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Abstract 
In this paper, we study the existence of solutions for the semilinear equation 

( )Ax f x b+ = , where A  is a m n× , m n≥ , nb IR∈  and : m nf IR IR→  is 
a nonlinear continuous function. Assuming that the Moore-Penrose inverse 

( ) 1T TA AA
−

 exists ( TA  denotes the transposed matrix of A ) which is true 

whenever the determinant of the n n×  matrix TAA  is different than zero, 
and the following condition on the nonlinear term f  satisfied 

( )
lim 0
x

f x
x→∞

= . We prove that the semilinear equation has solutions for all 

nb IR∈ . Moreover, these solutions can be found from the following fixed 

point relation ( ) ( )( )1T T
b bx A AA b f x

−
= − . 
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1. Introduction 

This work is devoted to study the existence of solutions for the following semili-
near equation  

( ) , ,n mAx f x b b IR x IR+ = ∈ ∈                 (1.1) 

where A  is a m n×  matrix, m n≥ , nb IR∈  and : m nf IR IR→  is a nonlinear 
continuous function.  

Definition 1.1. The Equation (1.1) is said to be solvable if for all nb IR∈  
there exists mx IR∈  such that  

( )Ax f x b+ = . 
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Proposition 1.1. The Equation (1.1) is solvable if, and only if, the operator 
( ) : m nA f IR IR+ ⋅ →  is surjective.  

The corresponding linear equation Ax b=  has been studied in [1] where a 
generalization of Cramer’s Rule is given applying the Moore-Penrose inverse 

( ) 1T TA A AA
−+ =  that can be used when ( ) 1TAA

−
 exists, and a result from [2]. 

More information about the Moore-Penrose inverse can be found in [3] and [4].  
In this paper, using Moore-Penrose inverse A+  and the Rothe’s Fixed Theo-

rem [5] [6] [7], we shall prove the following theorem:  
Theorem 1.1. If ( ) 1T TA AA

−
 exists and f  is continuous and satisfies the 

condition  
( )

lim 0
x

f x
x→∞

= ,                      (1.2) 

then Equation (1.1) is solvable. 
Moreover, for each nb IR∈  there exists m

bx IR∈  such that  

( )b bAx f x b+ = , 

where ( ) ( )( )1T T
b bx A AA b f x

−
= − .  

The following theorem will be used to prove our main result.  
Theorem 1.2. (Rothe’s Fixed Theorem [4] [5] [6]) Let E  be a Banach space. 

Let B E⊂  be a closed convex subset such that the zero of E  is contained in 
the interior of B . Let : B EΦ →  be a continuous mapping with ( )BΦ  rela-
tively compact in E  and ( )B BΦ ∂ ⊂ . Then there is a point *x B∈  such that 
( )* *x xΦ = .  

2. Proof of the Main Theorems 

In this section we shall prove the main results of this paper, Theorem 1.1, for-
mulated in the introduction of this paper, which concern with the solvability of 
the semilinear Equation (1.1). 

Proof of Theorem 1.1. Using the Moore-Penrose inverse we define the oper-
ator : m mIR IR→  by  

( ) ( ) ( )( )1T Tx A AA b f x
−

= − , 

and from condition (1.2) we obtain that  

( )
lim 0
x

x
x→∞

=


.                      (2.3) 

Claim. The operator   has a fixed point. In fact, for a fixed 0 1ρ< < , there 
exists 0R >  big enough such that  

( ) ,x x x Rρ≤ = . 

Hence, if we denote by ( )0,B R  the ball of center zero and radius 0R > , we 
get that ( )( ) ( )0, 0,B R B R∂ ⊂ . Since   is compact and maps the sphere 

( )0,B R∂  into the interior of the ball ( )0,B R , we can apply Rothe’s fixed point 
Theorem 1.2 to ensure the existence of a fixed point ( )0, m

bx B R IR∈ ⊂  such 
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that  

( )b bx x= .                          (2.4) 

Then,  

( ) ( )( )1T T
b bx A AA b f x

−
= − . 

Then  

( ) ( )b b b bAx b f x Ax f x b= − ⇔ + = . 

This complete the proof.                                          □ 
From Banach Fixed Point Theorem it is easy to prove the following theorem 

that we will use to prove the next result of this paper. 
Theorem 2.1. Let W  be a Hilbert space and :H W W→  is a Lipschitz func-

tion with a Lipschitz constant 0 1h< <  and consider ( )F w w Hw= + . Then F  
is an homeomorphism whose inverse is a Lipschitz function with a Lipschitz con-
stant ( ) 11 h −− .  

Theorem 2.2. If the Moore-Penrose ( ) 1T TA AA
−

 exists and the following 
condition holds  

( ) ( )2 1 2 1 1 2, , mf x f x L x x x x IR− ≤ − ∈ ,              (2.5) 

and  

( ) 1T T 1A AA L ρ
−

< < ,                     (2.6) 

then the Equation (1.1) is solvable and a solution of it is given by  

( ) ( ) ( )
1 1T T

bx A AA I f b
− −= + Γ ,                  (2.7) 

where ( ) 1T TA AA
−

Γ = .  
Proof. Define the operator = : m nF A f IR IR+ → . Then F I fΓ = + Γ   

and  

( )( ) ( )( )2 1 2 1 1 2, , nf b f b L b b b b IRΓ − Γ ≤ Γ − ∀ ∈  , 

and from condition (2.6)  

1L ρΓ < < .                         (2.8) 

Therefore, from Theorem 2.1 and (2.8) we have that F I fΓ = + Γ   is a 

homeomorphism Lipschitizian with a Lipschitz constant 
1

1 ρ−
. 

Then,  

( )( )1F I f I−Γ + Γ =   . 

Hence, ( )( )( )1
bx I f b−= Γ + Γ 

 is a solution of (1). In fact,  

( ) ( )b b bF x b Ax f x b= ⇔ + = , 

and this complete the proof.                                         □ 

3. Practical Example 

Now, we shall apply Theorem 1.1 to find one solution of the following semili-
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near system  

( )
( )

1 2 1 2

1 2 3 2 3

sin 1

cos 1

x x x x

x x x x x

+ + =

− + + + =

                  (3.9) 

In this case, the vector of unknown x , the operators A , ( )f x  and the 
system second member b  are: 

( ) ( )
( )

1
1 2

2
2 3

3

sin1 1 0 1
, and ,

cos1 1 1 1

x
x x

x x A f x b
x x

x

 
     = = = =      −     

 

 

Therefore, (3.9) can be written in the form of (1.1).  

( )Ax f x b+ =                         (3.10) 

Applying Theorem 1.1 a solution of (3.10) can be obtained as a solution of the 
fixed-point problem:  

( ) ( )( )1T Tx A AA b f x
−

= −                   (3.11) 

In this particular example, one has:  

( ) 1T T

1 1
2 2
1 1
2 2

10
2

A AA
−

 − 
 
 =  
 
 
 
 

                   (3.12) 

To solve this problem numerically, one uses fixed-point iterations directly, i.e. 
one uses the following fixed point method:  

( ) ( )( )1T T
1

0

20
10

1

n nlx A AA b f x

x

−

+
 = −
    =    − 

               (3.13) 

and an error tolerance of 1010− , where the error is defined for each iteration as  

( ) 1Error , for 1,2,...n nn x x n−= − =               (3.14) 

In the following figures one shows the convergence process to obtain the ap-
proximate solution. Thus, Figure 1 shows the fixed-point iterations (3.13) for 
different groups of iterations, i.e. in the subfigure “Iteration from 0 to 7” it being 
showed the seven first fixed-point iteration values and the initial condition 0x , 
thus in the figure “Iteration from 8 to 15” it being showed the next eight the 
fixed-point iteration values and so on for the other subfigures. By changing the 
scale in the subfigures, one observes the accumulation of the point-fixed itera-
tion values in a specific place of space and that is an indicative of fixed-point 
iterations convergence.  

As in the previous figure, Figure 2 shows the convergence error (3.14) of the 
fixed-point iterations for different groups of iterations. Herein, one can appre-
ciate error convergences to zero quickly. 
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Figure 1. Convergence of fixed-point iterations. 
 

 
Figure 2. Error for each iteration. 

 
The approximated value obtained for x  solution of (3.13) is:  

414.511990290326 003
414.511990290326 003
0.00000000000000 000

e
e
e

− 
 − 
 + 

 

Here in, one presents the value Table 1 of fixed-point iteration. 
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Table 1. Fixed-point iteration values. 

i 1W  2W  3W  

0 20.0000000000000e+000 10.0000000000000e+000 −1.00000000000000e+000 

1 17.1128840687711e−003 1.85618441314522e+000 919.535764538226e−003 

2 −83.6859033311723e−003 1.05192657611689e+000 567.806239724032e−003 

3 457.390133251325e−003 630.527636166526e−003 86.5687514576005e−003 

4 357.047377906710e−003 358.536714067085e−003 744.668080187583e−006 

5 436.167364616208e−003 436.167400258264e−003 17.8210279311308e−009 

6 405.451739883687e−003 405.451739883687e−003 0.00000000000000e+000 

7 418.174158181806e−003 418.174158181806e−003 0.00000000000000e+000 

8 413.010123030581e−003 413.010123030581e−003 0.00000000000000e+000 

9 415.124320120457e−003 415.124320120457e−003 0.00000000000000e+000 

10 414.261735970446e−003 414.261735970446e−003 0.00000000000000e+000 

11 414.614167222791e−003 414.614167222791e−003 0.00000000000000e+000 

12 414.470255524096e−003 414.470255524096e−003 0.00000000000000e+000 

13 414.529034297305e−003 414.529034297305e−003 0.00000000000000e+000 

14 414.505029226087e−003 414.505029226087e−003 0.00000000000000e+000 

15 414.514833210466e−003 414.514833210466e−003 0.00000000000000e+000 

16 414.510829199791e−003 414.510829199791e−003 0.00000000000000e+000 

17 414.512464474425e−003 414.512464474425e−003 0.00000000000000e+000 

18 414.511796615081e−003 414.511796615081e−003 0.00000000000000e+000 

19 414.512069374520e−003 414.512069374520e−003 0.00000000000000e+000 

20 414.511957977294e−003 414.511957977294e−003 0.00000000000000e+000 

21 414.512003472857e−003 414.512003472857e−003 0.00000000000000e+000 

22 414.511984892088e−003 414.511984892088e−003 0.00000000000000e+000 

23 414.511992480630e−003 414.511992480630e−003 0.00000000000000e+000 

24 414.511989381406e−003 414.511989381406e−003 0.00000000000000e+000 

25 414.511990647155e−003 414.511990647155e−003 0.00000000000000e+000 

26 414.511990130213e−003 414.511990130213e−003 0.00000000000000e+000 

27 414.511990341336e−003 414.511990341336e−003 0.00000000000000e+000 

28 414.511990255112e−003 414.511990255112e−003 0.00000000000000e+000 

29 414.511990290326e−003 414.511990290326e−003 0.00000000000000e+000 
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