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Abstract 
The well-known arithmetic-geometric mean inequality for singular values, 
due to Bhatia and Kittaneh, is one of the most important singular value in-
equalities for compact operators. The purpose of this study is to give new 
singular value inequalities for compact operators and prove that these inequa-
lities are equivalent to arithmetic-geometric mean inequality, the way by 
which several future studies could be done.  
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1. Fundamental Principles 

Let ( )B H  indicate the set of all bounded linear operators on a complex 
separable Hilbert space H, and let ( )K H  indicate the two-sided ideal of 
compact operators in ( )B H . If ( )T K H∈ , the singular values of T, denoted 
by ( ) ( )1 2, ,s T s T  are the eigenvalues of the positive operator ( )1 2

T T T∗=  
ordered as ( ) ( )1 2s T s T≥ ≥ and repeated according to multiplicity. It is well 
known that ( ) ( ) ( )j j js T s T s T∗= =  for 1, 2,j =  . It follows by Weyl’s 
monotonicity principle (see, e.g., [1], p. 63 or [2], p. 26) that if  

( ),S T K H∈  are positive and S T≤ , then ( ) ( )j js S s T≤  for 1, 2,j =  . 
Moreover, for ( ) ( ) ( ), , j jS T K H s S s T∈ ≤  if and only if  

( ) ( )j js S S s T T⊕ ≤ ⊕  for 1, 2,j =  . Here, we use the direct sum notation  

S T⊕  for the block-diagonal operator 
0

0
S

T
 
 
 

 defined on H H⊕ . The sin- 

gular values of S T⊕  and 
0

0
T

S
 
 
 

 are the same, and they consist of those of  

S together with those of T. 
Bhatia and Kittaneh have proved in [3] that if ( ),A B K H∈  such that A  is 
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self-adjoint, 0B ≥ , and A B± ≤ , then  

( ) ( )j js A s B B≤ ⊕                      (1.1) 

for 1,2,j =  . 
Audeh and Kittaneh in [4] prove inequality which is equivalent to inequality 

(1.1):  

If ( ), ,A B C K H∈  such that 0
A B
B C∗

 
≥ 

 
, then  

( ) ( )j js B s A C≤ ⊕                      (1.2) 

for 1, 2,j =  . 
The well-known arithmetic-geometric mean inequality for singular values, 

due to Bhatia and Kittaneh [5], says that if ( ),A B K H∈ , then  

( ) ( )2 j js AB s A A B B∗ ∗ ∗≤ +                  (1.3) 

for 1, 2,j =  . On the other hand, Zhan has proved in [6] that if ( ),A B K H∈  
are positive, then  

( ) ( )j js A B s A B− ≤ ⊕                    (1.4) 

for 1, 2,j =  . Moreover, Tao has proved in [7] that if ( ), ,A B C K H∈  such  

that 0
A B
B C∗

 
≥ 

 
, then  

( )2 j j

A B
s B s

B C∗

 
≤  

 
                    (1.5) 

for 1, 2,j =  . 
Audeh and Kittaneh have proved in [4] that:  
If ( ),A B K H∈  such that A  is self-adjoint, 0B ≥ , and A B± ≤ , then  

( ) ( ) ( )( )2 j js A s B A B A≤ + ⊕ −                 (1.6) 

for 1, 2,j =  . 
It has been pointed out in [4] that the four inequalities (1.3)-(1.6) are equi- 

valent. 
Moreover, Tao in [7] uses inequality (1.3) to prove that if A  and B  are 

positive operators in ( )K H , 0r ≥ . Then  

( )( ) ( ) 11 2 1 22 r r
j js A A B B s A B ++ ≤ +               (1.7) 

for 1, 2,j =  . 

2. Introduction 

In this study, we will present several new inequalities, and prove that they are 
equivalent to arithmetic-geometric mean inequality. 

The following are the proved inequalities in this study:  
Let ,A C  and D  be operators in ( )K H  where 0A ≥ , C  and D  

arbitrary operators. Then  

( )2 j j
CAC CAD

s CAD s
DAC DAD

∗ ∗
∗

∗ ∗

 
≤  

 
               (2.1) 
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for 1, 2,j =  . 
Let ,C D  and X  be arbitrary operators in ( )K H . Then we have  

( )2 j j

D X D DXC
s DXC s

CX D C X C

∗ ∗ ∗
∗

∗ ∗ ∗

 
≤  

  
              (2.2) 

for 1, 2,j =  . 
Let 1 2 3 4, , ,A A A A  be operators in ( )K H . Then  

( )22 2 21 2 1 4
1 2 3 4

3 2 3 4

2 j j
A A A A

s s A A A A
A A A A

∗ ∗

∗ ∗

 
≤ + + + 

 
          (2.3) 

for 1, 2,j =  . 
If , , ,A B C D  and X  are operators in ( )K H . Then  

( )2 j

j

s A X C BXC AX D B X D

A X A BXA AX B B X B A X C BXC AX D B X D
s

C X A DXA CX B D X B C X C DXC CX D D X D

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

± ± +

 ± ± + ± ± +
 ≤
 ± ± + ± ± + 

(2.4) 

for 1, 2,j =  . 
Let 1 2, , , nA A A  be positive operators in ( ) , 0.K H r ≥  Then  

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 1 2 1 2 1 2 1 2
1 1 2 2 1 1 1 1

1 1 1
1 2 1 1

2 r r r
j n n n n n n

r r r
j n n n

s A A A A A A A A A A A A

s A A A A A A

− −

+ + +
−

 + ⊕ + ⊕ ⊕ + 
 ≤ + ⊕ + ⊕ ⊕ + 





(2.5) 

for 1, 2,j =  . 

3. Main Results 

Our first singular value inequality needs the following lemma. 
Lemma 1: Let A  be a positive operator in ( )K H , X  be an arbitrary 

operator in ( )K H . Then we have  

0XAX ∗ ≥                         (3.1) 

Now we will prove the first Theorem which is equivalent to arithmetic- 
geometric mean inequality. 

Theorem 3.1 Let ,A C  and D  be operators in ( )K H  where 0A ≥ , C  
and D  arbitrary operators. Then  

( )2 j j
CAC CAD

s CAD s
DAC DAD

∗ ∗
∗

∗ ∗

 
≤  

 
 

for 1, 2,j =  . 

Proof. Let 
0

0
0
A

X
A

 
= ≥ 
 

 (because 0A ≥  by assumption), and let  

0
0

C
M

D
 

=  
 

. Then we have  

0 0
0

0 0 0 0
C A C D CAC CADMXM
D A DAC DAD

∗ ∗ ∗ ∗
∗

∗ ∗

      
= = ≥      
       
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From (1.5) we have  

( )2 j j
CAC CAD

s CAD s
DAC DAD

∗ ∗
∗

∗ ∗

 
≤  

 
 

for 1, 2,j =  . 
Now we will prove that Theorem (3.1) is equivalent to arithmetic-geometric 

mean inequality. 
Theorem 3.2 The following statements are equivalent:  
1) Let ( ),X Y K H∈ , then  

( ) ( )2 j js XY s X X Y Y∗ ∗ ∗≤ +  

for 1, 2,j =  . 
2) Let ,A C  and D  be operators in ( )K H  where 0A ≥ , C  and D  

arbitrary operators. Then  

( )2 j j
CAC CADs CAD s
DAC DAD

∗ ∗
∗

∗ ∗

 
≤  

 
 

for 1, 2,j =  . 
Proof. 1) → 2) Let 1 2 1 2, .X CA Y DA= =  
Now apply arithmetic-geometric mean inequality to get  

( ) ( )1 2 1 2 1 2 1 2 1 2 1 22 j js CA A D s A C CA A Y YA∗ ∗ ∗≤ +  

for 1, 2,j =  . But  

( )
1 2 1 2 1 2

1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2

1 2

0
0 0 0

0
0 0 0

.

j j

j

j

A C A D CA
s A C CA A Y YA s

DA

CA A C A D
s

DA

CAC CAD
s

DAC DAD

∗ ∗
∗ ∗

∗ ∗

∗ ∗

∗ ∗

   
+ =    

   
   

=    
   
 

=  
 

 

The above steps implies that  

( )2 j j
CAC CAD

s CAD s
DAC DAD

∗ ∗
∗

∗ ∗

 
≤  

 
 for 1,2,j =  . 

2) → 1) The matrix CAC CAD
DAC DAD

∗ ∗

∗ ∗

 
 
 

 can be factorized as  

1 2 1 2 1 2

1 2

0
0 0 0

CA A C A D
DA

∗ ∗   
   
   

, but it is well known that  

( ) ( ) ( )j j js T s T s T∗= =  for 1, 2,j =  . So  

( )

1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2

0
0 0 0

0
0 0 0

j j

j

j

CAC CAD CA A C A D
s s

DAC DAD DA

A C A D CA
s

DA

s A C CA A D DA

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗

     
=     

     
   

=    
   

= +
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for 1, 2,j =  , from (2) we have  

( ) ( )1 2 1 2 1 2 1 22 j js CAD s A C CA A D DA∗ ∗ ∗≤ +            (3.2) 

for 1, 2,j =  . Now let A I=  in Inequality (3.2) we get  

( ) ( )2 j js CD s C C D D∗ ∗ ∗≤ +                  (3.3) 

for 1, 2,j =  , which is the arithmetic-geometric mean inequality. 
The following lemma which was proved by Bhatia [1] is essential to prove the 

next theorem. 
Lemma 2 Let X  be arbitrary operator in ( )B H . Then  

0
X X

X X

∗

∗

 ±
  ≥
±  

                      (3.4) 

Now we will prove the following theorem which is more general than Theo- 
rem (3.1) and equivalent to arithmetic-geometric mean inequality. 

Theorem 3.3 Let ,C D  and X  be arbitrary operators in ( )K H . Then we 
have  

( )2 j j

D X D DXC
s DXC s

CX D C X C

∗ ∗ ∗
∗

∗ ∗ ∗

 
≤  

    

for 1, 2,j =  . 

Proof. Applying Lemma (2) gives 0
X X

A
X X

∗

∗

 
 = ≥
  

 for an arbitrary ope- 

rator X . Let 
0

,
0
D

N
C
 

=  
 

 by using Inequality (3.1) we have  

0.
D X D DXC

NAN
CX D C X C

∗ ∗ ∗
∗

∗ ∗ ∗

 
=   ≥
  

 Hence using Inequality (1.5) gives  

( )2 j j

D X D DXC
s DXC s

CX D C X C

∗ ∗ ∗
∗

∗ ∗ ∗

 
≤  

  
. 

Remark 1 Theorem (3.3) is generalization of Theorem (3.1) because here X is 
arbitrary operator but there A should be positive operator. 

Remark 2 Inequality (2.2) is equivalent to arithmetic-geometric mean 
inequality. We can prove this equivalent by similar steps used to prove Theorem 
(3.2). 

The following theorem is a generalization of Theorem (3.1) and Theorem 
(3.3). 

Theorem 3.4 Let , , ,A B C D  and X  be arbitrary operators in ( )K H . Then 
we have  

( )2 j

j

s A X C BXC AX D B X D

A X A BXA AX B B X B A X C BXC AX D B X D
s

C X A DXA CX B D X B C X C DXC CX D D X D

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

± ± +

 ± ± + ± ± +
 ≤
 ± ± + ± ± + 
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for 1, 2,j =  . 

Proof. Let , .
X XA B

M Z
C D X X

∗

∗

 ± 
 = =  ±    

 Then  

0.
X XA B A C

MZM
C D X X B D

∗ ∗ ∗
∗

∗ ∗ ∗

 ±   
 = ≥   ±     

 Hence  

0,
A X A BXA AX B B X B A X C BXC AX D B X D

C X A DXA CX B D X B C X C DXC CX D D X D

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 ± ± + ± ± +
  ≥
 ± ± + ± ± + 

 

use Inequality (1.5) to get the required result.  
Remark 3 Replace B, D by 0 in Inequality (2.4) will gives Inequality (2.1). 
Remark 4 Replace A, C by 0 in Inequality (2.4) will also gives Inequality (2.1). 
Now we will use Inequality (1.3) to prove the following theorem, then we will 

show that they are equivalent. 
Theorem 3.5 Let 1 2 3 4, , ,A A A A  be operators in ( )K H . Then  

( )22 2 21 2 1 4
1 2 3 4

3 2 3 4

2 j j
A A A A

s s A A A A
A A A A

∗ ∗

∗ ∗

 
≤ + + + 

 
 

for 1, 2,j =  . 

Proof. Let 1 2

3 4

0 0
, .

0 0
A A

A B
A A
   

= =   
  

 Then 1 2 1 4

3 2 3 4

,
A A A A

AB
A A A A

∗ ∗
∗

∗ ∗

 
=  
 

 and  

22 2 2
1 2 3 4 .A A B B A A A A∗ ∗+ = + + +  Now use Inequality (1.3) we get  

( )22 2 21 2 1 4
1 2 3 4

3 2 3 4

2 j j
A A A A

s s A A A A
A A A A

∗ ∗

∗ ∗

 
≤ + + + 

 
 

for 1, 2,j =  . 
Now we will prove that Inequality (2.3) is equivalent to Inequality (1.3). 
Theorem 3.6 The following statements are equivalent:  
1) Let ( ),A B K H∈ . Then  

( ) ( )2 j js AB s A A B B∗ ∗ ∗≤ +  

for 1, 2,j =  . 
2) Let 1 2 3 4, , ,A A A A  be operators in ( )K H . Then  

( )22 2 21 2 1 4
1 2 3 4

3 2 3 4

2 j j
A A A A

s s A A A A
A A A A

∗ ∗

∗ ∗

 
≤ + + + 

 
 

for 1, 2,j =  . 
Proof. 1) → 2) It is the proof of Theorem (3.5). 
2) → 1) By replacing 2 4A A B= =  and 1 3A A A= =  in Inequality (2.3), we  

get ( )2 2 2 22 .j j
AB ABs s A B A B
AB AB

∗ ∗

∗ ∗

 
≤ + + + 

 
 From this we reach to  

( ) ( )4 2j js AB s A A B B∗ ∗ ∗≤ +  which implies that ( ) ( )2 j js AB s A A B B∗ ∗ ∗≤ +  
for 1, 2,j =  . 

In the rest of this paper, we will prove new inequality which is equivalent to 
Inequality (1.7). 
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Theorem 3.7 Let 1 2, , , nA A A  be positive operators in ( )K H , n is an even 
integer, 0r ≥ . Then  

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 1 2 1 2 1 2 1 2
1 1 2 2 1 1 1 1

1 1 1
1 2 1 1

2 r r r
j n n n n n n

r r r
j n n n

s A A A A A A A A A A A A

s A A A A A A

− −

+ + +
−

 + ⊕ + ⊕ ⊕ + 
 ≤ + ⊕ + ⊕ ⊕ + 





(3.5) 

for 1, 2,j =  . 

Proof. Let 

1

2 1

1

0 0 0 0
0 0 0 0

, .
0 0 0 0
0 0 0 0

n

n

n

A A
A A

C D

A A

−

   
   
   = =
   
   

  

 

 

   

 

 Then we have  

( )

( )
( )

( )

1 2 1 2
1 1

1 2 1 2
1 2 1 2 2 2 1 1

1 2 1 2
1 1

0 0

0 0 ,
0 0

0 0

r
n n

r
r n n

r
n n

A A A A

A A A AC C D D

A A A A

− −

 +
 
 +

+ =  
 
 + 





 



 

and ( )

( )
( )

( )

1
1

1
1 2 1

1
1

0 0

0 0 .
0 0

0 0

r
n

r
r n

r
n

A A

A AC D

A A

+

+
+ −

+

 +
 
 +

+ =  
 
 + 





 



 Now apply  

Inequality (1.7) we get the result. 
We will prove that Inequality (1.7) is equivalent to Inequality (3.5). 
Theorem 3.8 The following statements are equivalent:  
1) Let A  and B  be positive operators in ( )K H , 0r ≥ . Then  

( )( ) ( ) 11 2 1 22 r r
j js A A B B s A B ++ ≤ +  

for 1, 2,j =  . 
2) Let 1 2, , , nA A A  be positive operators in ( )K H , n is even integer, 0r ≥ . 

Then  

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 1/2 1 2 1 2 1 2
1 1 2 2 1 1 1 1

1 1 1
1 2 1 1

2 r r r
j n n n n n n

r r r
j n n n

s A A A A A A A A A A A A

s A A A A A A

− −

+ + +
−

 + ⊕ + ⊕ ⊕ + 
 ≤ + ⊕ + ⊕ ⊕ + 





 

for 1, 2,j =  . 
Proof. 1) → 2) This implication follows from the proof of Theorem 3.7. 
2) → 1) Let 2 3 1 0nA A A −= = = =  in Inequality (3.5) to get  

( ) ( ) ( ) ( )1 11 2 1 2 1 2 1 2
1 1 1 1 1 12 r r r r

j n n n n j n ns A A A A A A A A s A A A A+ +   + ⊕ + ≤ + ⊕ +     

for 1, 2,j =  . But ( ) ( )j js X s X∗ =  and ( ) ( )j js X X s Y Y⊕ ≤ ⊕  for  
1, 2,j =  . 

If and only if ( ) ( )j js X s Y≤ , this gives  

( ) ( ) 11 2 1 2
1 1 12 r r

j n n j ns A A A A s A A + + ≤ +   

for 1, 2,j =  , replace 1A  by A , nA  by B  in this inequality we will get  
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( )( ) ( ) 11 2 1 22 r r
j js A A B B s A B ++ ≤ +  

for 1, 2,j =  . 

4. Conclusion 

Since this study has been completed, we can conclude that several singular value 
inequalities for compact operators are equivalent to arithmetic-geometric mean 
inequality, which in turns have many crucial applications in operator theory, 
and from this point we advise interested authors to join these results with results 
in other studies to make connection between several branches in operator 
theory. 
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