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Abstract 
Plants face biotic and abiotic stresses during their entire life cycle, which leads 
to the loss in crop productivity. It has been shown that a relatively shorter 
exposure to heat stress, called priming, results in better adaptation of plants 
under subsequent stresses, which plants may face. While rice plants in nature 
often encounter high temperature stress conditions, the strategies to cope 
with those are poorly understood. We identified the involvement of micro-
RNA pathways in the adaptation to heat stress (HS) at the physiological and 
molecular levels. It was observed that osa-miR169 levels are altered after HS 
and in response to light conditions. Its expression was also regulated by heat 
priming during anthesis and effectively responds to the successive exposure 
to high temperature stress during grain filling in rice. Osa-miR169 targets 
nuclear factor Y (NF-Y). We propose that osa-miR169: NF-Y regulatory 
module may be important for HS memory induced during high temperature 
priming and thus may serve to integrate stress responses with light regulated 
development. The future study in this direction will be useful to understand 
how plants acclimatize to the changing environment and thus help in gene-
rating stress tolerant crops. 
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1. Introduction 

Changes in the climatic conditions because of global warming are imposing chal-
lenges on plants by affecting the distribution of biotic and abiotic factors [1]. These 
stresses impact many important physiological processes, which lead to the loss in 
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crop productivity. Plants have the ability to regulate their genetic machinery and 
metabolism in an attempt to withstand these stresses. Of the various factors, light 
and temperature play important roles in controlling plant development from ve-
getative to reproductive stages. 

Several studies have shown that light signaling in plants is mediated by dis-
tinct transcriptional factors binding to light-responsive elements found within 
the promoters of light-regulated genes [2]. Analogous modulation of growth and 
development in plants is also mediated by temperature signals [3], however, any 
increase from ambient is perceived as stress. High temperature stress (HS) caus-
es protein denaturation, increased fluidity of membrane lipids and elevated lipid 
peroxidation [4] leading to lower photosynthetic rate, reduced seed germination 
and emergence [5] [6]. At reproductive stages, it causes anther indehiscence, 
spikelet sterility, fruit abscission and lower rice seed-sets [7]. However a rela-
tively shorter exposure to stress, like HS, light or chemical treatment [8], called 
priming, results in better adaptation of plants under subsequent stresses. The 
process of priming involves the activation of specific transcription factors (TFs), 
like HSFs that induce the expression of specific set of proteins, like HSPs [9], 
which in turn assist in cellular homeostasis [10]. Recently, it was demonstrated 
that light primes detoxification of the thermally induced reactive oxygen species 
during heat stress in Arabidopsis [11].  

The known stress tolerance mechanisms are mediated through a regulatory 
network involving TFs, feedback circuits, etc. Numerous studies also report that 
small RNAs, especially the microRNAs (miRs) regulate gene expression at the 
transcriptional or post-transcriptional levels. MiRs are involved in various cellu-
lar and molecular pathways associated with almost every aspect of plant growth 
and development [12]. Small RNA analysis in Arabidopsis following HS identi-
fied the deregulation of miR159, miR164, miR166, miR169, miR172, miR319 and 
miR399 families [13]. Short exposure to HS deregulates the expression of miR156, 
miR159, miR162, miR169 and miR529 [14]. In rice cultivar N-22 miR159, miR166 
and miR169 were shown to be deregulated under HS [15]. Another study in-
volving heat stressed wheat tissues demonstrated significant down-regulation of 
miR172 and up-regulation of miR159, miR166 and miR169 [16]. Members of 
miR159, miR164, miR169, miR172, miR319 and miR399 families were found to 
be differentially regulated during HS in switchgrass [17]. The expression of miRs 
is also influenced by light. In Arabidopsis, miR163 expression is induced by 
light [18], while in rice miR164, miR166, miR167, miR168, miR169, miR530 and 
miR2879 are light inducible [19].  

The biological functions of miR169 have been characterized in Arabidopsis, 
Barrel medic, maize, rice, switch grasses, sugarcane and tomato. It was shown 
that overexpression of miR169 or RNAi mediated knock down of its target tran-
script, MtHAP2-1 TF, control nodule development in Medicago truncatula [20]. 
The expression of miR169 was down-regulated under phosphate, nitrogen and 
sulfur deficient conditions [21]. In Tomato, miR169 was differentially regulated 
by either phosphate nutrition or arbuscular mycorrhizal fungi (AMF coloniza-
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tion) or both, indicating its regulatory role in the complex signal transduction 
networks of phosphate nutrition and/or AMF derived signaling [22]. In sugar-
cane, the miR169 was found to be deregulated in response to abiotic stress and 
water pollution [23]. It was reported that miR169 differentially expressed in switch 
grass under both heat and drought stress conditions [17]. The miR169 regulates 
a family of CCAAT box-binding TFs known as Nuclear Factor Y (NF-Y) in plants 
[24] [25]. The members of this family are known to enhance tolerance to abiotic 
stresses such as salinity [26], drought [27] and cold [28]. Members of the NF-Y 
family play essential roles in the control of flowering [29], seed development 
[30], photosynthesis [31] and nodule development [20].  

We had earlier reported that integration of light and temperature signaling 
pathways in plants influence the miR based regulatory networks to regulate plant 
growth and development [32]. In this study, we report that osa-miR169 levels 
are altered after HS and in response to light conditions. Its expression is also re-
gulated by heat priming during anthesis and effectively responds to the subsequent 
exposure to HS during grain filling in rice. The involvement of osa-miR169 and 
NF-Y regulatory module in the adaptation to recurring HS memory and thus 
may serve to integrate stress responses with light regulated development. This 
study will be useful to understand how plants acclimatize to the changing envi-
ronment and thus can help design better strategies for generating stress tolerant 
crops. 

2. Materials and Methods 
2.1. Plant Growth Conditions 

Heat-susceptible rice cultivar Pusa Basmati 1 (PB1) was chosen for this study. 
Seeds were surface sterilized with 0.1% HgCl2 and Teepol, rinsed with water and 
then soaked in water overnight. Seeds were grown on germination sheets for two 
weeks in growth room at ICGEB, New Delhi and then transferred to growth 
chamber at 28˚C ± 2˚C and 14/10 h photoperiod for further experiments. The 
leaf tissue samples were harvested from 15-days old seedlings, while flag leaf tis-
sues were collected during anthesis from plants grown under control conditions 
in the greenhouse.  

2.2. High Temperature Treatments 

The high temperature treatments were performed at different stages of plant growth. 
The initial experiments involved exposing two weeks old rice seedlings to tem-
peratures of 33˚C, 38˚C and 43˚C, keeping 28˚C as control growth temperature. 
Leaf tissues were harvested after 24 h, 48 h and 72 h of stress treatment, respec-
tively. 

The next set of experiments was performed during anthesis stage. Rice plants 
were divided into two groups. One group was given direct heat stress (not primed) 
and other was heat primed. In the first group, plants were exposed to high 
temperature at 42˚C for 90 min during the light period. One set of plants was 
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stressed before anthesis (NBH) and the other after anthesis (NAH). The second 
group was heat-primed at 38˚C for 90 min before anthesis (PBH) and after an-
thesis (PAH) and after one day gap, the primed plants were exposed to high 
temperature at 42˚C for 90 minutes. In each set, plants grown at 28˚C served as 
control. Each experiment was performed in triplicate using three plants in each 
set. 

2.3. Light Treatments 

These experiments were performed on two weeks old rice seedlings grown at 
normal dark/light cycle of 10/14 h at 28˚C in greenhouse. One set of plants was 
transferred to continuous darkness (CD) and the second set was transferred to 
continuous light (CL) at normal temperature. Samples were harvested after 24 h 
and 48 h of light or dark exposure and used for further experimentation. Sam-
ples were harvested in three different replicates and each experiment was re-
peated thrice. 

2.4. Isolation of Total RNA 

Total RNA was extracted from various rice tissues using guanidine isothiocya-
nate (GITC) based protocol as described previously [33]. Briefly, leaf tissue was 
homogenised in liquid nitrogen and GITC buffer was added along with phenol 
and chloroform. The mixture was allowed to thaw slowly and centrifuged at high 
speed (~13,000 rpm) for 15 mins. The aqueous phase thus obtained was extracted 
twice with phenol: chlorom form solution and kept for precipitation with etha-
nol. The pellet was washed twice using 75% ethanol at 13,000 rpm for 15 mins 
each and dried at room temperature. The dried pellet of RNA was dissolved in 
required amount of DEPC-treated water and stored at −20˚C. 

2.5. Quantitative RT-PCR Expression Analysis 

The expression levels of mature miR169 and their respective target were ana-
lyzed by qRT-PCR with slight modification using gene specific primers. Total 
RNA was used to synthesize cDNA using miR-specific stem-loop primer with Su-
perscript reverse transcript III (Invitrogen). For target gene, nuclear factor Y 
(NF-Y: LOC_Os07g06470), the cDNA was synthesized from isolated RNA using 
high capacity cDNA kit (Applied Biosystem, USA) and qRT-PCR were performed 
using SYBR Green Master Mix (Applied Biosystems, USA) according to the 
manufacture’s recommendations for at least three experiments replicates and 
deviations are shown as error bars for each dataset. The normalized expression 
values were calculated with respect to 18S control and relative fold change in ex-
pression was plotted. Control (C) was non-stressed rice plants grown at 28˚C ± 
2˚C and 14/10 h photoperiod (the primer sequences are provided in Table A1). 
To check the significance of the observed gene expression difference, the norma-
lized mean values of each experiment was analyzed using the one-way analysis of 
variance (ANOVA) using Microsoft Excel. The treatment means were compared 
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with their respective controls at a significance level of P < 0.05. 

3. Results and Discussion 

In an earlier study, using NGS based computational analysis, we showed that ~45% 
osa-miRs were deregulated under high temperature stress (HS) [32]. Among 
them osa-miR169 was one of the largest families represented by 19 members that 
were regulated by cues from light and HS. miR169 is a highly conserved family 
and its expression levels are influenced by different abiotic stress conditions [17] 
[23] [34]. Our previous study indicated that some members of miR169 family 
that were heat up-regulated in PB1, were differentially down-regulated or absent 
in the tolerant rice variety N22 [32]. It has been clearly demonstrated that miR169 
negatively regulates the transcript level of NF-YA subunit [35] and thus may 
potentially regulate many aspects of plant life including primary root elongation, 
flowering, gametogenesis, seed development, abscisic acid signaling, and res-
ponses to HS, drought and light [36] [37]. 

3.1. Expression of Osa-miR169 and Its Respective Target NF-Y  
Is Influenced by Light Duration 

To understand the influence of light, PB1 seedlings were grown at 28˚C ± 2˚C 
and 14/10 h photoperiod for two weeks and then transferred to continuous 
darkness (CD) or continuous light (CL). The expression patterns of osa-miR169 
were checked in leaves of these seedlings after 24 h and 48 h of change in photo-
period. The normalized expression values were calculated with respect to inter-
nal controls and fold change in expression in CL and CD was plotted. The re-
sults showed that the overall expression of osa-miR169 decreased under both CL 
and CD relative to the control; however, the decrease was greater under CD 
(Figure 1(a)). At 24 h CD (CD1), a decrease in osa-miR169 expression up to 
8-folds was observed and the levels increased at 48 h (CD2). While under CL for 
24 h (CL1), osa-miR169 expression reduced by half (~5-folds) and at CL for 48 h 
(CL2), a slight increase was observed in the expression of osa-miR169. 

The expression of its target, NF-Y was also lowered as compared to the con-
trols, although an inverse correlation between miR169 and NF-Y relative levels 
could be captured for both CD and CL conditions separately (Figure 1(b)). Its 
expression levels in CD1 and CL1 were higher than their corresponding coun-
terparts at 48 h time point. This indicates that the photo-signal may regulate 
NF-Y levels at early time points through the miR pathway. 

The involvement of miR169 in photo-signaling has been indicated by earlier 
studies as well. It was shown that five members of the osa-miR169 family were 
up-regulated in phyB mutant, suggesting their regulations by the phytochrome 
[19]. The miR169 family was also regulated by exposure to UV-B radiation in 
Arabidopsis thaliana, Populus tremula and Triticum aestivum [38] [39]. Several 
reports also have indicated the role of NF-Y family, in light-mediated gene regu-
lation. In Arabidopsis, NF-YA5 regulates the chlorophyll a/b binding protein  
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Figure 1. The relative fold change expression in leaves of seedlings exposed to continuous light (CL1 = 24 h, CL2 = 48 h) and con-
tinuous darkness (CD1 = 24 h, CD2 = 48 h) of (a) osa-miR169 (b) nuclear transcription factor Y (LOC_Os07g06470). The expres-
sion was also analyzed in leaves of seedlings exposed to 33˚C, 38˚C and 43˚C temperature for 24 h, 48 h and 72 h duration for (c) 
osa-miR169 (d) nuclear transcription factor Y (LOC_Os07g06470). The normalized expression values were calculated with respect 
to 18S and fold change in expression was plotted. Control (c) was tissues obtained from unstressed plant grown at 28˚C ± 2˚C and 
14/10 h photoperiod. Expression levels in each case were detected by qRT-PCR (n = 3; means ± SDS). Asterisks indicate a signifi-
cant difference of test conditions from their respective control samples (*p < 0.05; one-way ANOVA test). 

 
expression in response to blue light [31]. A study conducted on Spinacia olera-
cea suggested that the binding of NF-Y complex at the promoter of the down-
stream signaling genes is controlled by the photo-signal [31]. The RNAi based 
knocking down of NF-YB2 in rice leads to reduced chlorophyll content in leaves 
and chloroplast degeneration. The constitutive over-expression of Ta-NF-YB3 in 
transgenic wheat lines also suggested its role in photosynthesis and early plant 
growth [40]. 

3.2. High Temperature Effects the Expression of Osa-miR169 and  
Its Targets NF-Y 

To follow the effect of HS on osa-miR169 expression, PB1 seedlings were exposed 
to temperatures that were 5˚C (33˚C), 10˚C (38˚C) and 15˚C (43˚C) degree 
above normal. At each temperature the exposure time ranged to 24 h, 48 h and 
72 h. The data for expression profiles of osa-miR169 is provided in Figure 
1(c). It was observed that the expression increased with increasing HS; with 
43˚C, 72 h having >20 folds higher relative expression in comparison to con-
trol. This indicates that osa-miR169 expression in PB1 is induced by increasing 
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temperatures. 
The dynamically regulated target, NF-Y showed a decreased expression at 33˚C 

and 38˚C of HS when compared with the control (Figure 1(d)), but increase in 
target expression was seen at 43˚C, 72 h (~2-folds). The anti-correlation of miR169: 
NF-Y node at 43˚C indicates that target expression may be under miR regulation 
at early time points of moderate stress. At higher intensities of HS, other factors 
may come into play thereby masking the effect of miR regulation. Moreover, 
NF-Y and osa-miR169 being large families may show varied expression with 
time in a tissue-specific manner. So, single-cell gene expression analysis will be 
helpful to fully appreciate the influence of changing target expression with re-
spect to the various miR family member expressions.  

3.3. High Temperature Priming under Light Modulates the  
Expression of Osa-miR169 and Its Target NF-Y 

Priming or a short pre-exposure to stress is emerging as a natural mechanism to 
enhance the tolerance of crop plants to HS [3] [8]. The phenomenon is based on 
the plants’ ability to retain stress memory that relates to better adaptability. 
There has been growing interest to unravel the interactive loops between light 
and temperature which most recently has been extended to establishing the 
role of light as an essential signal in the process of a strongly acquired ther-
mo-tolerance response in potato [41].  

We investigated the expression profiles of osa-miR169 in flag leaves (FL) of 
plants primed with HS before anthesis (PBH) and after anthesis (PAH) during 
the light phase. The expression patterns were compared to those obtained in 
plants subjected to direct HS before anthesis (NBH) and after anthesis (NAH). 
The results showed differential expression of osa-miR169 under primed and 
non-primed conditions relative to the control. It was found that the expression 
level of osa-miR169 in PAH plants was down-regulated as compared to NAH. In 
primed plants the expression of osa-miR169 was more in plants at PAH as com-
pared to PBH, whereas in non-primed plants the expression of osa-miR169 
was highly up-regulated at NAH as compared to NBH (Figure 2(a)). The ex-
pression of NF-Y was also checked and compared. An inverse relationship be-
tween miR169 & NF-Y was observed under both priming and non-priming con-
ditions. It was found that NF-Y expression level was highly up-regulated in PBH 
(~1.2-folds) as compared to PAH, but the expression of NF-Y in non-primed 
plants was up-regulated in NBH (~0.4-folds) as compared to the NAH conditions 
(Figure 2(b)). 

The results indicate that the target levels would be complementary to the miR 
levels and influence the plant development by regulating the respective targets. 
Thus PAH lowers the levels of NF-Y, while PBH increases its levels, indicating 
that PBH may protect the plants against HS. Reports on Petunia and Antirrhi-
num suggested that miR169 can be substituted for the function of APETALA 2 
(AP2) to negatively regulate a family of NF-Y subunit A to modulate the down-
stream pathways that control organ identity, flowering time and fate of floral  
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Figure 2. The relative fold change expression of (a) osa-miR169 (b) nuclear transcription factor Y (LOC_Os07g06470) in flag 
leaves of plants under control, priming (PAH = Primed after anthesis, PBH = Primed before anthesis) and non-priming condi-
tions (NAH = non-primed after anthesis, NBH = non-primed before anthesis). The normalized expression values were calculated 
with respect to 18S and fold change in expression was plotted. Control (c) was tissues obtained from unstressed plant grown at 
28˚C ± 2˚C and 14/10 h photoperiod. Expression levels in each case were detected by qRT-PCR (n = 3; means ± SDS). Significant 
differences of test conditions from their respective control samples are denoted by asterisks (*P < 0.05; one-way ANOVA). 

 
meristem [42]. The obtained results indicate that the expression of NF-Y and 
miR169 showed complementary regulation and this is supported by previous 
reports where it is shown that cross-talk mechanisms exist between light and 
temperature signalling [43]. In Arabidopsis, it has been demonstrated that NF-Y 
complex controls flowering time epigenetically by integrating environmental 
and developmental signals. NF-Y interacts with CONSTANS in the photoperiod 
pathway and DELLAs in the gibberellin pathway. Both pathways converge in the 
regulating the transcription of SOC1, a major floral pathway integrator as the 
NF-Y complex binds to a CCAAT box within the SOC1 promoter [44]. Thus NF-Y 
complexes act as critical mediators that regulate the response to environmental 
or intrinsic signals in plants [44].  

4. Conclusions 

In this study, we showed the involvement of osa-miR169 and target NF-Y mod-
ule in adaptation to HS priming. The levels of osa-miR169 are highly up-regulated 
in HS non-primed plants as compared to primed plants in PB1 rice. The changes 
in miR levels indicate modulation of the corresponding transcript for NF-Y, 
which in turn may influence the interaction of NF-Y complex with other TFs. 
Thus miR169 levels will influence the expression of a number of downstream tar-
gets to regulate plant response under HS. 

During the experiments, we observed that the grain yields, calculated in terms 
of grains per panicles, of HS primed (PBH and PAH) rice plants were signifi-
cantly higher than grain yields of non-primed (NBH and NAH) plants (data not 
shown). There cannot be a direct correlation of the two observations and the rea-
sons for higher grain yields and require detailed investigation.  

It is likely that the HS priming triggers the stress memory by influencing the 
miR169 expression levels which may then serve to enhance the HS tolerance re-
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sponse by modulating the levels of NF-Y. Since miR169 levels are also modulated 
by light, we hypothesize that the fine tuning of the whole pathway may be achieved 
by modulating the levels of miR169 by integrating the dual signals of light and 
temperature. The data obtained in this study will be useful to understand how 
plants acclimatize to overlapping cues from the changing environment. The present 
work also indicates the involvement of other miRs in the process so further study 
has been initiated to understand the molecular basis of light dependent HS prim-
ing. Other miR-target modules, which may play a role in HS memory are being 
further investigated through NGS sequencing and experimental validations. The 
detailed analysis of the regulation of miRs remains an important research ques-
tion and it will be interesting to see how miRs integrate stress memory and light 
regulated development. 
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Appendix 
Table A1. List of primers. 

Gene Primer Sequence (5'-3') 

miR169 (FP) Forward CCACGACTAGCCAAGGATGAC 

miR169 (SL) Stem-loop 
GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGAT

ACGACCCGGCA 

URP (SL) Reverse CCAGTGCAGGGTCCGAGGTA 

18S_Fwd Forward CTACGTCCCTGCCCTTTGTACA 

18S_Rev Reverse ACACTTCACCGGACCATTCAA 

NF-Y_Fwd Forward GCACACACACACACTGCATCAG 

NF-Y_Rev Reverse CCATTGCGCATACACTACTAGT 
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