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Abstract

A new inequality on the minimum eigenvalue for the Fan product of nonsingular M-matrices is
given. In addition, a new inequality on the spectral radius of the Hadamard product of nonnegative
matrices is also obtained. These inequalities can improve considerably some previous results.
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1. Introduction

Let A:(al.j.)eR"X”, and N={1,2,---,n}. We writt 420 (4>0) if a;>0 (al./. >0) for any i,je N .
If A>0, A4 is called a nonnegative matrix, and if 4 > 0, 4 is called a positive matrix. The spectral radius of a
nonnegative matrix 4 is denoted by p(4).

We denote by Z, the class of all n x n real matrices, all of whose off-diagonal entries are nonpositive. A ma-
trix A= (a,-,- ) € Z, is called an M-matrix if there exists a nonnegative matrix B and a nonnegative real number
s, such that A=s/—-B with s> p(B), where [ is the identity matrix. If s> p(B) (resp., s=p(B)), then
the M-matrix 4 is nonsingular (resp., singular) (see [1] [2]). Denote by M, the set of nonsingular M-matrices.
We define 7(4)= min{Re(/i) :Aeo(A)}, where o(4) denotes the spectrum of 4.

The Fan product of two matrices A4 =|a, ) eC™ and B= (bl.j ) e C™ is the matrix A% B = (cl.j) eC™,

where
—a,b;, ifi#j,
C.. =
" lab ifi=j.

i’

If 4,BeM,, then sois A*B.In ([2], p. 359), a lower bound for 7(A4*B) was given: if 4,BeM,,
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then 7(AxB)>7(A4)7(B).

If 4 :(aij)eMn, and a, >0, we write Q=D—4, where D =diag(a,). Thus we define J,=D"Q.
Obviously, J, is nonnegative. Recently, some authors gave some lower bounds of T(A*B) (see [3]-[8]). In
[4], Huang obtained the following result for 7(Ax B),

(4% B)2(1-p(J,)p(J ))Eg}{a"b”}' (1)

The bound of (1) is better than the bound 7(4)z(B) in([2], p. 359).

In [7], Liu gave a lower bound of 7(A* B),

i#j

L
(A*B)>m1n%{a”b” +a;b, - [(a”b” ab, )2 +41“l_j}2}, )

where T, =a,a,b,b,p*(J,)p’(J5). The bound of (2) is better than the one of (1).

i i i
For a nonnegative matrix 4= (a,.j), let N=A4-D, where D =diag(a,). We denote J), =D,'N, where
D, =diag(d,),

d, =

ii

a,, ifa, #0,
I, ifa,=0.

The Hadamard product of two matrices A4 = (al.j) eC™ and B= (bu) e C™ is the matrix
AoB = (a b, )e C™ . For two nonnegative matrices 4 and B, recently, some authors gave several new upper
bounds of p(A B) (see [3]-[7][9]). In [4], Huang obtained the following result for p(4oB),

D)If a,b, #0,Vie N, then

il

p(A°B)<(1+p(J,) p(J;))max{a,b,}. 3)

1<i<n

2) If a,, =0 or b , 20 for some ip, but a.b, =0,Vie N,then

il

p(4°B)<p(J))p(J; )max{a”,b,} 4
3)If a,=0 and b, =0,Vie N, then
p(4°B)<p(J})p(J4)- ®)

4) If a,, b, #0 and a, b . #0 for some i, jo, then the upper bound of p(4eB) is the maximum
value of the upper bounds of the inequalities in (3)-(5).

The bound of p(AeB) in[4] is better than that in ([2], p. 358).

In [7], Liu gave a new upper bound of p(4°B),

DIf ab, #0,Vie N, then

il

i#j

1
p(Ao B) <max— 1 {aubu +anbU +[(allblt Jjbf/' )2 +4Qif:|2 }’ (6)

where Q =aa,bb,p*(J))p*(J})-

i gy

2)If a, #0 and a,. #0 or b, #0 and b, . #0 forsome i,,j,,but a.b, =0,VieN,then
‘olo JoJo folo JoJo

il

o0 ()0 e, (00, ) | o)

3)If a,=0 and b, =0,Vie N, then

p(42B)< p(J})p(J}). ®)
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4 If a,, b, #0 and a, b, . #0 for some i, jo, then the upper bound of p(AeB) is the maximum

iolo ~iplo

value of the upper bounds of the inequalities in (6)-(8).

The bound of p(AeB) in|[7]is better than that in [4].

The paper is organized as follows. In Section 2, we give a new lower bound of r(A * B) . In Section 3, we
present a new upper bound of (A4 B).

2. Inequalities for the Fan Product of Two M-Matrices

In this section, we will give a new lower bound of r(A * B
If A= (a )e R™ and k>0, we write A" (ai]]‘) for the k-th Hadamard power of 4. If x=(x,)eR"
and k>0, wewrite x*) = (x[

Lemma 1. [7] Let A,Be M, ,andlet D,EcR"™ be two positive diagonal matrices. Then
D(A*B)E = (DAE)*B = (DA)*(BE) = (AE)*(DB) = A*(DBE).

Lemma 2. [2]If A= (ay.) e R™ is a nonnegative matrix and k =1, then

p(A(k)) <p*(4).

Theorem 1. Let A=<a> and Bz(bij)eMn.Then

i

i#]

1
.1 2 2) |2
7(A*B)>min— 5 {a”b” +ab, - l:(a”b” ,,b,-j) + 4;/;_ )} },

where 7( ) =a.a.bb. p( )p(J,(:)),i,jeN.

i e jj

It is evident that the Theorem holds with equality for n = 1. Next, we assume that n>2.
(1) First, we assume that A B is irreducible matrlx then A4 and B are irreducible. Obviously J, and Jp are
also irreducible and nonnegative, so J, ) and J 2 are nonnegative irreducible matrices. Then there exist two

positive vectors # = (&) and v =(¥) suchthat JP7 = p(JEf) )L_l and JV)v = p(ng))V. Let

2
sl o), sPLT ), e

s U Vi

Let 1_{1=< ) U'AU and B= (b ) V'BV in which U and V are the nonsingular diagonal matrices
U = diag(u,,u,, -,u,) and V =diag(w,v,,"--,v,). Then, we have

a, apl,
u U
dath L G,
5 (=~ -l _ 22
A=(a;)=U"4U=| u, u, |,
au,  a,u
nl”1 n2""2
a}’m
un un
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nl

v

n

b,

b,v, b,v,
Vi Y
b bZn Vn
2
V)
bn2v2 b
nn
v

n

It is easy to see that A4 , B , and J'U are nonsingular since V" and U are. From Lemma 1, we have

(vU) " (4% B)(YU)=U"V" (4% B)VU =(U™' AU )= (V"'BV )= 4% B.

Thus, we obtain 7(A4* B)= ‘r(/] * é) , and

apby,u,v, a,b,u,v,
anby, - -
Uy Uy
ay b, v, a,,b,,1,V,
~ = - by, -
A*xB=|c.)= u,v. u,v
i 22 V2
_anlbnlulvl _aannZquZ a b
nn-nn
uﬂv"l unvn

We next consider the minimum eigenvalue 7(A4* B
0<A<ab,

il 2

of AxB. Let A=r1 1:1*1;’). Then we have that

Vie N .By Theorem 1.23 of [10], there exist i, j, € N, i, # j,,such that

— — <
|}L afoi()biofo A ajo/ob/'ojo - z C"of Z|Cjof :
t#£iy 1+
By Hélder’s inequality, we have
z z B |al.0,bl.0[utvt | z |a/.0,bj0,u % |
Ciyt Cio| =
1#iy 1#jo g | Uiy Vi t=jo|  Uj Vi,
1
2 9 2 5 2 9 2 22
< ior| W ot | Ve Al U ot | Vi
D e T e ) D
ig Uiy Vi e U =iy YV,
(2 2 42 32 272\ 2 7(2)))2 _ . (2
_(aioioafojobioiobjojop (JA )p (JB = Viio-
Then, we have
2)
—a b |i-a b |<y?
V’ a’oloblolo A a/o]objojo =7 Jo*
Since 0<A<a,b,;,VieN,then
(/I—a, b . )(/I—a. b, . )<7/.(2.)
il ~olo JoJo~Jodo ) — Fiodo "
Hence,
1 1
5 1
2) |2
>-da b +a b . ~|(a.b. —a. b . (2)
/1 - 2 a’olo b’o’o +a./o./o b/o./o |:(alo'0 blo’() a./o./o b/o./o) +47’0/0:| ’
ie.,
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1

2
_ _ ) |2
bioio + ajo/o b/ojo |:(aioio bfoio a‘fojo bjojo ) + 47/ iy Jo

iolo

T(A*B)Z% a

1
2 Igijn%{aiibii + ajjbjj _[(aiibii - ajjbjj )2 + 47;'2) :lz }

(2) Now, assume that A B is reducible. It is well known that a matrix in Z, is a nonsingular M-matrix if
and only if all its leading principal minors are positive (see [11]). If we denote by T = (tl.j) the n x n permuta-
tion matrix with ¢, =t,; =---=¢,_, =t, =1, the remaining #; zero, then both 4—€7 and B-¢T are irre-
ducible nonsingular M-matrix for any chosen positive real number ¢, sufficiently small such that all the leading
principal minors of both 4—€e7T" and B—e€T are positive. Now, we substitute 4—e7 and B—eT for 4 and
B, respectively, in the previous case, and then letting ¢ — 0, the result follows by continuity.

Remark 1. By Lemma 2, the bound in Theorem 1 is better than that in Theorem 4 of 8] and Theorem 2 of [7].

Example 1. Let

4 -1 -1 -1 1 05 0 0

-2 5 -1 -1 -05 1 -05 0
A= , B= .

0 -2 4 -1 0 05 1 -05

-1 -1 -1 4 0 0 -05 1
By calculating with Matlab 7.1, it is easy to show that 7 (A4 B)=3.2296.
Applying Theorem 4 of [4], Theorem 3.1 of [5], Theorem 2 of [7], and Theorem 3.1 of [8], we have
t(AxB)>1.5239, 7(A%B)>24333, 7(AxB)>1.5239, and (A4 B)>2.9779, respectively. But, if we
apply Theorem 1, we have

i) i i i ii i Jii ij

!
1@4*B)Znnnl{ab +a"b.—[@;b.—a b)2+4y@}2}:29831

The numerical example shows that the bound in Theorem 1 is better than that in Theorem 4 of [4], Theorem
3.1 of [5], Theorem 2 of [7], and Theorem 3.1 of [8].

3. Inequalities for the Hadamard Product of Two Nonnegative Matrices

In this section, we will give a new upper bound of p(A ° B) for nonnegative matrices 4 and B. Similar to [7],
for A= (al.j) >0, writt Q=4 — D, where D = diag(a,). We denote J', =D;'Q with D, =diag(d,), where

a,, if a; #0,
”:{L if a, =0.
Note that J) is nonnegative, and J, =4 if a,=0, VieN. For B =(bl.j)20, let D, =diag(5,),
where
by, if b, %0,
“:{L if b, =0.

Similarly, the nonnegative matrix J;, is defined.
Lemma 3. [2] Let A,BeR"",andlet D,E e R"™" be diagonal matrices. Then

D(AB)E =(DAE)o B =(DA)o(BE)=(AE)o(DB)= A(DBE).

Lemmad. [12] Let A= (aij) e R™ be a nonnegative matrix. Then

p(A4)< max% a,+a, +{(aﬁ —a; )2 +4>a, Zajk 2 .

#j k#i k#j
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Theorem 2. Let A=(a;).B=(b;)eR"™, 420 and B>0. Then
DIf ab, #0,Vie N, then

il

i#j

1
1 1
p(AeB)<max— 5 {aub” +a;b, +|:(a”b” —a;b, ) +4nl§_2):|2 }, Q)

where 77(2) =a,a bb, p( '(2))p(J,;(2)),i,jeN.

i e jj

2)If a, #0 and a,, #0 or b, #0 and b, #0 forsome i,j,,but a,b,=0,VieN,then

il

p(AoB)< (p(J/’i(z))p(Jg(z))); max {(a”aﬂ> (b”bﬂ) } (10)

3)If a, =0 and b, =0,Vie N, then
1

p(AOB)S(p(J;@))p(Jé(z)))E' (11)

4) If a,, b, #0 and a, b . #0 for some iy, jo, then the upper bound of p(4eB) is the maximum
value of the upper bounds of the inequalities in (9)-(11).

Proof. 1t is evident that 4) holds with equality for n = 1. Next, we assume that n>2.

(1) First, we assume that Ao B is irreducible matrlx then A4 and B are irreducible. Obviously J/, and J
are also irreducible and nonnegative, so J/, '@ and J are nonnegative irreducible matrices. Then there exist

two positive vectors @ =(u;) and V= (\Z.) such that J’(z)z} = p(J;@) )ﬁ and 9 p(J’(k))f). Let
) _(a b (s
u=(u)=u" (WJ v=(v,)=7" =(\3,.2].

Then we have J'Pu® = p(J;(z))u(z) and J;Ph? = p(J;(z))v(z) , that is

a?uz. bl.z.vz,
YE=dip(a)), XLh=aip()7)
J# i J#EI i

Let ﬁz(&i) U'AU and B= (b ) V™'BV in which U and V are the nonsingular diagonal matrices
U =diag(u,u,,"--,u,) and V =diag(v,,v,,"--,v,). Then we have

a,u a, u
a]] 1272 1n"n
U U
b, Al
I N _ 2
A—(aq./>—U AU =| u, u, |,
a.u, da..u
nl™1 n2"2
an”l
u” un
b,v, b,
b,
Y Y
b2]V| b b2nvn
~ 2
B:(b) VBV =| v, v,
bvi b,v, b
nn
vn vrl
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It is easy to see that A , B , and J'U are nonsingular since V" and U are. From Lemma 4, we have
(vU)" (42 B)(vU)=U"V" (42 B)VU =(U™ AU )o(V"'BV ) =
Thus, we obtain p(AoB)= p(;l ° Z§) ,and

apbouv, o a,b,u,y

1n""n"n
a,b;,
uwn um
ayby v, b ay,by,1,V,
doB=(o )= a0y
°oB=(¢)=| uv, u,v,

anlbn]ulvl aannZquZ

a b

nn-nn

u n Vn u n V"

We next consider the minimum eigenvalue p(}loB) of AoB. For nonnegative irreducible matrices A

and B , by definition of the Hadamard product of A and B , Holder’s inequality, and Lemma 5, we have

1
p(;lo é) < r?i?‘% ¢ +éjj +|:(éii _éji )2 +4Zéit Zéjz:|2

1

b. a,b.uv
=maxl ab.+a.b. + (ab — // //) +4Zall uutvzz et z:|

L il /i i
i#j 2 = WY, iz Y,

_ 1
L2
2 23

1 attu bl? 1‘2 a/tuf b/’ 3
SIIlLanE a”b”+ajjbjj+ (a”b” a; //) +4 Z z Z 2 Z
J

t#i ui t#i i t#] u, t#j V

i#j

1
= max ; {aub], " a//b// + (a”b” //b.l/ ) + 4d”d”5”5,,p( ))p(Jé(Z) ):lz }

Thus, we obtain
DIf a.b, #0,Vie N, then

il

i#j

1
1 2 2) |2
p(Ae B)<max5{a”b”+aﬂbﬂ+|:(a”b” jjbjj) +47715_)} }

2)If a, #0 and a,, #0 or b, #0 and b, #0 forsome iy, /o, but a,b, =0,VieN,then

i il

1 1
o) = o{ ) (18°) s, 1, )
3)If a,=0 and b,=0,Vie N, then

p(AOB) S(P(J;(z))/?(];(z)));.

4)If a. b, #0 and a, b, . #0 for some iy, jo, then the upper bound of p(A4oB) is the maximum

ioly ~iiy JoJo~JoJo

value of the upper bounds of the inequalities in (9)-(11).
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(2) Now, we assume that 4o B is reducible. If we denote by I = (tl.j) the n X n permutation matrix with

ty =ty ==t

=t, =1, the remaining ¢; = 0, then both A+¢eT" and B+e€T are irreducible nonsingular

n—l,n

matrices for any chosen positive real number e . Now, we substitute A+¢e7 and B+eT for A and B, respec-
tively, in the previous case, and then letting € — 0, the result follows by continuity.
Remark 2. By Lemma 2, the bound in Theorem 2 is better than that in Theorem 6 of [6] and Theorem 3 of [9].

Example 2. Let
2 0 1 1 2 05 05 05
1 4 05 05 1 1 1 1
A= , B= .
1 0 3 05 05 0 2 05

05 1 1 2 0 1 1 2

By calculation with Matlab 7.1, we have p(J})=0.8182, p(J};)=1.1258, p(J}*)=0.3047,
ng;<2) )=06263, and p(4°B)=63365.
f we apply Theorem 6 of [4], Theorem 3 of [7], and Theorem 2.2 of [9], we have p(AoB)£11.5266,
p(A°B)<9.6221,and p(A°B)<9.4116, respectively. But, if we apply Theorem 2, we have

1

p(AoB)Smax% agb, +a,b, +[(a.b. ~a,b )2+477<2)}E =7.3620.

i% it i ii i T ij

The numerical example shows that the bound in Theorem 2 is better than that in Theorem 6 of [4], Theorem 3
of [7], and Theorem 2.2 of [9].
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