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In the last two decade, matrix polynomials have become more important and

some results in the theory of classical orthogonal polynomials have been ex-

tended to orthogonal matrix polynomials see for instance [1]-[7]. Orthogonal
matrix polynomials are important from both the theoretical and practical points
of view, they appear in connection with representation theory, matrix expansion
problems, prediction theory and in the matrix quadrature integration problems,
see for example [5] [8] [9]. Numerous problems of chemistry, physics and me-
chanics are related to second order matrix differential equation. Moreover, some
properties of the Hermite and Laguerre matrix polynomials and a generalized
form of the Hermite matrix polynomials have been introduced and studied in [4]
[9]-[19]. Other classical orthogonal polynomials as Gegenbauer, Chebyshev, Ja-
cobi and Konhauser polynomials have been extended to orthogonal matrix po-
lynomials, and some results have been investigated, see for example [9] [18] [19]
[20] [21]. We say that a matrix A in C"" is a positive stable if R(1)>0 for
all Aeo(A4),where o(4) isthe set of the eigenvalues of A. If
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Ay, A,y A, are elements of CY and 4, #0, then we call

P(x) =A4x"+ An_]x"_] + An_zx"_2 +o+ Ax+ A4,
a matrix polynomial of degree nin x. If A+nl is invertible for every integer
n>0 then

(A), =A(A+1)(A+21)-(A+(n=1)1);n20,(4),=1.

Thus we have
(4) =T (A)T(A+nl). (1.1)

For any matrix Ain C"", we have the following relation [22]

(1—x)7A — :; (A,);!xn

o <1 (1.2)

Next, we recall that the Konhauser matrix polynomials are defined in [21] as

n
n! P s

79 (x:k) ZMiO(_l)S (”Jrl (A+(ks+1)1)(Ax)".  (13)

In [23] Dattoli et al. introduced the two variable pseudo Laguerre polynomials

L, (x, y;k,j) in the form:

n 1) S kst
Ln(x,y;k,j):n!z ( 1) y X

=0 S!(n—s)!(ks+j)!' (1.4)

In this work, we construct a matrix version of the pseudo Laguerre matrix po-
lynomials given by (1.4) as follows:

Definition 1.1. Let A be a matrixin C"*" satisfying the condition
R(A)>-1 forevery Aeo(A4), keZ' and [f<1.We define the

pseudo-Laguerre matrix polynomials by the series

n _1 S n—s  A+ksl
Ln(x,y;k,A)=n!Z()L

) I (A+(ks+1)1). (1.5)

The relevant generating function for the polynomials L, (x,y;k,4) can be
obtained by the method suggested in [23], thus getting

Theorem 1.1. Let Abe a matrixin C"*" satisfying the condition
R(A)>-1 forevery Aeo(A4), keZ ,and |f|<1.Then

iLn(x,y;k,A)t—':ery’CA(x"t;k), (1.6)
n=0 n:
where
o (_I)Sx.x »
Ci(xk)=2——T (A+(ks+1)1). (1.7)
s=0 s

being the matrix version of the Tricomi function defined in (see [4]).
Proof. If we use the series (1.7) in right-hand side of (1.6), we get

w (1) vhs+A_n nts
x'e’C, (xkt;k)= > Mril(““‘(lﬁﬁ'l)])

g s! n!
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Now, by letting n—>n—s, we obtain the left-hand side of the assertion
(1.6).0

We must emphasize that the matrix polynomials in (1.6) are a generalized
form of Konhauser matrix polynomials defined by (1.3) and indeed we have

(Ay) ' T(A+(kn+1)1)

n!

Z (;k) L, (Ay, Lk, A).

For the purpose of this work we introduce the following matrix version of

Kampé de Fériet double hypergeometric series F/¢* [x, y] and matrix version

Im;n

of the generalized hypergeometric function ,F, [24] as follows:
[1(4).11(5) 11(€)

POk [(Aﬁ):(B‘J);(Ck);x,y]= i Jj=1 Hras Jj=1 ’ e s

r,5=0 rls!

Lm;n

{ﬁ(D" ) }l {H(Ef )}1 {H(FJ )}1 X'y (1.8)
and

i (A,)n "'(Ap),,(Bl)n "'<Bq)

. Lx". (1.9)
n=0 .

BB 'x]:

P q p?

F[ 4.4

In view of the definition (1.9) and the definition of the matrix version of the

Gauss multiplication theorem
L 1 .I - [
(A)/m =k (—] j ,

it is not difficult to show that
L, (x,y;k,4)=x"y"x F, [—n;A(k;A+I);x],
where throughout this work A(m;A+1) denotes the array of m parameters
A A+1  A+(m-1)I

> > >

m m m
lowing two formulas are well-known consequences of the derivative operator

D, and the integral D' [18]

,m>0. For an arbitrary matrix 4eC"" the fol-

Dix" =D (A+ )T (A= (n+1)I)x"", (1.10)

DX =T (A+I)I(A+(n+1)1)x"", (1.11)

where Dx:(% and neNU{O}.

Note that, in this work we apply the concept of the right-Riemann-Liouville
fractional calculus to obtain operational identities and relations. Motivated by
the works mentioned above, we aim in this work to present systematic investiga-
tion of the matrix version of the pseudo Laguerre polynomials given by (1.5) and
exploit methods of operational nature and the monomiality principle to derive a

number of operational representations, operators and generating functions con-
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structed matrix polynomials in (1.5).

2. Operational Identities and Quasi-Monomiality

First of all, we establish the following operational representations for pseudo
Laguerre matrix polynomials L, (x, y;k, 4).

Theorem 1.1. Let Abe a matrixin C"" satisfying the condition
R(A)>-1 forevery Aec(A4) and keZ'.Then

L, (xoysk, A) =T (A 1)e ™™ [x'yr). 2.1)

Proof In view of (1.10) and (1.11), we have

65 n n! n—s
y'= ', (2.2)

and
T (A+1)Dx" =T (A+ (ks +1)1)x™™, (2.3)

The desired result now follows by applying the identities (2.2) and (2.3) to the
definition (1.5).03

Theorem 2.2. Let Abe a matrixin C"" satisfying the condition
R(A)>-1 forevery Aeo(A4) and keZ.Then

L, (% ik, A)=T" (A+1)(y- D7) {x'}. (2.4)
Proof. The result follows directly from the formula

(x_y)" =i(_n')s nes s

R
5=0 N

the assertion (2.3) and the definition (1.5).0J

The use of the monomiality principle has offered a powerful tool for studying
the properties of families of special functions and polynomials. We know that
according to the monomiality principle [23] [25], a polynomial set
{ D, (x)} ,neN is quasi-monomial, if there exist two operators M and P,
called multiplicative and derivative operators respectively, which when acting on
the polynomials {pn (x)} yield [25]

M {p,(x)} =P ().

f’{pn (x)} =np, (x)

The operators M and P satisfy the commutation relation:
[, P] =1
and thus display a Weyl group structure. If M and P have differential reali-
zation, then the differential equations satisfied by p, (x) are

Mﬁ{pn (x)} =np,(x),
f’M{pn (x)} =(n+1)p,(x).

In this regard, the matrix polynomial set L, (x, y;k,A) is quasi-monomial
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under the action of the multiplicative operator

A+I

0 _4p-t
M=y+—"x“D, (2.5)
4 ox !
and the derivatives operators
s —10" a1 Oy
P=——_x"_—x", (2.6)
ket ax
A0
) =—. (2.7)
oy
According to the quasi-monomiality properties, we have
ML, (x,y:k, A)} =L, (x,:k, A) (2.8)

P {Ln (x, kK, A)} =nL,,(x,y;k,A4)
P, {Ln (x, 3 k,A)} =nL, ,(x,y;k, A).

Therefore, the identities
MB{L, (x,y:k, A)} =(n+1)L, (x, y;k, 4)

A A

MP, {Ln (x, y; k,A)} = (n + 1)Ln (x, y; k,A)
in differential forms give us

|:f)fo+1 aifo [[—A+y%[j+be+]XA+[ ai)fA —kn%]i|Ln (x,y;k,A)zo
X X

A+I
yi] +x—ix’AI —nl |L, (x,y;k,A) =0.
oy k Ox
Moreover, regarding the Lie bracket [,] defined by [4,B]=AB—BA, we
led to
[ B ML, (x,93k, 4) = L, (x, y3k, 4),
[I%,A;IJL,, (x,y;k,A) =L, (x,y;k,A).
From the lowering operators ﬁl and 162 in (2.6) and (2.7), we can define

operators playing the role of the inverse operators £ and P~ (see [[8], Eq-

uation (15)]). Thus, we get
f"}—l — _]OCAbjle(AH)l");k’ (2‘9)

P'=D, (2.10)
and they satisfy
L., (x,y;k,A)

(n+1)

BHL, (xysk, A)} = BHL, (%, 3k, 4)} = (2.11)

Clearly, we have
BP {Ln (x,y;k,A)} =pp" {L,, (x,y;k,A)} =L, (x,y:k,A).

Further, from (2.9)-(2.11), we can infer that L, (x,y;k,4) are the natural
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solution of the following equation

x

| D) k" D x DD I, (x, vk, 4) = 0,

Moreover, from (2.5) in conjunction with (2.8), we get

A+l 8

X CAA
L p ax ADyan(x,y;k,A),

n+l

(%, y3k, 4) = yL, (x,y;k, A) +

which yields the following recurrence relation
Ly (3,3, A) = YL, (3%, v, A) — L, (x, y3k, A+ KT ) = 0,
Finally, let
N=y-D}*,
then upon using (2.4) one obtains by routine calculations
r (4+1) y-N] {x"}
=S (-1) [Zj L, (% yik, A) " =T (A+knl +1)x*".

=0

©w

3. Generating Functions and Expansions

n

First, in the identity (2.1) multiply throughout by t—‘ , sum and then employ the
n!

formulae (1.10) and (1.11) and the result

n
ex:ix—,

n=0 n'
to get
eytxA (,F;( _3A+I9A+213”'9A+(k_1)[;_(kx)k
k k k
:F(A+I)iLn(x,y;k,A)t—'.
n=0 n:

Next, let us consider the generating relation

0 n

t
£ (x,y,z,wik,11£) =Y L, (x,y;k, A)x L, (z, w;l,B)n—!,

n=0
which according to operational identity (2.4)and the formulae (1.10) and (1.11)

yields the following bilinear generating function

e(y+”')txAzBoﬂ|:—;A+I,A+2],---,A+(k_l)l;—(kx)k:|

k k k

XGF{_;B+I B+21’m,B+(k—1)l;_t(lz)k}
k k k
o0 t”
=T(A+1)T(B+1) L, (x,y:k,A)x L, (z,w;l,B)E.

n=0

>

In [14], the following definition of Laguerre matrix polynomials has been in-
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troduced:

19 () =5 (i) [(ae0) ] (2) 20

= s!(n —s)!

where A be a matrixin CV*

, a€o(A) and (-a) isnot an eigenvalue of A
for every integer @ >0 and A be a complex number whose real part is posi-
tive. Such matrix polynomials have the following operational representation
[14]:

AP (B+I) Y

(B,Z) _ n _ -1 B

Lz = (1-20;") {2"}. (3.1)

Let us consider the generating relation

A (x,y,2,A418)=D L, (x,y;k,A)x L(nB’A) (z)e". (3.2)

n=0
Now, directly from (2.4) and (3.1) by employing the previously outlined me-
thod leading to the bilinear generating function, we obtain from (3.2) the fol-

lowing bilateral generating function

i(B-FI)mymxA/IB F _mA+] A+2I A+(k_1)[(kx)k
= m! L

x, F, [—B,m[;—;;} = 2@; (x,y3k, 4)x L(nB’M (z)".

Similarly, from the operational representation of the two variable Hermite
matrix polynomials H,(x,y,4) (see [10])

Hn(x,y,A)=exp{—y(2A)‘1§?](x (24))

and (2.4), we can easily derive the following bilateral generating function

> > >

k y

i(—zyf (28)) . [_S.A+I A+(k—1)1_(kx)k]

Tk

5=0 N '

=T(4+1)3 L, (x.yk.A)x H, (z,0.B)
n=0 n.
Theorem 3.1. Let A and B be a matrices in C"*" satisfying the conditions
R(u)>-1 forevery peo(4) or peo(B), AB=BA,and keZ'.Then

L, (x,y;k, A)x L, (x,y;k, A)

>

A+ A+k X } (3.3)
k b

- 2 m+n
:[F I(A"'I)] x*y le|:_m_n;T:" T E

where | F, is defined by (1.9).
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L, (x,y;k,A)x L, (z,w;l,B)

(_1)5 (—7’11)3 (yw)"*S xA+ks[ZB+lsI

520 S!kkslls
-1
A+ L) B+ (3.4)
{H( k jl_[( l ”
= s J=l s
w 00 —n+si-————————- e ——— — —— Sk
W ———— A(ks A+ T)+ SA(LB+1)+sI; yk* " wi' |

where F is defined by (1.8).

Okl
Proof. According to the operational representation (2.4), we have

L, (x.yik A)x L, (2w, B) = [T (A+ 1) ] (y- D) {x*!)

X

which in view of (1.2), the operator in (1.11) and the definition of Pochhammer
symbol (1.2), yields the right-hand side of Equation (3.4). Similarly, one can
prove the result (3.3).00
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