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ABSTRACT

The cross product in Euclidean space IR’ is an operation in which two vectors are associated to generate a third vector,
also in space IR’. This product can be studied rewriting its basic equations in a matrix structure, more specifically in
terms of determinants. Such a structure allows extending, for analogy, the ideas of the cross product for a type of the
product of vectors in higher dimensions, through the systematic increase of the number of rows and columns in deter-
minants that constitute the equations. So, in a n-dimensional space with Euclidean norm, we can associate n — 1 vectors
and to obtain an n-th vector, with the same geometric characteristics of the product in three dimensions. This kind of
operation is also a geometric interpretation of the product defined by Eckman [1]. The same analogies are also useful in

the verification of algebraic properties of such products, based on known properties of determinants.
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1. Introduction

In the Euclidean space IR’, the cross product of two
vectors U and Vv is the vector designated by the
symbol [uv] , and defined for the following conditions
[2]:

a) The norm of vector [uv] , symbolized for |[uv]
given for

, 18

|[uv]|=|u||v|k, 1)

where k=sena, being « the angle between the vec-
tors U and V.

b) The vector [UV] is perpendicular simultaneously
to the vectors U and V:

[uv]-u=0, )
[uv]-v=0. 3)

As a consequence of b), [uv] is the normal vector to
the plane defined for the vectors u and v (Figure 1),
if these are linearly independent vectors. Considering
[uv]=(p,q,r) , then AB:px+qy+rz+c=0, where
C=-pa —0a, —ra,, represents the equation of the plane
B in a Cartesian coordinate system ( A(a,a,,a,) is a
pointin IR and Ae f).

If u and v are linearly dependent vectors, then

[uv]=0, 4

where the symbol 0 represents the null vector.
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¢) The vector [uv] is oriented in relation to the vec-
tors U and V just as, in right-handed coordinate sys-
tem, the z-axis it is oriented in relation to the x-axis and
y-axis.

d) The volume V; of parallelepiped defined for the
vectors U, V and [uv] is the square of the number
|[uv]| (Figure 2):

v, =[[uv] (5)

The equalities (2), (3) and (5) are equivalent to those
given in a Definition 1 found in [3].

In this paper, it is shown that it is possible, through
simple analogies with the case in the space IR, to ex-
tend the ideas of the cross product to the space IR*, and
more generally, to the space IR". The characteristics of
the cross product in IR’ are maintained in higher di-
mensions.

2. Matrix Structure of [uv]

The initial reasoning for the extension of the ideas of the
cross product is the fact that their basic expressions can
be represented in the form of determinants.

In an orthogonal coordinate system, representing the
vectors U and V in terms of 3-tuples U= (u,,U,,u;)
and V=(V,V,,V;), the vector [uv] can be obtained
starting from the development of the symbolic determi-
nant
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[uv]

Figure 1. [uV] is the normal vector to the plane defined for
the vectors U and v.

[uv]

u

Figure 2. Parallelepiped defined for the vectors u, v and
[uv].

&€ & §
[uv]=lu u, uy, (6)
Vl V2 V3

where & =(1,0,0), & =(0,1,0), & =(0,0,1) are the
vectors of orthonormal basis in IR’ .

The development of the Equation (6) leads to the vec-
tor form:

u u
Vl V3

u
i v,

+

u u
[wl=|, &, ()
2

\A 4

and the norm of vector [uv] is calculated with the defi-
nition of Euclidean norm, resulting in

2 u3 ’ ul u3 ’ ul l"I2 Bk
|[UV]| B V2 V3 " Vl V3 " Vl V2 , (8)
an equivalent format to
1
u2 u3 (_1) ul u3 ul u2 2
V2 V3 Vl V3 Vl V2
|[uv]| =l u u, u .
V] VZ V3
In Equation (1),

Copyright © 2013 SciRes.

L. SIMAL MOREIRA

1
1 cosal?
k =sena = (0<a<m), (10)

cosa 1

and combining the Equations (9) and (10), we obtain

1
u2 u3 (_1) l"ll u3 ul u2 2
V2 V3 Vl V3 Vl V2
ul u2 u3
4 v, vy (11)
1
1 cos a2
- |u||v| cosa 1

Equation (11) will be used as starting point for the
analogies developed in the remaining of this work.

3. Extension of the Cross Product to the
Euclidean Space IR*

Consider three vectors in Euclidean space IR*, repre-
sented in terms of quadruples v, = (Vj;, Vi, Vi3,V ),

v, = (V215V22»V235V24) and v; = (V31,V32,V33,V34) - Let

& =(1,0,0,0),& =(0,1,0,0),& =(0,0,1,0) and

&, =(0,0,0,1) be the vectors of orthonormal basis in
IR".

It is possible to develop an equivalent product to (1),
through simple extension of ideas and increase of dimen-
sions. In space IR’, two vectors U and V generate a
third vector whose norm is proportional to the product of
the norms of the generating vectors, being the propor-
tionality constant related to the angle between u and
v. In space IR', three vectors V,,v, and V, gener-
ate a fourth vector whose norm is proportional to the
product of the norms of the generating vectors, being the
proportionality constant related to the angles between the
vectors v, and Vv,,V, and V;,V, and v;,.

In symbolic terms, this product of vectors in Euclidean
space IR' is obtained from the development of the de-
terminant

& & & ¢
h _ [V1V2V3] — ://11 ://12 ://13 14 , (12)
21 22 23 24
V31 V32 V33 34
so that
= o e (13)
with
1 cosa;, Cosa, %
k= cosa,, 1 CoSys| (14)
cosay Cosay, 1
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o, +o+o, <2,

a, <a,+a

.. 12 13 215
and the conditions
a13 S a12 + aZl’

o, Lay, +a;.

The equal sign in the conditions on the angles, given in
(14), is justified for the case of coplanar vectors.

In Equation (14), cosq; :ﬁ represents the an-
v ||VJ|

gle between two of the generating vectors of h, and

naturally cose; =cosq;;, so that k? is the determi-

nant of a symmetric matrix.

The equivalent in space |IR* of Equation (11) is (see
the Equation (15) below):

The characteristics of the product [uv] in space
IR’ are conserved for h inspace IR*:

a) The norm of h is proportional to the product
|V, ||v2||v3| . It is sufficient to develop the determinants in
Equation (15) to verify the identity.

b) The vector h is perpendicular to each one of the
vectors V,,V, and V;. The term “perpendicular” should
be interpreted here as only in the sense that the scalar
product h-v, results null.

PROOF: The elements of the 1st row of the determi-
nant that represents the norm of h are the same values
as their own cofactors. It is known that the sum of the
products of the elements of a row for the cofactors of the
elements corresponding of other row (inner product) in a
determinant results in zero (Cauchy’s Determinant
Theorem), thatis, h-v, =h-v, =h-v, =0.

It is also noted that h is the normal vector to the hy-
perplane that contains Vv,,V, and V,. Being
h=hé +hé +hé +h, , then
H:hx +hx, +hx +hx, +T=0, where
€ =-ha —ha, —ha, —h,a,, represents the Cartesian
equation of hyperplane ‘H ( A(a,a,,a;,,a,) is a point
in IR* and Ae™).

¢) The vector h is oriented in relation to the vectors
v,,V,and Vv, just as the vector —€, in relation to &,
é and §.

d) The content of parallelotope defined for the vectors
V,,V,,V;and h is the square of number |h| .

PROOF: With effect, the determinant to the left in

Equation (15) represents the number |h| In this way,
|h|2 is the determinant whose rows are formed by the
vectors h,v,,v, and v,, representing the content of
parallelotope (4-parallelepiped) that has the four vectors
as edges linearly independents [4].

4. Product of n — 1 Vectors in Euclidean
space |R"

Consider n — 1 vectors in Euclidean space IR", repre-
sented in terms of n-tuples, such that

V= (V113V12""3V1,n)7vz = (V21’V22""’V2,n)
>V = (Vn—l,lﬂvn—l,Zﬂ"'9Vn—l,n)
The product H =[v\v,---v, ] in space IR" is a
vector perpendicular simultaneously to all the
v, (1 <i< n—l) and whose norm is given by the formula

[H =Ml v [ K (16)
with
1 cosa,, cosa, %
| : 05 o (17)
cosa, ,; Cosc, , - 1

It is observed that this form is equivalent to the prod-
ucts of vectors defined by [1], and cited in [5,6], namely
(using the same symbols as in [6]), that a cross product
satisfies the axioms:

(A1) (P(a..a).a)=0,(1<i<r),

(A2) [P(aa ) =der((a.a,)).

where ||<’:l||2 = (a, a) .

These preliminary definitions can be formalized start-
ing from the following proposition.

PROPOSITION: Let n — 1 vectors be in space IR",
with inner product and Euclidean norm. Consider also
that the vectors are represented by n-tuples such that

Vi :(Vllvvlza"'»vl,n)’vz :(Vzlavzza”'nvz,n)

> sV = (Vn—l,lﬂvn—l,zﬂ'”7Vn—l,n)

Being cosq; the angle between the i-th vector V,
and the j-th vector Vv, , the following equality is true (see
the Equation (18) below):

1
o Vi3 Vi Vii Vi3 Vi o Vi2 Vi Vii Vi Vg5
22 23 24 (_1) Vor Va3 Vy 21 22 24 (_1) Vor Vi Vs 1
1 cosay, COSq,|?
32 33 Va4 Vi Va3 V| [V 32 34 Vi Vi 33
= |V1||V2||V3| cosay,, 1 Cos A,
Vit Viz Vis Via cosa,, cosa 1
31 32
Vi Vs, Vas Vas
Vs, Vi, Vi3 Viy
(15)
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1
12 13 In Vi 13 Vin 11 Via Vi
22 Va3 2n (_1) Vo Vi3 Van (_1)1+j Vai Vi Vanoi
Vn—1,2 Vn—1,3 Vn—l,n Vn—l,l Vn—1,3 Vizin Vn—l,l Vn—1,2 Vn—l,n—l
Vi Viz Vin
: : (18)
Vi1 V1,2 Va-1,n
1
1 cosa,, cosa, |2
—|v||v| |v | cosa,, 1 cosa,
M2 n-1 : :
cosq, ; Ccosa, , CoS Q|

PROOF: Consider n— 1 unit vectors u; (1<i<n-1)
in space IR", with inner product and Euclidean norm.
Consider also that each U; represents the unit vector in the
same direction of ; given in the Equation (18), so that

V.
u =—-. 19)
[vi
If the unit vectors are represented by n-tuples such that

U, Us U U Us

Uiz Unois Un-in Unii o Unois
Uy Uy,
un—l,l un—l 2
1 U - U, Uy - Uny
u, - u, 1 u,-u,,
Upp sl U Uy oo 1

Starting from Equation (20), Equation (18) can be
demonstrated. With effect, multiplying both members of
(20) for (|v1||v2|--~|vn71|)2, the determinant to the left
will have their rows orderly and appropriately multiplied

Via Vi3 Vin Vi Vi3 Vin
Vi) Va3 2n (_1) Vs, Va3 Van
Vn—1,2 Vn—1,3 o Vn—l,n Vn—l,l Vn—1,3 Vo-in
Vih Vi
Vn—l‘l Vn—l,z

(Ii<n-Ll1<j<nl<k<n)
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U, = (U, Uy, U ), Uy = (U, Uy, oe,Uyy)

9""un—l =(un—l,l9un—1,2"”’un—l,n)
being U -u; the inner product between the i-th unit
vector U and the j-th unit vector u;, can be grouped,
based on the properties presented in (A2), the com-

ponents of U, in the following identity, which is true
for values of N>3:

>

uln ul] u12 ul,n—l

A G el e

un—l n un—l 1 un—l 2 un—l,n—l
uln
: (20)
un—l,n

by each one of |Vi , and since |Vi | U, =V, is obtained the
corresponding determinant of Equation (18).
Representing, for convenience,

11 Vis 1,n-1
(_1)1+j V21 V22 VZ,n—l
|Vik’k # J|
Vo Vi Vn—1,n—1 = v (21)
ij
Vin
Vn—l,n
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we have that:

(|V1||V2|"'|Vn—1 |)2

In relation to the determinant to the right in Equation
(20), it is sufficient to observe that |ui|:1, therefore
cosay =U; -U,, that is:

Uy k= |

U,

_ |Viksk¢ J|

. (22)

ij

1 u1 .u2 u1 .un_1
u, -y, 1 u,-u,_,
Uy mUp U nUy o 1
(23)
1 cos &, cosa,
COS Oy, 1 cosa,
cosa, ,, cosa, ., COSy | oy
With such considerations, it is demonstrated that
|V k = ] | 2
ik
= (Ml V- viaal)
Vi
1 cosq, cosq,
12 1,n-1 R (24)
cosa,, 1 cosa,
X . . .
cosa,,, c€osa, , CoS oy

and the square root of Equation (23) shows that Equation
(18) is true.

Equation (18) is the equivalent n-dimensional of the
Equations (11) and (15), validating the extension of cross
product. The geometric properties of H are conserved
in N dimensions:

a) The norm of H is proportional to the product
Vi [[V2|-+|Vaui| » being the proportionality constant K as-
sociated to the angles between the vectors V.

PROOF: The proof consists of the own demonstration
of the Equation (18).

b) The vector H is “perpendicular” to each one of
the vectors V,,V,,---,V, .

PROOF: The elements of the 1st row of the determi-
nant that represents the norm of H are the same values
as their own cofactors. In agreement with Cauchy’s De-
terminant Theorem, the sum of the products of the ele-
ments of a row for the cofactors of the elements cor-
responding of another row (inner product) in a determinant
results in zero, thatis, H.v,=H v, =---=H.v_, =0.

It is also noted that H is the normal vector to the
hyperplane that contains v,,V,,---,V,_, . Being
H=H#é&+H, +---+H_&,then
H,H X +H% +-+H X, +C =0, where
C=-H,a -H,a, —---—H_a,, represents the Cartesian
equation of hyperplane H, (A(a,a,,---,a,) isa point
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in IR" and AeH").

c) The vector H is oriented in relation to the vec-
tors V,,V,, -V, , just as the vector (—1)""&, is ori-
ented in relationto &,&,---,& .

d) The content of parallelotope defined for the vec-
tors V,,V,,---,V,, and H is the square of number

Hi.

| IlROOF: The determinant to the left in Equation (18)
represents the number |H| In this way, |H|2 is the
determinant whose rows are formed by the vectors
H,v,Vv,,--,v,, , representing the content of paral-
lelotope (n-parallelepiped) that has the n vectors as edges
linearly independents [4].

5. Conclusions

The possibility to represent the equations of the defi-
nition of cross product in the space IR’ in terms of de-
terminants allows the extension of the concept of the
product of vectors for higher dimensions, systematically
increasing rows and columns to the determinants.

Through basic properties of determinants, it is shown
that the characteristics of the cross product are conserved
in n dimensions, for any value of n, since such properties
are not modified by the increment or decrease of rows
and columns to these determinants.

Other geometric properties can be verified, as the re-
lationship between the cross product and area, because
just as the number |[uv]| is related to areas of triangles
and parallelograms, the number |H| is related to con-
tents of smplex and parallelotopes, in an equivalent way
to Cayley-Menger determinant [7,8].

Although this work has given emphasis to the geo-
metric properties of the product of vectors in the space
IR", it indirectly shows that their algebraic properties are
also similar to those valid ones in space IR’, for in-
stance:

CH If w
i=1,2,---,n, then

a) [ww---w]=0;

b) [0W1-~Wn71]=0;

¢) [ww,---0]=0;

d) [ww,---w,]=0 if any of vectors W, is the null
vector.

(C2) The position change among two vectors in the
product W =[w,w, ---w, ] results in the vector -W .

(C3) If w, isany vector in space IR" for
i=12,---,n,and aelR, then

a) |:(aW1)W2 "'Wn:| :[Wl(awz...wn)] :

b) [(aw,)w,---w, |=aww, -w,].

is any vector in space IR" for

These and other algebraic properties, including the dis-
tributive property of the product in relation to the sum of

ALAMT



6 L. SIMAL MOREIRA

vectors, are verified easily by the application of the con-
venient rules on determinants to the matrix structure of
product of vectors.

The analogies developed appear still for the possibility
of new extensions associated to the concept of products
of vectors, such as eventual developments that are related
to a type of equivalent n-dimensional of the concept of
curl, for example.
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