3.1. Assume
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A =%1‘(a'21A1“ [rl (t)+%im(1+aj)_ H (t)_@]

=1

(H1): —a’ A (_rz (t)+%%ln(1+ﬁj )-h(t)- Gzzz(t) o (t)2h2 (t)]]dt
>0,

(FR): %, =$]{5 (t)—%jZ:'“(Hﬂj )- 0222(0 = (t)zhz (t)Jdt >0,

0

| u
(#B): az;if\ al A’ <alAalA
u I AU AU uu u | AU AU u,u
CA, (a21a‘1|2'6;1 +ailazz)zp:|n (1+ﬁj)S CA, (a21a‘12'?1 +""11""22)
LAT i A

Then system (1.4) has a positive 7-periodic solution.

(FH4):

Proof. We only need to prove the existence of a periodic solution of the
equivalent system (2.2) without impulses. The global existence of the solution
has been ensured by Theorem 1. Then, we only have to verify the conditions of
by Lemma 3.1.

Define a C-function V (t,X,y):R? 5> R,:

I AU u aI u AU uau
V(t,x,y):C[_%lnx—aﬁAi“ In y+W1(t)+A2( S zz)y]

A
(a.glAfH Ai] y
+e"l A2 . (3.2)
2(4)
2V, (1 X, Y)+V, (1, X, y).

where C >0 will be determined later. Here, W, (t)(i=12) satisfies
T T e e

2(t 2(t)+ 02 (t)h? (t 3
(50w - s o - O

W (t) =2n, (t) -0 ()= o3 (1)1 (t) = (25, (1) -3 (1) - o5 (Oh* (1)), (34)

Which 4, and 1, are defined by (H1), (H2). Obviously, W (t) are
T-periodic functions. And W, ('[) is a bounded function. Thus there is K >0
such that;

i (t)| <K, vt=0 (3.5)

In order to confirm the condition (2) of Lemma 3.1, we only need to prove
that
mf(t.x.y)e[o,w)x(Rf\uk)V (t, X, y) —>w,as K—>oo.
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1 1
where U, = (E'ij(? kj , here the coefficients of the quadratic term X,y

of V (t, X, y) are all positive.
Next, we verify the condition (1) of Lemma 3.2. By Itd’s formula, we have:

LV, < %(—q (t)—Tin:In(lJr a;)+ Glzz(t) +ay (1) A (t)x

- a-21A1 (t) X+ a22 (t) A2 (t) y+ h(t) 0-22 (t);o-g (t) (14_ b(:])(':z (t) y] J

+Cw, (t) A
{Ca;;l.‘\ aﬂawt)—cawﬂ(tm(t)jx
Caj, A’ CA, (alnaiuzAiu +a1u1a;2) P
J{ A a, (1) A, (t)+ AT JZ:In(lJrﬂJ)
B CA, (321312A1 +311a22) y
A
gc{-@ et (afajji“ *a“a”)xyﬁf 2 <t)Az(t>y}

(S n]
2(A)

ayA 21A1 wy (t)
V,(txy)= 2 (%Az] aﬂAQ xy+2e y?

As V,(t,x,y)= g™ y so that:

Let V,(t,x, y)— > (321212 J V, (tx,y) = ajlﬁ; ey |

V; (t, X, y) - %ewZ(t)yz , we have
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LV; (t.x,y)
- (Ziﬁ;]{ [ g(t)”l(t)JrleZp;In(lJraj)+‘7122(t)J

+{‘a11 (DA ()X ~ay, <t>%<‘>xzy‘%ﬂ

SeWZ(I)[%J X{%+G”+T£JZ’J;|“(1+“1)+@}aillAllXSaileéxzy’
LV, (t.x,y)
SR s CACIETOIES R BLAORES S0

1
=
—(all(t)Ai( )X°y +ay, (1) A, (1) y'x—a, (1) A (1) X° y+a22(t)A2(t)y2x)

( ) )
L+b(t) A (t)x 1+b(t) A (t)y

) 3 A
<e' 2L K+r"+ In(l+ea; )+r!
ZAJ ' Té (tre)en

le (1"',3 )+a21A1X y—a,Ay X}

©

LV, (t,x,Y)
_ gm0 (WZT(t)_r2 (t)+%éln(1+ﬁj)+% (t) o (t)zh (t)]yz
+eW2(‘)(—a22 (t)Az(t)yS+a21(t)A(t)y2x_%]

— T

S_ewz(l)/lzyZ_,’_eWZ(t)(_azz( )Az( )y +321A1y X

Then
LV, (t,x,y)
2 u
<ew2(a21A1] X K+r1“+lzplln(1+aj)+ 01)
a12A2 2 T =t 2
A o[ 18 13 o7
+a1'2A;e xy{KJrrl +T;|n(1+aj)+rz +T;In(1+ﬁj)
( 21A1] a A +a, Ay + 4,y
a, Ay
Then

LV (t,x,y)
=LV, (t,xy)+LV, (t,x,y)

:—C/Ll+mlxy+m2x2—eWI2 [( 212} a, AX® +al, Ay® + A, y° J

Advances in Linear Algebra & Matrix Theory
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where:
Cay A'A (aélaszf +ajial, )
i
a21A1e u 1 d u 1 :
K+r'+=) In(1+a, )+ +=> In(1+ 5. )|,
aqu{ Cep (e e e ()
2|J
N p o
=[BRS o) D)
a12A2 2 T3 2
Let, we take

Czimax{zmzxz——(:“:ij a, A X %a'zzA;y3—ﬂ,2y2} (3.8)

To confirm the condition (1) of Lemma 3.2, we choose a sufficiently small

constant £ such that:

| 2 \
CA e (aglAlu) au A e"a), Al

O<e<i—=, P (3.9)
am, 2m1(a1|2A;) 2m,
) (a‘;lAlu )2 a'lllAll a' A;
-C4 +C,+1<e™min 22 (3.10)
2(al,A) & 267
where
2 5 5
C, = max {—mlx2 +=my3 +myx°
(x,y)eﬂﬁ 5
(3.11)
- (anAi ] auAilx +a|22A;y3 +eW|2ﬂ-2y2
aj, A,

Define a bounded open set
D, ={(x,y)|g<x<£,g< y<£}.
£ £

and denote
D! ={(x,y)[0<x<e&}, D ={(xy)|0<y<e},

02 -tz o ={xyiyz2).

It is obvious that DS =D,UD?UD}UD; . Next, LV(t,x,y)<-1 on
[0, OO) x D! must be shown.
Case 1: If (t, X, y) € Di ,then xy<ey< g(l+ y3), we have:

LV (t,x,y)

S—%+(—%+m¢:j— [Z:’:&zj a11 {%a‘zzA;_g]y?:

_% z_ a21A1 ﬁ I Aly3 2
+{ > +m,X [%Az] a A X > Ay -4y }-
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Using (3.8) and (3.9), we obtain

CA4 ayA 13 CA
LV (t,xy)s——2 - A <<,
(txy) [%AJ aj; A X .

Case 2: If (t, X, y) € Dj ,then xy<ex< 8(l+ X3) , we have:
LV (t,x,y)

=- Cji (_Tﬂl"'ml j { [212} allAi EJXB_%alzzA;yg
Ca . et(ay o e
+{ 5 +myX > [ Azj a A X azzAzy -4y }

By the definition (3.8) of C and the inequalities (3.9), we have:

|
Ch €% | 1 3 CA
V(t,xy)————a <1< 1,
( y) 4 5 2 Ay 4

5 5
By Young inequality, we have xy S%x2 +gy3. Then by equality (3.11), the

following inequality is obvious:

LV (t,x,y)
5 5
<—CJ, +mx* —e" {(%212] a, A +ay, Aly® + 4,y +2mx2+:m2y3
2
a
<-C /11_ [ail':izj a, A X’ a22A£y3+C
2
Case 3: If (t, X, y) e Dj, from (3.9) and (3.10), we obtain
| u AU 2 | |
v a
V(t,x,y)g—Cﬂi—%a'zzA;f+C1S—Cﬂlew'z(Zl'ls‘iﬁJr ]

2(alA) e
Case 4: If (t, X, y) € D: , from (3.9) and (3.10), we obtain

e"™ | s W A
Lv(t’x'y)S_Cﬂl__TaZZAZy +ClS—Cﬂ1e 2?+C1S—1.
&

Thus, we obtain LV (t,X,y)S—l on [0,00)X D;, and the condition (1) of
Lemma 3.2 is satisfied. Therefore, by Lemma 3.2, system (1.3) has a positive
T-periodic solution.

The proof is confirmed.

4. Globally Attractive

u
Theorem 4.1. [14] [15] If system (1.3) satisfies al'l —ay, —E—z >0,
|

u

a, —ay, — h —- >0, then the system (1.3) is globally attractive.
I
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Proof. Let x(t)= (X1 (). %, (t)) , y(t)= (yl (t).y, (t)) be two arbitrary solu-
tions of model (1.3) with initial values X(t) >0, y(t) >0
We defined the following Lyapunov function

V(t)=|lnx1 —Iny, (t | |Inx2 t)- Inyz(t)|

Then by calculating the right differential D'V (t) and employing Ito’s for-
mula.

When t=#t,, we have:
D'V (t) =sign(x, (t)-y, (t))d(Inx (t)-Iny,(t))
+sign (x, (t) -y, (t))d(Inx, (t)=Iny, (t))

=sign (%, (1) =, ()| =25 (1) (% () =¥ (1))~ (1) (% (t) = ¥ (1))
. HO(0-w() jm
[1+b(t) % (t) ][1+b(t) y, (1) ]

+sign(x, () -y, t))(an(t)(xi(t) i (1)) = (1) (% (1) - v (1))

(
h(t)(x, (t)- yz(t))
b (0] ]]‘“

( (D)% () (t)|+a12 )% (t) =y, (1)

H (1), (t) - ya (t

) o]
[1+b(t)x (1) J[1+b(1) v, (1) ]

when t=t, ke N, weget

V(tk)z‘lnx1 Inyl(tk‘ ‘Inx J)=Iny, (& )‘
=|In(1+ @)% (t) - In(L+a, )y, ()|
+||n 1+ 5,) z(t) In(1+ﬂk)y2( )|
= [Inx (t) = Iny, (t)] +[Inx, ()~ In v, (t, )]

=V (t,).
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Integrating both sides and then taking the expectation yields that
VY0~ - |1 ) o)
—[a'zz ]J' %, ()=, (s)|ds

That is
| u HLI t
v (t)+(a11 —al, —b—zjjo|xl (s)-vi(s)|ds
|

(et o <v )<

u u

Then, in the view of V(t)>0 and aj, —al —|;—2 >0,a), —a), —E—z >0 that

limV (t)=0. Thus, it is easy to see from Lemmas 6.1 [15]

t—ow

lim|x (t)-y, (t)=0i=12 as
The proof is complete.

5. Computer Simulations
In this section, we will prove our theoretical results by some examples with the
help of the Matlab software [16] and reveal the influence of impulses and the

white noise.
Example 1.
Let
a, =1l.1+cost,a, =1.2+sint,r, =1+sint,H =0.3+0.1sint,

;1 =0.05+0.1sint,a,, =1.1+sint, T = 2w, 1, = 0.15+sint,
h=1.5+sint,b=2+sint,o; =0.03+0.1sint, o, = o, =0.02+0.1sint,

then

ot 002102

j=1

©

+a) A ( ()—Tizpj (1+ﬂ,-)+h(t)+6222(t)+Gg(t)zhz(t)}s.lbo,

=1

r, (t)—%éln(uﬁj )- Uzz(t) s (t)zh (®) ~1.65>0.

Thus, the conditions of Theorem 3.1. hold. Then the model (1.3) has a posi-
tive 2m-periodic solution. Figure 1 confirms the results.

Example 2. Set aj,=1.1,a} =0.05,a), =1.2,a’, =1. Making condition of the
Theorem 4.1 is satisfied. We get that system (1.3) is globally attractive (see Fig-

ure 2).
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Figure 1. A solution of system (1.4) with the initial value (X,,Y,)=(0.6,0.3). The left is

the phase diagram of the stochastic system, and the right is the phase diagram of the de-
terministic system.
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Figure 2. The figure shows the attractiveness of system (1.4), the blue and red lines
represent the solution of prey and predator species.

6. Conclusion

In this paper, we propose a stochastic predator-prey system with nonlinear har-
vesting and impulsive perturbations. Firstly, we show that there is a unique posi-
tive solution in system (1.3). Secondly, the system has a positive periodic solu-
tion under a certain condition. Result shows that when the impulses are suffi-
ciently large such that 4 >0,4, >0 then the predator and prey will tend to
exhibit periodicity. It is verified by constructing the appropriate Lyapunov func-
tions and using Itd’s formula. Moreover, these methods used in this study can be

extended to more complex and realistic models.
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