
Advances in Linear Algebra & Matrix Theory, 2018, 8, 122-133 
http://www.scirp.org/journal/alamt 

ISSN Online: 2165-3348 
ISSN Print: 2165-333X 

 

DOI: 10.4236/alamt.2018.83011  Sep. 27, 2018 122 Advances in Linear Algebra & Matrix Theory 
 

 
 
 

Block Decompositions and Applications of 
Generalized Reflexive Matrices 

Hsin-Chu Chen 

Department of Cyber-Physical Systems, Clark Atlanta University, Atlanta, GA, USA  

 
 
 

Abstract 

Generalize reflexive matrices are a special class of matrices n mA ×∈  that 
have the relation A PAQ=  where n nP ×∈  and m mQ ×∈  are some ge-
neralized reflection matrices. The nontrivial cases ( P I≠  or Q I≠ ) of this 
class of matrices occur very often in many scientific and engineering applica-
tions. They are also a generalization of centrosymmetric matrices and reflex-
ive matrices. The main purpose of this paper is to present block decomposi-
tion schemes for generalized reflexive matrices of various types and to obtain 
their decomposed explicit block-diagonal structures. The decompositions 
make use of unitary equivalence transformations and, therefore, preserve the 
singular values of the matrices. They lead to more efficient sequential com-
putations and at the same time induce large-grain parallelism as a 
by-product, making themselves computationally attractive for large-scale ap-
plications. A numerical example is employed to show the usefulness of the 
developed explicit decompositions for decoupling linear least-square prob-
lems whose coefficient matrices are of this class into smaller and independent 
subproblems.  
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1. Introduction 

In [1] we introduced two special classes of rectangular matrices A and B that 
have the relations  

and , , ,n mA PAQ B PBQ A B ×= = − ∈  
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where P and Q are two generalized reflection matrices of dimensions n and m, 
respectively. A matrix X is said to be a generalized reflection matrix if 

* 1X X X −= = , i.e., if X is unitary and Hermitian. The matrices A (and B) are 
referred to as generalized reflexive (and antireflexive respectively) matrices. 
They are a generalization of centrosymmetric (anti-centrosymmetric) matrices 
whose special properties have been under extensive studies [2]-[11] and a 
generalization of reflexive (antireflexive) matrices U (V), exploited in [1] [12] 
[13], that have the relations  

and , , ,n nU PUP V PVP U V ×= = − ∈  

where P is some reflection (symmetric signed permutation) matrix. 
Like U, the generalized reflexive matrices A arise naturally and frequently 

from physical problems with some sort of reflexive symmetry. Although the 
generalized antireflexive matrices B also also possess many interesting properties, 
in this paper, we shall focus only on generalized reflexive matrices. Our main 
objective is, thus, to present a generalized simultaneous diagonalization theorem 
and various decomposition schemes for the matrices A so that linear 
least-squares problems (or linear systems) whose coefficient matrices are of this 
class can be solved more efficiently. The decomposition schemes can be applied 
to a great number of scientific and engineering problems. 

The organization of this paper is as follows. In §2, we present a generalization 
to the classical simultaneous diagonalization of two diagonalizable commuting 
square matrices. Our generalization, referred to as the generalized simultaneous 
diagonalization, simultaneously diagonalize a rectangular matrix H and two 
square matrices F and G that have the relation FH HG= , assuming F and G 
are diagonalizable. Based on this simultaneous diagonalization, we develop 
explicit and semi-explicit decomposed forms in §3 for some important types of 
generalized reflexive matrices. An application of the decompositions to linear 
least-squares problems of this class is also given to show the usefulness of the 
decompositions. More numerical examples are provided in §4 to demonstrate 
the frequent occurrences of generalized reflexive matrices in many scientific and 
engineering disciplines. 

Throughout this paper, we use the superscripts T, *, and −1 to denote the 
transpose, conjugate transpose, and inverse of matrices (vectors), respectively. 
The symbol ⊕  stands for the direct sum of matrices as usual. Unless otherwise 
noted, we use kI  to denote the identity matrix of dimension k. All matrix-matrix 
multiplications and additions are assumed to be conformable if their dimensions 
not mentioned. . 

2. Generalized Simultaneous Diagonalization 

Before developing the (semi-)explicit block-diagonal structures for some 
important types of generalized reflexive matrices, we present first the following 
theoretically simple yet computationally useful observation regarding a 
simultaneous diagonalization process. Although diagonalization usually refers to 
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square matrices, in this paper, we use the same term for rectangular matrices. In 
other words, a rectangular matrix ( ) n m

ijA a ×= ∈  is also said to be diagonal if 
0ija =  for i j≠ . Block-diagonal rectangular matrices are defined in an 

analogous way. 
Theorem 2.1. (Generalized Simultaneous Diagonalization) Let n nF ×∈  and 

m mG ×∈  be diagonalizable, n mA ×∈ . If FA AG= , then there exist nonsingular 
matrices fS  and gS  such that  

1 1 1, andf f f g g gS FS S AS S GS− − −  

are all diagonal matrices.  
Proof. The proof given below basically employs the same technique used in 

[14] [15] for the simultaneous diagonalization of two square matrices that 
commute. Let fX  and gX  be the matrices that diagonalize F and G, 
respectively:  

1 1, andf f f g g gX FX X GX− −= Λ = Λ                    (1) 

where the diagonal elements of fΛ  (respectively gΛ ) are the eigenvalues of F 
(respectively G). Suppose that the matrix F has k distinct eigenvalues 1, , kλ λ  
with multiplicities 1, , kp p , respectively, where 1 kp p n+ + = ; and the 
matrix G has l distinct eigenvalues 1, , lµ µ  with multiplicities 1, , lq q , 
respectively, where 1 lq q m+ + = . Assume further that among the k distinct 
eigenvalues of F, s of them are also eigenvalues of G, { }1 min , s k l≤ ≤ . If 0s = , 
then all iλ  and jµ  are distinct, implying that A is a null matrix, as can be seen 
later. Therefore, we exclude this trivial case. Without loss of generality, we can 
assume that  

( )11 , , , , ,
s kf p s p k pbdiag I I Iλ λ λΛ =  

 

( )11 , , , , 
s lg q s q l qbdiag I I Iµ µ µΛ =  

                (2) 

where ( )bdiag   denotes a block-diagonal matrix and 1 1, , s sλ µ λ µ= = . 
Note that 1, , s kλ λ+   and 1, , s lµ µ+   are all distinct. Now, partition the 
matrix 1

f gX AX− , denoted by B, according to the block forms of fΛ  and gΛ  
as ( )ijB B=  so that ijB  are pi-by-qj submatrices, 1, , i k=   and 1, , j l=  . 
If FA AG= , we have f gB BΛ = Λ  which implies that  

( )  or  0.i ij ij j i j ijB B Bλ µ λ µ= − =                  (3) 

Since i jλ µ=  only if 1, , i j s= =  , we know that B is a block-diagonal 
matrix, or more precisely, 0ijB =  if i j≠  or if i j s= > . (This can be 
considered as a block-equivalence decomposition for rectangular matrices.) It is 
well-known that for any matrix B in n m×  there exist unitary matrices n nU ×∈  
and m mV ×∈  such that the singular value decomposition *U BV  is diagonal 
with nonnegative elements [16]. Now, let iU  and iV  be the matrices that 
diagonalize , 1, , iiB i s=   and take  

11 ,
s ks p pU U U I I
+

= ⊕ ⊕ ⊕ ⊕ ⊕   
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11 .
s ls q qV V V I I
+

= ⊕ ⊕ ⊕ ⊕ ⊕                   (4) 

Let 1 1
a f gU X AX V− −Σ = . We see that 1

a U BV−Σ =  is diagonal. Taking  
  and  ,f f g gS X U S X V= =  it is clear that 

1 1 1,   and  .f f f f g a g g gS FS S AS S GS− − −= Λ = Σ = Λ             (5) 

Therefore, they are all diagonal matrices. 
Remark 1: Note that the converse of this theorem is not true in general. It is 

simple to construct such examples from diagonal matrices. 
Remark 2: If the diagonalizable matrix F is the same as G, and A is 

diagonalizable (A is a square matrix in this case), by taking iU  to be the 
matrices such that 1

i ii iU B U−  are diagonal and replacing gS  with fS , this 
theorem along with its converse part (it now exists) then reduces to the classical 
simultaneous diagonalization theorem for commuting square matrices as given 
in ([15], p. 50). 

Note also that this theorem is different from the simultaneous diagonalization 
theorems presented in [14] [16] where the simultaneous diagonalization applies 
to rectangular matrices of the same size. 

Corollary 2.2. Let n nF ×∈  and m mG ×∈  be Hermitian, n mA ×∈ . If 
FA AG= , then there exist unitary matrices fS  and gS  such that  

* * *, andf f f g g gS FS S AS S GS  

are all diagonal matrices.  
Proof. Since Hermitian matrices are diagonalizable by unitary matrices, the 

proof is trivial. 
The usefulness of Theorem 2.1 or Corollary 2.2 lies in the fact that if we know 

the eigenpairs of the matrices F and G, then the matrix A can be 
block-diagonalized into independent submatrices by the eigenvectors (with 
some proper ordering) of F and G so that a single large problem can be 
handled via smaller and independent subproblems, yielding computational 
efficiency and large-grain parallelism at the same time. The question then boils 
down to whether those eigenpairs can easily be obtained or not. This of course 
depends on F and G. Fortunately, for our generalized reflexive matrices that 
come from physical problems, their eigenpairs of P and Q are explicitly known 
in most cases, as can be seen from the example presented in Section 4. In the 
next section, we present several generalized reflexive decompositions that lead 
to either explicit or semi-explicit block-decomposed forms, which are 
computationally attractive.  

3. Decompositions for Generalized Reflexive Matrices 

We now turn to generalized reflexive matrices A, which are not necessary square 
matrices. The decomposition schemes presented below for A are special 
applications of the general results developed in the previous section. Our main 
purpose is to obtain explicit forms of the block structure for some frequently 
encountered cases of A. Let PA AQ=  be generalized reflexive. Recall that P 
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and Q are two generalized reflection matrices, which are unitary Hermitian 
matrices. Therefore, they have at most two distinct eigenvalues 1 and −1. 
Furthermore, the relation A PAQ=  can be expressed as PA AQ=  since 

* 1P P P−= = . From Corollary 2.2, we know that A can be block-diagonalized 
into two independent submatrices. This information along, however, is not 
enough from the computational point of view. we still need to know the 
eigenpairs of P and Q in order to obtain the explicit decomposed form of A. In 
the following, we derive several explicit or semi-explicit decomposed forms for 
some important types of generalized reflexive matrices, starting with the 
simplest one. 

Theorem 3.1. Let n nP ×∈  and m mQ ×∈ , n and m even, be two matrices 
that take the following forms.  

* *
1 1

1 1

0 0
  and  

0 0
P Q

P Q
P Q
   

= =   
   

                   (6) 

where 1P  and 1Q  are unitary. Let n mA ×∈  be partitioned as ( )ijA , , 1, 2i j = , 

with each p q
ijA ×∈ , 

2
np =  and 

2
mq = . If A PAQ= , then there exist two 

unitary matrices X and Y such that  

( ) ( ) ( ) ( )* * *
11 12 1 22 21 1 11 1 21 22 1 12 .X AY A A Q A A Q A P A A P A= + ⊕ − = + ⊕ −     (7) 

Proof. Clearly, both P and Q are generalized reflection matrices. Therefore, A 
is a generalized reflexive matrix. Take X and Y to be the unitary matrices  

* *
1 1

1 1

1 1  and  .
2 2

I P I Q
X Y

P I Q I
   − −

= =   
   

             (8) 

Then  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

* *
11 12* 1 1

21 221 1

* * * * * *
11 12 1 1 21 1 22 1 12 1 21 1 1 22 11 1

* *
21 1 12 1 22 1 1 11 22 21 1 1 11 1 1 12

*
11 12 1 11 1

*
22 21 1

1
2

1
2

0
0

A AI P I Q
X AY

A AP I Q I

A A Q P A P A Q A P A Q P A A Q

A P A Q A Q P A A A Q P A Q P A

A A Q A P
A A Q

   − 
=     −     

 + + + − + −
 =
 − + − − + − 
+ + 

= = − 
21

22 1 12

0
0

A
A P A

 
 

− 

 

(9) 

where we have used the unitarity of 1P  and 1Q  and the relations  
*

11 1 22 1A P A Q=  and 21 1 12 1A P A Q= , which results from the assumption of  
A PAQ= . Note that *

p pX PX I I= ⊕ −  and *
q qY QY I I= ⊕ − , which also 

explains, via Corollary 2.2, why this decomposition is possible. 
Theorem 3.2. Let n nP ×∈  and m mQ ×∈ , 2n p r= +  and 2m q s= + , be 

the following two generalized reflection matrices:  
* *

1 1

1 1

0 0 0 0
0 0   and  0 0

0 0 0 0
r s

P Q
P I Q I

P Q

   
   

= =   
   
   

               (10) 
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where 1P  and 1Q  are unitary matrices of dimensions p and q, respectively; 
1α = ± , 1β = ± . Let n mA ×∈  be partitioned as ( )ijA , , 1, 2, 3i j = , with 

11
p qA ×∈ , 22

p qA ×∈ , and 33
p qA ×∈ . If A PAQ= , then there exist two 

unitary matrices X and Y such that  

( )11 13 1 12* *
33 31 1

21 22

2
  if   1,

2

A A Q A
X AY A A Q

A A
α β

 +
= ⊕ − = = 
  

 

( ) 22 23*
11 13 1 *

32 33 31 1

2
  if 1,

2

A A
X AY A A Q

A A A Q
α β

 
= + ⊕ = = − 

−  
 

11 13 1* *
32 33 31 1

21

2   if 1,
2

A A Q
X AY A A A Q

A
α β

+ 
 = ⊕ − = − =   

 
 

and  

* 23
11 13 1 12 *

33 31 1

22   if 1.AX AY A A Q A
A A Q

α β
 

 = + ⊕ = − = −   −  
 

Proof. Take X and Y to be the following two unitary matrices:  
* *

1 1

1 1

0 0
1 10 2 0   and  0 2 0 .
2 20 0

r s

I P I Q

X I Y I
P I Q I

   − −
   

= =   
   
      

      (11) 

Then the unitary transformation *X AY  yields  

( ) ( ) ( ) ( ) ( )
( ) ( )

( )

**
11 11 12 13

*
21 22 23

1 31 32 33 1

* * * * * * *
11 13 1 1 31 1 33 1 12 1 32 13 1 31 1 1 33 11 1

*
21 23 1 22 23 21 1

31 1 13 1 3

00
1 0 0 0 2 0
2

0 0

2
1 2 2 2
2

r s

I QI P A A A
X AY I A A A I

P I A A A Q I

A A Q P A P A Q A P A A P A Q P A A Q

A A Q A A A Q

A P A Q A

 −        =          −      

+ + + + − + −

= + −

− + ( ) ( ) ( ) ( )* *
3 1 1 11 32 1 12 33 31 1 1 11 1 1 132Q P A A P A A A Q P A Q P A

 
 
 
 
 − − − + − 

 (12) 

If A PAQ= , we immediately have the following relations among the 
submatrices ijA .  

* * *
11 1 33 1 13 1 31 1, ,A P A Q A P A Q= =  

*
12 1 32 21 23 1 22 22, and .A P A A A Q A A= = =  

Employing these relations and the unitarity of 1P  and 1Q  for (12), we 
obtain a much simplified form of the transformation *X AY . Namely,  

( ) ( )
( ) ( ) ( )

( ) ( )

11 13 1 12

*
21 22 23

*
32 33 31 1

2 2 1 0
1 2 1 1 2 1 .
2

0 2 1 2

A A Q A

X AY A A A

A A A Q

β

α αβ α

β

 + +
 

= + + − 
 

− −  

     (13) 

Accordingly, we have the results we want:  
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11 13 1 12

*
21 22

*
33 31 1

2 0

2 0   for 1,
0 0

A A Q A

X AY A A
A A Q

α β

 +
 

= = = 
 −  

 

11 13 1

*
22 23

*
32 33 31 1

0 0

0 2   for 1,

0 2

A A Q

X AY A A

A A A Q

α β

+ 
 

= = = − 
 − 

 

11 13 1

*
21

*
32 33 31 1

0 0

2 0 0   for 1,

0 2

A A Q

X AY A

A A A Q

α β

+ 
 

= = − = 
 − 

 

and  

11 13 1 12

*
23

*
33 31 1

2 0

0 0 2   for 1.
0 0

A A Q A

X AY A
A A Q

α β

 +
 

= = − = − 
 −  

 

Note that in (13), 13 1A Q  can be replaced by *
1 31P A  and *

31 1A Q  replaced by 

1 13P A  since 31 1 13 1A P A Q= . Computationally, one should use the expressions that 
are easier to compute. Note also that X and Y do not depend on α  and β , and  

* *  and  .p r p q r qX PX I I I Y QY I I I= ⊕ ⊕− = ⊕ ⊕−  

Remark 3: In Theorem 3.1 and 3.2 if the unitarity requirement of P, Q, X, 
and Y is lifted, a slightly more general case can be obtained simply by replacing 
the conjugate transpose with the inverse (existence of 1

1P−  and 1
1Q−  assumed) 

in places of *
1P , *

1Q , *X , and *Y . With this replacement, all the results in 
the proofs remain intact. The matrices A in this case, however, are not 
necessarily generalized reflexive since P and Q may not be generalized reflection 
matrices. 

Remark 4: Obviously, Theorem 3.2 reduces to Theorem 3.1 if rI  and sI  in 
(10) do not exist, i.e., 0r s= = . If rI  is present and sI  disappears, then by 
partitioning A as ( )ijA , 1, 2, 3i =  and 1,2j = , according to the block forms of 
P and Q, we have  

( ) ( )
11 12 1

*
21 22

*
32 31 1

0
1 11 1
2 2

0

A A Q

X AY A A

A A Q

α α

+ 
 
 = + −
 
 − 

             (14) 

which is decoupled into two independent sub-blocks when 1α = ± . Analogous 
to (13), 12 1A Q  and *

31 1A Q  can be expressed as *
1 31P A  and 1 12P A , respectively 

since in this case 31 1 12 1A P A Q= . Instead, if rI  disappears and sI  remains and 
the matrix A is partitioned in accordance with P and Q as  

11 12 13

21 22 23

,
A A A

A
A A A
 

=  
 

 

then we have  
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( )

( )

11 13 1 12
*

*
22 23 21 1

1 1 0
2

10 1
2

A A Q A
X AY

A A A Q

β

β

 + + 
 =
 − −  

         (15) 

where *
13 1 1 21A Q P A=  and *

21 1 1 13A Q P A=  because 21 1 13 1A P A Q= . This 
transformation again decouples the matrix A into two independent sub-blocks 
when 1β = ± .  

4. Applications 

As seen from the transformations presented in the previous section, the 
decomposed forms of A of this class are very simple to compute. This is 
especially true when P and Q are reflection (symmetric signed permutation) 
matrices, which arise frequently in a very wide range of real-world applications, 
because any reflection matrix can be symmetrically permuted to yield one of the 
forms of (6) and (10), with 1P  and 1Q  being some signed permutation 
matrices whereas 2P  and 2Q  some reflection matrices. Furthermore, the 
decompositions preserve all singular values because they make use of unitarily 
equivalence transformations, which can be applied to both square matrices and 
rectangular matrices. Therefore, they are useful not only for linear systems but 
for linear least-squares problems and singular value problems as well. The only 
requirement is the existence of the generalized reflexivity property of the matrix 
A. When P is the same as Q, the decompositions lead to similarity transformations 
and, accordingly, preserve all eigenvalues. It is exactly this simplicity and 
preservance of singular values or eigenvalues that makes these decompositions 
computationally attractive. To demonstrate the usefulness of these decompositions 
in attacking applications of this type, we present in this section an application of 
the decompositions to one of the numerical examples described in [1], where the 
same problem is solved using only basic generalized reflexive properties, without 
resorting to matrix decompositions. 

Numerical example. Consider the following overdetermined linear system:  

1

2

3

4

1 1 0 0 50
0 1 0 0 152
1 0 0 1 78

.0 1 0 1 33
0 0 1 1 30
0 0 0 1 123
0 1 1 0 2

x
x
x
x

−   
   − −       −       =−       −  
    − −   
   −   

                  (16) 

Let A be the coefficient matrix of the overdetermined system. It is simple to 
observe that A is a generalized reflexive matrix: A PAQ=  where  

3
2

2
3

0 0
0

0 1 0   and  
0

0 0

I
I

P Q
I

I

 
  = − =       

               (17) 
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are two reflection matrices. It deserves mentioning that the coefficient matrix A 
is the edge-node incidence matrix of a level network with reflexive symmetry. 

Whether this overdetermined linear system is to be solved via its normal 
equation or using a QR decomposition instead, we can decompose the original 
problem into two independent subproblems first, using the decomposition 
techniques presented in the previous section. Let  

3 3
2 2

2 2
3 3

0
1 10 2 0   and  .
2 20

I I
I I

X Y
I I

I I

− 
−   

= =   
  

 

          (18) 

The overdetermined system Ax b=  is then transformed to Ax b= 

  with  

( ) ( )T T T, 2 and 2A X AY x Y x b X b= = =

  

where 2  is intentionally inserted to avoid unnecessary multiplications of 
1
2

 in forming b  from b. Now, let Ax b=  be partitioned, according to the 

block forms of X and Y, as  

11 12 1
1

21 22 2
2

31 32 3

.
A A b

x
A A b

x
A A b

   
    =           

                    (19) 

The transformation TX AY  can easily be obtained without actually performing 
expensive matrix-matrix multiplications. We simply use the explicit form of (14) 
by substituting 2I  for 1Q  and −1 for α , yielding  

T
1 2A X AY A A= = ⊕    

where  

22
1 11 12 2

32 31

0 21 1
2 1 10 1 and .

0 11 1
1 1

AA A A A
A A

 −
−     −   = + = − = =    − −   −   

  

        (20) 

It is simple to obtain b  without resorting to a dense matrix-vector 
multiplication.  

( )
1 3

T

2

3 1

2 80 275 80 | 2 33 | 20 29 76 .

b b

b b
b b

+ 
   = = − − −   
 − 

  

This transformation then decouples the original system Ax b=  into  

[ ]T1 1 1 1with 80 275 80A x b b= = − 

                 (21) 

and 

( )
T

2 2 2 2with 2 33 20 29 76 .A x b b  = = − − 
 

           (22) 

The normal equations of (21) and (22) are simply  
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1 2

2 2 160 2 0 96
  and  ,

2 3 115 0 5 151
x x

− −       
= =       − −       

   

respectively, whose solutions are [ ]T1  355  275 x =  and [ ]T2  48  30.2 x = − − . 
The final solution x can now be retrieved from 1x  and 2x  with ease.  

[ ]T1 2

1 2

1 201.5 152.6 153.5 122.4 ,
2

x x
x

x x
− 

= = + 

 

 

 

whose correctness can be verified from the normal equation of the original 
system. 

At this point, it is clear that the main reason why transformations of this type 
are so cheap to obtain is not only that explicit forms are available but that no 
arithmetic multiplications or divisions are involved in forming the decoupled 
subsystems except the central block row of A and b and the central block column 
of A, if any, such as 22A  and 2b  in this example. The dimensions of these 
blocks are usually very small for large-scale problems with reflexive symmetry 
because they involve only the nodes/edges on the line or plane of symmetry. 
Therefore, this extra work can easily be offset by the tremendous savings 
resulting from solving two smaller subproblems whose sizes are only about half 
of the original problem. It is worth mentioning that solving sequentially two 
independent decomposed subproblems each of half size of a single problem is 
about four times faster than solving the undecomposed one. This is exactly 
where computational efficiency comes from. The large-grain parallelism induced 
by these decompositions is an additional advantage when the subproblems are 
solved on a multiprocessor on multiple networked computers. 

We close this section by emphasizing the fact that a great number of scientific 
and engineering applications require solutions to linear least-squares problems, 
singular value problems, linear systems, or eigenvalue problems whose coefficient 
matrices are either generalized reflexive nontrivial reflection matrices P and Q or 
reflexive P (or Q). Instead of giving more numerical examples, we just mention 
that the node-edge (or edge-node) incidence matrix of any finite network or 
graph that possesses reflexive symmetry or that can be redrawn as one that 
displays reflexive symmetry is generalized reflexive. Refer to [1] for more 
numerical examples. 

5. Conclusions  

Generalized reflexive matrices, a newly exploited special class of matrices 
n mA ×∈  that have the relation A PAQ=  with P and Q being some 

generalized reflection matrices, are a generalization of centrosymmetric matrices 
and reflexive matrices. Although it is not trivial to realize their existence purely 
from the entries of a given matrix, this new class of matrices indeed arise very 
often from physical problems in many areas of scientific and engineering 
applications, especially from those with reflexive symmetry. Three such 
nontrivial numerical examples, each from a distinct real-world application area, 
can be found in [1]. 
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A major part of this paper has been devoted to the exploration of compu- 
tationally attractive decompositions for taking advantage of the special relation 
possessed by this class of matrices. The decompositions are based on a 
generalized simultaneous diagonalization theorem presented in this paper and 
derived using the eigenvectors of P and Q via unitarily equivalence transformations. 
When the eigenpairs of P and Q are explicitly known, which is usually the case 
for generalized reflexive matrices that arise from physical problems with 
reflexive symmetry, the decompositions yield simple and explicit forms of the 
decomposed submatrices for the matrices A. One of the generalized reflexive 
matrices presented in this paper has also been employed to serve as an example 
to show the usefulness of the derived explicit decompositions for decoupling 
linear least-squares problems whose coefficient matrices are of this class into 
smaller and independent subproblems. These decompositions, though theoretically 
simple, can lead to much more efficient computation for large-scale applications. 
It also induces large-grain parallelism as a by-product. Furthermore, they preserve 
either the singular values or the eigenvalues of the matrices and, therefore, 
immediately applicable not only for handling linear least-squares problems and 
linear systems but for attacking singular value problems or eigenvalue problems. 
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