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Abstract 
In this paper we present a new type of Restarted Krylov methods for calculat-
ing peripheral eigenvalues of symmetric matrices. The new framework avoids 
the Lanczos tridiagonalization process, and the use of polynomial filtering. 
This simplifies the restarting mechanism and allows the introduction of sev-
eral modifications. Convergence is assured by a monotonicity property that 
pushes the eigenvalues toward their limits. The Krylov matrices that we use 
lead to fast rate of convergence. Numerical experiments illustrate the useful-
ness of the proposed approach. 
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1. Introduction 

In this paper we present a new type of Restarted Krylov methods. Given a 
symmetric matrix n nG ×∈ , the method is aimed at calculating a cluster of k 
exterior eigenvalues of G. Other names for such eigenvalues are “peripheral 
eigenvalues” and “extreme eigenvalues”. The method is best suited for handling 
large sparse matrices in which a matrix-vector product needs only 0(n) flops. 
Another underlying assumption is that k2 is considerably smaller than n. The 
need for computing a few extreme eigenvalues of such a matrix arises in many 
applications, see [1]-[21]. 

The traditional restarted Krylov methods are classified into three types of 
restarts: “Explicit restart” [1], [9], [11], “Implicit restart” [1], [3], [12], and 
“Thick restart” [18], [19]. See also [7], [11], [14], [16]. When solving symmetric 
eigenvalue problems all these methods are carried out by repeated use of the 
Lanczos tridiagonalization process, and the use of polynomial filtering to 
determine the related starting vectors. This way each iteration generates a new 
tridiagonal matrix and computes its eigensystem. The method proposed in this 
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paper is based on a different framework, one that avoids these techniques. The 
basic iteration of the new method have recently been presented by this author in 
[4]. The driving force is a monotonicity property that pushes the estimated 
eigenvalues toward their limits. The rate of convergence depends on the quality 
of the Krylov matrix that we use. In this paper we introduce a modified scheme 
for generating the Krylov matrix. This leads to dramatic improvement in the rate 
of convergence, and turns the method into a powerful tool. 

Let the eigenvalues of G be ordered to satisfy   

1 2
ˆ ˆ ˆ 0nλ λ λ≥ ≥ ≥ ≥

                    (1.1) 

or 

1 2 .nλ λ λ≥ ≥ ≥  

                       (1.2) 

Then the new algorithm is built to compute one of the following four types of  
target clusters that contain k extreme eigenvalues. 

A dominant cluster 

{ }1̂
ˆ, , .kλ λ

                        (1.3) 

A right-side cluster 

{ }1, , .kλ λ 


                        (1.4) 

A left-side cluster 

{ }1 1, , , .n k n nλ λ λ+ − −
  


                    (1.5) 

A two-sides cluster is a union of a right-side cluster and a left-side cluster. 
For example, { }1, nλ λ   or { }1 2, , nλ λ λ   . 

Note that although the above definitions refer to clusters of eigenvalues, the 
algorithm is carried out by computing the corresponding k eigenvectors of G. 
The subspace that is spanned by these eigenvectors is called the target space. 

The basic iteration 
The qth iteration, 0,1, 2,q =  , is composed of the following five steps. The 

first step starts with a matrix n k
qV ×∈  that contains “old” information on the 

target space, a matrix n
qY ×∈   that contains “new” information, and a matrix 

( ), n k
q q qX V Y × + = ∈ 

  that includes all the known information. The matrix 

qX  has p k= +   orthonormal columns. That is  
T .p p
q qX X I ×= ∈  

(Typical values for   lie between k to 2k.) 
Step 1: Eigenvalues extraction. First compute the Rayleigh quotient matrix  

T .q q qS X GX=  

Then compute k eigenpairs of qS  which correspond to the target cluster. 
(For example, if it is desired to compute a right-side cluster of G, then compute a 
right-side cluster of qS .) The corresponding k eigenvectors of qS  are 
assembled into a matrix  
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T, ,p k k k
q q qU U U I× ×∈ = ∈   

which is used to compute the related matrix of Ritz vectors,  

1 .q q qV X U+ =  

Note that both qX  and qU  have orthonormal columns, and 1qV +  inherits 
this property. 

Step 2: Collecting new information. Compute a Krylov matrix n
qB ×∈   

that contains new information on the target space. 
Step 3: Orthogonalize the columns of qB  against the columns of qV 1+ . 

There are several ways to achieve this task. In exact arithmetic the resulting 
matrix, qZ , satisfies the Gram-Schmidt formula  

( )T
1 1 .q q q q qZ B V V B+ += −  

Step 4: Build an orthonormal basis of Range (Zq). Compute a matrix,  
T

1 1 1, ,n
q q qY Y Y I× ×
+ + +∈ = ∈  

   

whose columns form an orthonormal basis of Range (Zq). This can be done by a 
QR factorization of qZ . (If rank (Zq) is smaller than  , then   is temporarily 
reduced to be rank (Zq).) 

Step 5: Define 1qX +  by the rule  

1 1 1, ,q q qX V Y+ + + =    

which ensures that  
T

1 1 .p p
q qX X I ×
+ + = ∈  

At this point we are not concerned with efficiency issues, and the above 
description is mainly aimed to clarify the purpose of each step. Hence there 
might be better ways to carry out the basic iteration. 

The plan of the paper is as follows. The monotonicity property that motivates 
the new method is established in the next section. Let ( ) , 1, ,q

j j kλ =  , denote 
the Ritz values which are computed at Step 1 of the qth iteration. Then it is 
shown that each iteration gives a better approximation of the target cluster. 
Moreover, for each , 1, ,j j k=  , the sequence ( ) , 1, 2,q

j qλ =  , proceeds 
monotonously toward the desired eigenvalue of G. The rate of convergence 
depends on the information matrix qB . The method proposed in Section 3 is 
based on a three-term recurrence relation that leads to rapid convergence. A 
further improvement can be gained by Power acceleration, see Section 4. The 
paper ends with numerical experiments that illustrate the usefulness of the 
proposed methods. 

2. The Monotonicity Property 

The monotonicity property is an important feature of the new iteration, whose 
proof is given in [4]. Yet, in order to make this paper self-contained, we provide 
the proof. We start by stating two well-known interlacing theorems, e.g., [8],  
[10] and [20]. 
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Theorem 1 (Cauchy interlace theorem) Let n nG ×∈  be a symmetric 
matrix with eigenvalues 

1 2 .nλ λ λ≥ ≥ ≥                       (2.1) 

Let the symmetric matrix k kH ×∈  be obtained from G by deleting n k−  
rows and the corresponding n k−  columns. Let   

1 2 kη η η≥ ≥ ≥                       (2.2) 

denote the eigenvalues of H. Then   
for 1, , ,j j j kλ η≥ =                     (2.3) 

and 

1 1 for 1, , .k i n i i kη λ+ − + −≥ =                    (2.4) 

In particular, for 1k n= −  we have the interlacing relations   

1 1 2 2 3 1 1 .n n nλ η λ η λ λ η λ− −≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥            (2.5) 

Corollary 2 (Poincarà separation theorem) Let the matrix n kV ×∈  have k 
orthonormal columns. That is T k kV V I ×= ∈ . Let the matrix TH V GV=  have 
the eigenvalues (2.2). Then the eigenvalues of H and G satisfy (2.3) and (2.4).  

Let us turn now to consider the qth iteration of the new method, 1, 2,3,q =  . 
Assume first that the algorithm is aimed at computing a cluster of k right-side 
eigenvalues of G,  

{ }1 2, , , ,kλ λ λ  


 

and let the eigenvalues of the matrix  
TT , ,q q q q q q qS X GX V Y G V Y   = =      

be denoted as  
( ) ( ) ( ) ( )

1 2 .q q q q
k pλ λ λ λ≥ ≥ ≥ ≥ ≥   

Then the Ritz values which are computed at Step 1 are  
( ) ( ) ( )

1 2 ,q q q
kλ λ λ≥ ≥ ≥  

and these values are the eigenvalues of the matrix  
T

1 1.q qV GV+ +  

Similarly,  
( ) ( ) ( )1 1 1

1 2 ,q q q
kλ λ λ− − −≥ ≥ ≥  

are the eigenvalues of the matrix  
T .q qV GV  

Therefore, since the columns of qV  are the first k columns of qX ,  
( ) ( )1 for 1, , .q q
j j j kλ λ −≥ =   

On the other hand from Corollary 2 we obtain that  
( ) for 1, , .q

j j j kλ λ≥ =

  

Hence by combining these relations we see that   
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( ) ( )1q q
j j jλ λ λ −≥ ≥                       (2.6) 

for 1, ,j k=   and 1, 2,3,q =  . 
The treatment of a left-side cluster is done in a similar way. Assume that the 

algorithm is aimed at computing a cluster of k left-side eigenvalues of G,  

{ }1 1, , , .n k n nλ λ λ+ − −
  


 

Then similar arguments show that   
( ) ( )1

1 1 1
q q

p i p i n iλ λ λ−
+ − + − + −≥ ≥                      (2.7) 

for 1, ,i k=  , and 1, 2,3,q =  . 
Recall that a two-sides cluster is the union of a right-side cluster and a left- 

side one. In this case the eigenvalues of qS  that correspond to the right-side 
satisfy (2.6) while eigenvalues of qS  that correspond to the left-side satisfy (2.7). 
A similar situation occurs in the computation of a dominant cluster, since a 
dominant cluster is either a right-side cluster, a left-side cluster, or a two-sides 
cluster. 

3. The Basic Krylov Matrix 

The basic Krylov information matrix has the form   

[ ]1 2, , , ,n
qB ×= ∈b b b 



                    (3.1) 

where the sequence 1 2, ,b b  , is initialized by the starting vector 0b . The ability 
of a Krylov subspace to approximate a dominant subspace is characterized by 
the Kaniel-Paige-Saad bounds. See, for example, ([7], pp. 552-554), ([10], pp. 
242-247), ([11], pp. 147-151), ([14], pp. 272-274), and the references therein. One 
consequence of these bounds regards the angle between 1b  and the dominant 
subspace: The smaller the angle, the better approximation we get. This suggests 
that 0b  should be defined as the sum of the current Ritz vectors. That is,  

0 1qV +=b e  

where ( )T1,1, ,1 k= ∈e    is a vector of ones. Note that there is no point in 
setting 1 1qV +=b e , since in the next step qB  is orthogonalized against 1qV + . 

The proof of the Kaniel-Paige-Saad bounds relies on the properties of 
Chebyshev polynomials, while the building of these polynomials is carried out 
by using a three term recurrence relation, e.g. [10], [11]. This observation 
suggests that in order to achieve these bounds the algorithm for generating our 
Krylov sequence should use a “similar” three term recurrence relation. Indeed 
this feature is one of the reasons that make the Lanczos recurrence so successful, 
see ([11], p. 138). Below we describe an alternative three term recurrence 
relation, which is based on the Modified Gram-Schmidt (MGS) orthogonaliza- 
tion process. 

Let n∈r   be a given vector and let n∈q   be a unit length vector. That is 

2 1=q  where 2⋅  denotes the Euclidean vector norm. Then the statement 
“orthogonalize r  against q ” is carried out by replacing r  with ( )T−r r q q . 
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Similarly, the statement “normalize r ” is carried out by replacing r  with 

2r r . With these conventions at hand the construction of the vectors 

0 1, , ,b b b


 , is carried out as follows. 
The preparations part 
a) Compute the starting vector: 

0 1 1 2q qV V+ +=b e e                    (3.2) 

b) Compute 1b : Set 1 0G=b b .  
Orthogonalize 1b  against 0b . 
Normalize 1b . 

c) Compute 2b : Set 2 1G=b b .  
Orthogonalize 2b  against 0b . 
Orthogonalize 2b  against 1b . 
Normalize 2b . 

The iterative part 
For 3, ,j =   , compute jb  as follows: 
a) Set 1j jG −=b b .  
b) Orthogonalize jb  against 2j−b .  
c) Orthogonalize jb  against 1j−b .  
d) Reorthogonalization: For 1, , 1i j= − , orthogonalize jb  against ib .  
e) Normalize jb . 
The reorthogonalization step is aimed to ensure that the numerical rank of 

qB  will stay close to  . Yet for small values of   it is not essential. 

4. The Power-Krylov Matrix 

Assume for a moment that the algorithm is aimed at calculating a cluster of k 
dominant eigenvalues. Then the Kaniel-Paige-Saad bounds suggest that slow 
rate of convergence is expected when these eigenvalues are poorly separated 
from the other eigenvalues. Indeed, this difficulty is seen in Table 2, when the 
basic Krylov matrix is applied on problems like “Very slow geometric” and 
“Dense equispaced”. Let 2ν ≥  be a small integer. Then the larger eigenvalues 
of the powered matrix, Gν , are better separated than those of G. This suggests 
that a faster rate of convergence can be gained by replacing G with Gν . 

The implementation of this idea is carried out by introducing a small 
modification in the construction of qB : Here the computation of jb , 1, ,j =   , 
starts with   

1.j jGν
−=b b                         (4.1) 

(In our experiments 4ν = .) It is important to stress that this is the only part of 
the algorithm that uses Gν . All the other steps of the basic iteration remain 
unchanged. In particular, the Ritz values which are computed in Step 1 are those 
of G (not Gν ). Of course, in practice Gν  is never computed. Instead jb  is 
computed by a sequence of ν  matrix-vector multiplications. 

The usefulness of the Power-Krylov approach depends on two factors: The 
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cost of a matrix-vector product and the distribution of the eigenvalues. As noted 
above, it is expected to reduce the number of iterations when the k largest 
eigenvalues of G are poorly separated from the rest of the spectrum. See Table 3. 
Another advantage of this approach is that   is kept small. Note that although 
the computational effort per iteration increases, a smaller portion of time is 
spent on orthogonalizations and on the Rayleigh-Ritz procedure. 

5. The Initial Orthonormal Matrix 

To start the algorithm we need to supply an “initial” orthonormal matrix, 

0
n pX ×∈ , where p k> . This task can be done in the following way. Define 

p k= +   and let n p×  matrix   

0 1 2, , , pB  =  b b b                     (5.1) 

be generated as in Section 3, using some arbitrary starting vector 0b . Then 0X  
is obtained by computing an orthonormal basis of Range(B0). A similar 
procedure is used in the Power-Krylov method. 

In our experiments 0B  is initiated by the vector 0 2=b e e  where  
( )T1,1, ,1 n= ∈e   . Yet a random starting vector is equally good. In the next 

section we shall see that the above choice of 0X  is often sufficient to provide 
accurate estimates of the desired eigenpairs. 

6. Numerical Experiments 

In this section we describe some experiments with the proposed methods. The 
test matrices have the form   

{ }1 2diag , , , n n
nG λ λ λ ×= ∈                    (6.1) 

where   

1 2 0.nλ λ λ≥ ≥ ≥ ≥                      (6.2) 

Recall that in Krylov methods there is no loss of generality in experimenting 
with diagonal matrices, e.g., ([6], p. 367). The diagonal matrices that we have 
used are displayed in Table 1. All the experiments were carried out with n = 
12,000. The experiments that we have done are aimed at computing a cluster of 
k dominant eigenvalues. The figures in Table 2 and Table 3 provide the number 
of iterations that were needed to satisfy the inequality   

( ) ( ) 14
1

1
10 .

k
q

j j
j

kλ λ λ −

=

 
− ≤ 

 
∑                  (6.3) 

Thus, for example, from Table 2 we see that only 4 iterations are needed when 
the algorithm computes 200k =  eigenvalues of the Equispaced test matrix. 

The ability of the basic Krylov matrix to achieve accurate computation of the 
eigenvalues is illustrated in Table 2. We see that often the algorithm terminates 
within a remarkably small number of iterations. Observe that the method is 
highly successful in handling low-rank matrices, matrices which are nearly low-  
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Table 1. Types of test matrices, 12000n = . 

Matrix type Matrix eigenvalues , 1, ,j j nλ =   

Harmonic squares ( )21j jλ =  

Harmonic 1j jλ =  

Harmonic roots ( )1 21j jλ =  

Very fast geometric decay ( )0.5 j

jλ =  

Fast geometric decay ( )0.9 j

jλ =  

Geometric decay ( )0.95 j

jλ =  

Moderate geometric decay ( )0.99 j

jλ =  

Slow geometric decay ( )0.999 j

jλ =  

Very slow geometric decay ( )0.9999 j

jλ =  

Dense equispaced 1j n jλ = + −  

Equispaced 1001j jλ = −  for 1, ,1000j =   and 0jλ =  for 1001, ,j n=   

Low-Rank-100 101j jλ = −  for 1, ,100j =   and 0jλ =  for 101, ,j n=   

Low-Rank-50 51j jλ = −  for 1, ,50j =   and 0jλ =  for 51, ,j n=   

Low-Rank-10 1j n jλ = + −  for 1, ,10j =   and 0jλ =  for 11, ,j n=   

Harmonic Triples 3 2 3 1 3 1j j j jλ λ λ− −= = =  for 1, , 3j n=   

Multiple-Harmonic 1jλ =  for 1, ,10j =   and 1j jλ =  for 11, ,j n=   

Multiple-Geometric 1jλ =  for 1, ,10j =   and ( )0.95 j

jλ =  for 11, ,j n=   

Equispaced-Geometric Gap 101j jλ = −  for 1, ,100j =   and ( )0.95 j

jλ =  for 101, ,j n=   

 
rank, like “Harmonic” or “Geometric”, and matrices with gap in the spectrum. 
In such matrices the initial orthonormal matrix, 0X , is sufficient to provide 
accurate eigenvalues. Note also that the method has no difficulty in computing 
multiple eigenvalues. 

As expected, a slower rate of convergence occurs when the dominant eigen- 
alues that we seek are poorly separated from the other eigenvalues. This 
situation is demonstrated in matrices like “Dense equispaced” or “Very slow 
geometric”. Yet, as Table 3 shows, in such cases the Power-Krylov method leads 
to considerable reduction in the number of iterations. 

7. Concluding Remarks 

The new type of Restarted Krylov methods avoids the use of Lanczos algorithm. 
This simplifies the basic iteration, and clarifies the main ideas behind the  
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Table 2. Computing k dominant eigenvalues with the basic Krylov matrix, 40k= + . 

Matrix type 
Number of iterations 

6k =  10k =  20k =  40k =  100k =  200k =  

Harmonic squares 0 0 0 0 0 0 

Harmonic 0 0 0 0 0 0 

Harmonic roots 0 0 0 1 2 3 

Very fast Geometric 0 0 0 0 0 0 

Fast Geometric 0 0 0 0 0 0 

Geometric 0 0 0 0 0 0 

Moderate Geometric 1 1 2 1 0 0 

Slow Geometric 7 7 8 9 10 7 

Very slow Geometric 28 27 28 23 26 23 

Dense Equispaced 43 43 39 33 31 32 

Equispaced 6 7 7 9 7 4 

Low-Rank-100 1 1 1 0 0 0 

Low-Rank-50 0 0 0 0 0 0 

Low-Rank-10 0 0 0 0 0 0 

Harmonic triples 2 2 2 3 3 4 

Multiple-Harmonic 3 2 2 2 2 1 

Multiple-Geometric 3 4 3 2 2 1 

Equispaced-Geometric Gap 1 1 1 0 0 0 

 
Table 3. Computing k dominant eigenvalues with the Power-Krylov matrix, 40k= + . 

Matrix type 
Number of iterations 

6k =  10k =  20k =  40k =  100k =  200k =  

Harmonic squares 0 0 0 0 0 1 

Harmonic 0 0 0 0 0 0 

Harmonic roots 0 0 0 0 0 0 

Very fast Geometric 0 0 0 0 0 0 

Fast Geometric 0 0 0 0 0 0 

Geometric 0 0 0 0 0 1 

Moderate Geometric 0 0 0 0 0 0 

Slow Geometric 3 4 4 4 4 2 

Very Slow Geometric 14 17 18 15 15 12 

Dense Equispaced 16 17 19 18 16 15 

Equispaced-1000 3 4 3 4 3 2 

Low-Rank-100 0 0 0 0 0 0 

Low-Rank-50 0 0 0 0 0 0 

Low-Rank-10 0 0 0 0 0 0 

Harmonic triples 1 2 2 2 2 2 

Multiple-Harmonic 2 2 2 1 1 1 

Multiple-Geometric 1 3 1 2 0 0 

Equispaced-Geometric Gap 0 0 0 0 0 0 
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method. The driving force that ensures convergence is the monotonicity proper- 
ty, which is easily concluded from the Cauchy-Poincaré interlacing theorems. 
The proof indicates too important points. First, there is a lot of freedom in 
choosing the information matrix, and that monotonicity is guaranteed as long as 
we achieve proper orthogonalizations. Second, the rate of convergence depends 
on the “quality” of the information matrix. This raises the question of how to 
define this matrix. Since the algorithm is aimed at computing a cluster of 
exterior eigenvalues, a Krylov information matrix is a good choice. In [4] we 
have tested the classical Krylov matrix where jb  is obtained by normalizing 

1jG −b . However, as shown in [5], this matrix suffers from certain deficiencies. In 
this paper the Krylov basis is built by a three term recurrence relation, which 
leads to dramatic reduction in the number of iterations. 

Indeed, the results of our experiments are quite encouraging. We see that the 
algorithm requires a remarkably small number of iterations. In particular, it 
efficiently handles various kinds of low-rank matrices. In these matrices the 
initial orthonormal matrix is often sufficient for accurate computation of the 
desired eigenpairs. The algorithm is also successful in computing eigenvalues of 
“difficult” matrices like “Dense equispaced” or “Very slow geometric decay”. 
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