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ABSTRACT 

The cross product in Euclidean space IR3 is an operation in which two vectors are associated to generate a third vector, 
also in space IR3. This product can be studied rewriting its basic equations in a matrix structure, more specifically in 
terms of determinants. Such a structure allows extending, for analogy, the ideas of the cross product for a type of the 
product of vectors in higher dimensions, through the systematic increase of the number of rows and columns in deter-
minants that constitute the equations. So, in a n-dimensional space with Euclidean norm, we can associate n – 1 vectors 
and to obtain an n-th vector, with the same geometric characteristics of the product in three dimensions. This kind of 
operation is also a geometric interpretation of the product defined by Eckman [1]. The same analogies are also useful in 
the verification of algebraic properties of such products, based on known properties of determinants. 
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1. Introduction 

In the Euclidean space 3IR , the cross product of two 
vectors  and  is the vector designated by the 
symbol 

u


v
uv , and defined for the following conditions 

[2]: 
a) The norm of vector  uv , symbolized for  uv , is 

given for 

  kuv u v ,               (1) 

where senk  , being   the angle between the vec-
tors  and v . u

b) The vector  uv  is perpendicular simultaneously 
to the vectors  and v : u

  0 uv u ,                  (2) 

  0 uv v .                  (3) 

As a consequence of b),  uv  is the normal vector to 
the plane defined for the vectors  and  (Figure 1), 
if these are linearly independent vectors. Considering 

u v

   , ,p q ruv  , then : 0rzpx qy c     , where 
, represents the equation of the plane 1 2c pa qa   3ra

  in a Cartesian coordinate system (  31 2, ,A a a a  is a 
point in 3IR and A  ). 

If  and v  are linearly dependent vectors, then u

  uv 0 ,                   (4) 

where the symbol represents the null vector. 0  

c) The vector  uv  is oriented in relation to the vec-
to

 

e volume V  of parallelepiped defined for the 
ve

rs u  and v  ju s, in right-handed coordinate sys-
tem, the z-axis it is oriented in relation to the x-axis and 
y-axis. 

d) Th

st a

3

ctors u , v  and  uv  is the square of the number 
 uv  (Figu  2): re

  2

3V  uv                  (5) 

The equalities (2), (3) and (5) are equivalent to those 
gi

is possible, through 
si

ven in a Definition 1 found in [3]. 
In this paper, it is shown that it 

mple analogies with the case in the space 3IR , to ex-
tend the ideas of the cross product to the space 4IR , and 
more generally, to the space nIR . The characteristics of 
the cross product in 3IR  ar aintained in higher di-
mensions. 

e m

2. Matrix Structure of  uv  

The initial reasoning for the e ioxtens n of the ideas of the 

resenting the 
ve

cross product is the fact that their basic expressions can 
be represented in the form of determinants. 

In an orthogonal coordinate system, rep
ctors u  and v  in terms of 3-tuples  1 2 3, ,u u uu  

and  1 2 3, ,v v vv , the vector  uv  ca  
starti evelopment of th symbolic determi- 
nant 

n be obtained
n m thg fro e d e 
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Figure 1. [uv] is the normal vector to the plane defined for 
the vectors u and v. 
 

 

Figure 2. Parallelepiped defined for the vecto u, v and rs 
[uv]. 
 

 
1 2 3

1 2 3

1 2 3

ˆ ˆ ˆe e e
u u u
v v v

uv ,           (6) 

where  are the      1 2 3ˆ ˆ ˆ1,0,0 , 0,1,0 , 0,0,1e e e  
 of orthonormal basis in 3vectors IR . 

tion ) leadThe development of the Equa  (6 s to the vec- 
tor form: 

  2 3 1 3 1 2
1 2

2 3 1 3 1 2

ˆ ˆ
u u u u u u

e e
v v v v v v

  uv 3ê ,    (7) 

and the norm of vector  uv  
, res

is calculated with the defi- 
nition of Euclidean norm ulting in 

 

1
2 2 2 2

2 3 1 3 1 2

2 3 1 3 1 2

u u u u u u
v v v v v v


   
 
 

uv


,   (8) 

an equivalent format to 

 

 
1

2
2 3 1 3 1 2

2 3 1 3 1 2

1 2 3

1 2 3

1
u u u u u u
v v v v v v

u u u
v v v



uv

 
1

21 cos
sen , 0 π

cos 1
k


 


    ,   (10) 

and combining the Equations (9) and (10), we obtain 

 
1

2
2 3 1 3 1 2

2 3 1 3 1 2

1 2 3

1 2 3

1

2

1

1 cos

cos 1

u u u u u u
v v v v v v

u u u
v v v






 u v

     (11) 

Equation (11) will be used as starting point for the 
an

3. Extension of the Cross Product to the 

Co clidean space 

alogies developed in the remaining of this work. 

Euclidean Space IR4 

nsider three vectors in Eu 4IR , 

3 1,v
repre-

sented in terms of quadruples  1 11 12 1, ,v v vv ,  4

 2 21 22 23 24, , ,v v v vv  and 3v Let  ,v . 

.   (9) 

In Equation (1), 

31 32 33 34, ,v v v  

    1 2 3ˆ ˆ ˆ1,0,0,0 , 0 , 0,0,1,0e e e     and,1,0,0  

 4ˆ 0,0,0,1e   
4

be the vectors of orthono asis in rmal b
IR . 

It is possible to develop an equivalent product to (1), 
through simple extension of ideas and increase of dimen- 
sions. In space 3IR , two vectors u  and v  generate a 
third vector who orm is proportional to t  product of 
the norms of the generating vectors, being the propor- 
tionality constant related to the angle between u  and 
v . In space 4

se n he

IR , three vectors 1 2,v v  and 3v  ener- 
 a fourth ve r whose norm is portion l to the 

product of the norms of the generating vectors, being the 
proportionality constant related to the angles between the 
vectors 1v  and 2 1,v v  and 3 2,v v  and 3v . 

In sym olic ter this product of vecto s i

g

uclid

ate cto

ms, 

 pro a

 Eb r n ean 
space 4IR  is obtained from the development of the de- 
terminant 

 
1 2 3 4

11 12 13 14
1 2 3

21 22 23 24

31 32 33 34

ˆ ˆ ˆ ˆe e e e
v v v v
v v v v
v v v v

 h v v v ,      (12) 

so that 

1 2 3 kh v v v ,              (13) 

with 
1

2
12 13

21 23

31 32

1 cos cos

cos 1 cos ,

cos cos 1

k
 

 
 

       (14) 
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and the conditions 

The equal sign in the conditions on the angles, given in 
 the case of coplanar v tors. 

In Equation (14), 

12 13 21

12 13 21

13 12 21

21 12 13

2π,

,

,

.

  
  
  
  

   
   
  
    

. 

(14), is justified for ec

Equation (15) represents the number h . In this way, 
2

h  is the determinant whose rows are formed by the 
vectors 1 2  and 3 , representing the content of 
parallelotope (4-parallelepiped) that has the four vectors 
as edges linearly independents [4]. 

, ,h v v v

4. Product of n − 1 Vectors in Euclidean 
space IRn 

cos i j
ij

i j

gle between two of the generating vectors of h , and 
naturally cos cos





v v

v v
 represents the an- Consider n − 1 vectors in Euclidean space nIR , repre- 

sented in terms of n-tuples, such that 

   
 

1 11 12 1, 2 21 22 2,

1 1,1 1,2 1,

, , , , , , ,

, , , , ,

n n

n n n n n

v v v v v v

v v v   

 



v v

v

 

 
 ij ji  , so that 2k  is the determi- 

na
The equivalent in space 
nt of a symmetric matrix. 

4IR  of Equation (11) is (see 

aracte is ics o

The product  1 2 1nH v v v  in space nIR  is a 
vector perpendicular simultaneously to all the  the Equation (15) below): 

The ch r t f the product  uv  in space 
3IR are conserved for h  in space 

 1i i n 1  v  and whose norm is given by the formula 
4IR : 

1 2 1n KH v v v ,            (16) 
a) The norm of h  is portional to the product pro

with 
1 2 3v v v . It is sufficient t velop the determinants in 

Eq
o de

b) r to
ve .
be interp

 repr h

of th

1

2
1,2 1, 1

2,1 2, 1

1,1 1,2

1 cos cos

cos 1 cos

cos cos 1

n

n

n n

K

 
 

 





 






   


.   (17) 

uation (15) to verify the identity. 
 The vector h  is perpendicula  each one of the 

ctors 1 2,v v  and v  The term “perpendicular” should 
eted here as only in the sense that the scalar 

product ih v  results null. 

3

r

PROOF: The e ments of the 1st row of the determi- 
nant that esents t e norm of h  are the same values 
as their own cofactors. It is known that the sum of the 
products e elements of a row for the cofactors of the 
ele

le It is observed that this form is equivalent to the prod-
ucts of vectors defined by [1], and cited in [5,6], namely 
(using the same symbols as in [6]), that a cross product 
satisfies the axioms: 

ments corresponding of other row (inner product) in a 
determinant results in zero (Cauchy’s Determinant 
Theorem), that is, 1 2 3 0     h v h v h v . 

It is also noted that h  is the normal vector to the hy-
perplane that contains 1 2,v v and 3v . Being  

1 1 2 2 3 3 4 4ˆ ˆ ˆ ˆh e h e h e h e   h , then 

(A1)    1, , , 0, 1r iP a a a i r   , 

(A2)    2

1, , det ,r iP a a a a j ,  

where 
2

,a a a . 

1 1 2 2 3:h x h x h x  � 0c  , where 

These preliminary definitions can be formalized start- 
ing from the following proposition. 

3 4 4h x 
PROPOSITION: Let n − 1 vectors be in space nIR , 

with inner product and Euclidean norm. Consider also 
that the vectors are represented by n-tuples such that 

1 1 2 2 3 3 4 4– –h a h a h a h a  , represents the Cartesian 
equation of hyperplane (  2 3 4, , ,
c –

   1A a a a a  is a point
in 4

 
IR

c) Th
 and . 
e is e vectors 

and  he vec

en ed for the 
s 

A�)
vector h  oriented in relation to th    

 
1 11 12 1, 2 21 22 2,

1 1,1 1,2 1,

, , , , , , ,

, , , , ,

n n

n n n n n

v v v v v v

v v v   

 



 

 

v v

v
 

1 2,v v

) T

3v just as t

t of 

tor 4ê  in relation to 1̂e , 

2ê  and 3ê . 
d he cont paralleloto vectors 

v
Being cos ij  the angle between the i-th vector  

and the j-th vector 
iv

jv , the following equality is true (see 
the Equation (18) below): 

pe defin

1 2 3, ,v v and h  i the square of number h . 
With effect, the determinant to the left in PROOF: 

 

   

1

2
12 11 12 14 11 12 13

1
21 22 23

2
12 13

32 33 34 31 33 34 31 32 34 31 32 33
1 2 3 21 23

11 12 13 14
31 32

21 22 23 24

31 32 33 34

1
1 cos cos

cos 1 cos

cos cos 1

v v v
v v v

v v v v v v v v v v v v
v v v v
v v v v
v v v v

 
 
 

 v v v  

(15)

13 14 11 13 14v v v v v v v v v

22 23 24 21 23 24 21 22 241v v v v v v v v v 
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   

1

2
12 13 1 11 13 1 11 12 1, 1

122 23 2 21 23 2 21 22 2, 1

1,2 1,3 1, 1,1 1,3 1, 1,1 1,2 1, 1

11 12 1

1,1 1,2 1,

12

1 2 1

1 1

1 cos co

n n

jn n

n n n n n n n n n n n n

n

n n n n

n

v v v v v v v v v
v v v v v v v v v

v v v v v v v v v

v v v

v v v





 

         

  



 



 
 


           

 


   





v v v

n

n






1

2
1, 1

21 2, 1

1,1 1,2 1, 1

s

cos 1 cos

cos cos cos

n

n

n n n n


 

  





   


   



       (18) 

 
PROOF: Consider n − 1 unit vectors 

in space IRn, with inner product a
Consider also that each ui represents the unit vector in the 
same direction of vi given in the Equation (18), so that 

 1 1i i n  u  
nd Euclidean norm. 

i
i

i


v

u
v

.

   
 

1 11 12 1 2 21 22 2

1 1,1 1,2 1,

, , , , , , ,

, , , , ,

n n

n n n n n

u u u u u u

u u u   

 



u u

u



 
, 



being i ju u

iu  an
 the inner product between the i-th unit 

vector d the j-th unit vector ju
                 (19) 

If the unit vectors are represented by n-tuples such that 

, can be grouped, 
properties presented in (A2), the com- 

ponen in the following identity, which is true 
for values

 

based on the 
ts of u

 of 
i  
n 3 : 

   

12 13 1

22 23 2 21 23

1,2 1,3 1, 1,1 1,

1

n

n

n n n n n n

u u u u u

u u u u u    



 
 

      


11 13 1 11 12 1, 1

12 21 22 2,

3

11

1,

1 2 1 1

2 1

1

1

1

n n

jn n

n n

n

u u u u u u u u u
u u u u

u

u



 







 








    



 




u u u u

u u

1

1, 1,1 1,2 1, 1

1

n n n n n n

n

u u u u

u
    


 


12u

1,1 1,2n nu u 

      (20) 

2 1

1 1 1 2 1

n

n n



 



 
   



u u

u u u u
 

Starting from Equation (20), Equation (18) can be 
demonstrated. With effect, multiplying both members of 
(20) for  2

1 2 1nv v v
r rows orderly 

iv , and since i i iv u v
Equation (18)

, the determinant to the left 
will have thei and appropriately multiplied 

by each one of , is obtained the 
corresponding determinant of . 

Representing, for convenience, 

 

   

12 13 1 11 13 1 11 12 1, 1

122 23 2 21 23 2 21 22 2, 1

1,2 1,3 1, 1,1 1,3 1,

11 12

1,1 1,2

n n n n n n n n

n n

v v

v v

     

 

1,1 1,2 1,

1

n n
ij

n

v
v

   1

1,

1 1

,

1 1,1

n n n

jn n n

ik
n n

n n

v v v v v v v v v
v v v v v v v v v

v k jv v v v v v v v v

v

i n j



 





 




   

  
  


           

  

 


 ,1n k n  


 (21) 

 
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we have that: 

 2

1 2 1

, ,ik ik
n

ij ij

u k j v k j
u v

 
v v v .   (22) 

In relation to the determinant to the right in Equation 
(20), it is sufficient to observe that 1i u , therefore 
cos ij i j  u u , that is: 

1 2 1 1

2 1 2 1

1 1 1 2

12 1, 1

21 2, 1

1,1 1,2 1cos cos cn n n   


   

 1,

1

1

1

1 cos cos

cos 1 cos

os

n

n

n n

n

n

n

 
 







 







 
 

 

u u u u

u u u u

u u u




   





  (23) 

With such considerations, it is demonstrated that 

u

 2

1 2 1

12 1, 1

21 2, 1

1,1 1,2 1, 1

,

1 cos cos

cos 1 cos

cos cos cos

ik
n

ij

n

n

n n n

v k j
v

 


  







  






v v v




   
 n





,   

and the square root of Equation (23) shows that Equation 
(1

 the 
Equations (11) and (15), validating the extension of cross 
product. The geometric properties of 

  (24) 

8) is true. 
Equation (18) is the equivalent n-dimensional of

H  are conserved 
in n dimensions: 

a) The norm of H  is proportional to the product 

1 2 1nv v v , bein proportionality constant K as- 
sociated to the angles between the vectors . 

PROOF: The pro nsists of the own monstration 
of the Equation (18). 

g the 

of co
iv

 de

b) The vector H  is “perpendicular” to each one of 
the vectors 1 2 1

PROOF: The elements of the 1st row of the determi- 
nant that represents the norm of 

, ,, nv v v . 

H  are the same values 
as their own cofactors. In agreement with Cauchy’s De- 
terminant Theorem, the sum of products of the ele- 
m
responding of

 the 
ents of a row for the cofactors of the elements cor- 

 another row (inner product) in a determinant 
results in zero, that is, 1 2    H v H v H v 1

It is also noted that 
0n  . 

H  is the normal vector to the 
hyperplane that contains . Being   1 2 1

1 1 2 2ˆ ˆ ˆn n

, , , nv v v
H e H e H e    , then  

1 1:n nH x �
H 

H x H x 2 2 n

1 1 2 2 n nH a H a H a     , represents the Cartesian 
equation of hyperplane n  (  2 , , n

0 , where  C 
C

1,A a a a  is a point 

in nIR
c) Th

 and . 
e 

nA�)
vector H  

1, n

is oriented in relation to the vec- 
tors 1 2, , v v
ented in

d) Th

v  
relation to ˆ

ontent of pa

1, n


 

just as the vector  is ori- 
. 

e c rallelotope defined for the
tors 

  1 ˆ1
n

ne
1 2 1ˆ ˆ, , , ne e e 

 vec- 

1 2, , v v  v  and H  is the square of number 
H . 

PROOF: The determ
e numbe

inant to the left in Equation (18) 
represents th r . In this way, 

2
HH  is the 

determ are formed by the vectors inant whose rows 
,1 2 1n, , , H v v  v , representing the content of paral- 

 the space

lelotope (n-parallelepiped) that has the n vectors as edges 
linearly independents [4]. 

5. Conclusions 

The possibility to represent the equations of the defi- 
nition of cross product in 3 IR in terms of de- 
terminants allows t oncephe

tors for
rows and co

teristics o
r 

ed 
 

between
ber 

 exten t of the 
product of vec  higher dimen ematically 
increasing lumns t

determinants, 
 the f th  product are c

ot modifi rease 
determinants. 

ship 

sion of the c
sions, syst

o the determinants. 
Through basic properties of it is shown 

that  charac e cross onserved 
in n dimensions, fo any value of n, since such properties 
are n by the increment or dec of rows 
and columns to these

Other geometric properties can be verified, as the re- 
lation  the cross product and area, because 
just as the num  uv  is relat
an

ed to areas of triangles 
d parallelograms, the number H  is related to con-

tents of simplex and parallelotopes, in an equivalent way 
to Cayley-Menger determinant [7,8]. 

Although this work has given emphasis to the geo- 
metric properties of the product of vectors in the space 

nIR , it indirectly shows that their algebraic properties are 
also similar to those vali 3IRd ones in space , for in-

 any vector in space 
stance: 

(C1) If w  isi
nIR  for 

1, 2, ,i n  , then 
a)   ww w 0 ; 

b)  1 1n w w0 0 ; 

c)  1 2 w w 0 0 ; 

d)  1 2 n w w w 0  if any of vectors iw  is the null 
vector. 

(C2) The position change among two vectors in the 
product  1 2 nW w w w  results in the vector W . 

(C3) If w  is any vector in spacei
nIR  for  

1, 2, ,ni   , and a IR , then 

a)    1 2 1 2 na an      w w w w w w  ; 

b)    1 2 1 2n na a  w w w w w  . 

These and other algebraic properties, including the dis- 
tributive property of the product in re

w

lation to the sum of 

Copyright © 2013 SciRes.                                                                               ALAMT 
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ve

prod

extensions associated to the concept of products 
of  
to a type of lent n-dimensional of the concept 
cu or example. 

REFERENCES 
[1] Eckmann, “Stet  G

e,” Commentari , V

ctors, are verified easily by the application of the con-
venient rules on determinants to the matrix structure of 

uct of vectors. 
The analogies developed appear still for the possibility 

of new 
 vectors, such as eventual developments that are related 

 equiva of 
rl, f

 B. ige Lösungen Linearer leichungssys- 
tem i Mathematici Helvetici ol. 15, 1943, 
pp. 318-339. doi:10.1007/BF02565648 

[2] N. Efimov, “Elementos de Geometria Analítica,” Cultura 
Bras 72. i , São Paulo, 19

 A. El que, “Vector Cross Produc Talk Pre
inario de Fran

leira  

[3] du ts,” sen
the Sem Rubio cia of the Universidad de 

008. 

[5] R. Brown and A. Gray, “Vector Cross Products,” Com- 
mentarii Math 42, 1967, pp. 222- 
236. doi:10.10

ted at 

Zaragoza on April 1 2004. 

[4] S. Lipschutz and M. Lipson, “Álgebra Linear,” Bookman, 
Porto Alegre, 2

ematici Helvetici, Vol. 
07/BF02564418 

[6] A. Gray, “Vector Cross Products on Manifolds,” Univer- 
sity of Maryland, College Park, 1968. 

[7] P. Gritzmann and V. Klee, “On the Complexity of Some 

Bisztriczky, P. McMuffen, R. 

 
 
 
 

Basic Problems in Computational Convexity II. Volume 
and Mixed Volumes,” In: T. 
Schneider and A. W. Weiss, Eds., Polytopes: Abstract, 
Convex and Computational, Kluwer, Dordrecht, 1994, p. 
29. 

[8] D. M. Y. Sommerville, “An Introduction to the Geometry 
of n Dimensions,” Dover, New York, 1958, p. 124. 

Copyright © 2013 SciRes.                                                                               ALAMT 


