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Abstract 
A research work was performed under sub-tropical condition (24˚8'N, 
90˚0'E) at Bangabandhu Sheikh Mujibur Rahman Agricultural University 
with three wheat genotypes (BARI Gom 25, BARI Gom 26 and Pavon 76) to 
observe the mobilization of seed reserve and seedling growth under normal 
(15˚C/25˚C) and elevated (25˚C/35˚C) temperature in growth chamber. The 
effect of high temperature on wheat seedling was observed in terms of mobi-
lized seed reserve, respiration and transpiration efficiency and seedling 
growth. At 35˚C temperature, maximum mobilization of seed reserve was 
observed in BARI Gom varieties (BARI Gom 25 and 26) but the respiration 
efficiency was higher in Pavon 76 in comparison to other genotypes. Maxi-
mum loss of respiration and transpiration at 35˚C temperature was found to 
produce low seedling growth in Pavon 76. It appeared from the result that at 
high temperature the maximum mobilized seed reserve and subsequently 
minimum loss of respiration and transpiration collectively contributed a pos-
itive role for better seedling growth in BARI Gom 25 and BARI Gom 26. 
Therefore the better mobilized seed reserve and subsequently minimum loss 
of respiration and transpiration during seedling development are indicators 
of the thermo tolerance in growing wheat seedling. 
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1. Introduction 

Seed germination is a factor which contributes grain yield. Among the abiotic 
factors, temperature is considered an important issue for wheat germination, 
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because it persuades the rate of water absorption and additional substrates ne-
cessary for growth and development. Plant temperature, depending upon ab-
sorption of radiation and loss of heat through transpiration, may rise above am-
bient temperature and hence cause heat stress [1]. Heat stress adversely affects 
seed germination, seedling development and ultimately limits wheat productivi-
ty in many regions of the world. The temperature from 20˚C - 25˚C is found to 
be favorable for wheat seed germination, seedling emergence and optimum plant 
establishment [2]. In Pakistan, it is believed that wheat could be sown during 
October to December when temperature ranges from 20˚C - 30˚C. However, 
fluctuation in temperature may influence germination of wheat which could be 
predicted due to genotypic variation. Germination may be dependent on the 
ability of seed to utilize seed reserves more efficiently [3] or by mobilization of 
seed reserves for germination traits [4]. Temperature is a modifying factor in 
germination since it can influence the rate of water absorption and other sub-
strates supplies are necessary for growth and development [5]. The rapid and 
uniform field emergence is essential to achieve better seedling growth and sub-
sequently high yield [6]. Seed characteristics are usually essential process in 
seedling establishment and plant development to obtain seedling numbers those 
results in higher seed yield [7] [8]. The influence of high temperatures on growth 
and development of wheat seedling and other crops is well documented [9] [10]. 
At the molecular level, high temperatures adversely affect cell metabolism [11] 
[12] and cause changes in the pattern of protein synthesis [13]. Supra-optimal 
temperatures suppress the synthesis of the normal complement of cellular pro-
teins and at the same time induce the synthesis and accumulation of many new 
proteins including heat shock proteins [14]. The minimum and maximum tem-
peratures can be affected from seed germination to seed maturation [15] sug-
gested that in case of wheat varieties, genetic variances are of greater magnitude 
than environmental variances for most of the traits [16]. During the period of 
seed germination the developing wheat seedling is totally depend on the mobili-
zation of the carbon stored in the seed endosperm. Heat stress affected the mo-
bilized seed reserve utilization efficiency during germination [17] and the mag-
nitude of variation was different in different genotypes [18]. Mobilized seed re-
serve, respiration and transpiration efficiency played an important role to search 
physiological basis of sustaining seedling growth which contributed to grain 
yield of wheat. This research work therefore was set to determine thermo toler-
ance of wheat seedling through seed germinating physiological traits. 

2. Materials and Methods 

This experiment was conducted in growth chamber (ATTEMPTER, Advantec, 
Japan) in Crop Botany Laboratory of Bangabandhu Sheikh Mujibur Rahman 
Agricultural University, Bangladesh during the period from June, 2012 to De-
cember, 2012. During this study, three wheat genotypes (BARI Gom 25, BARI 
Gom 26 and Pavon 76) were planted in growth chamber under two temperature 
treatments. In the growth chamber treatment consisted of 25˚C temperature 
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maintained with day/night of 25/15 (±1)˚C and treatment of 35˚C temperature 
maintained with day/night of 35/25 (±1)˚C with 90 ± 1(%) relative humidity and 
16 h photoperiod, ensuring light intensity of 200 µE/m2/S. Seeds were weighed 
and placed sequentially according to the marking number in a plastic glass filled 
with pure sand and the adequate moisture placed in a plastic tray in growth 
chamber. Wheat seeds were imbibed for 48 hr for germination and beginning of 
germination was recorded with the first visible development of plumule and ra-
dicle. Plastic glasses were irrigated every two days interval with half-strength 
Hoagland’s nutrient solution. Twelve germinating seeds were sampled daily 
from 2 to 15 days after germination (DAG). The plumule and radical were sepa-
rated from the seed and are defined as seedling. The remnant seeds and seedl-
ings were weighed by using analytical balance (Electronic Balance Model: 
AGN220C) after drying at 70˚C temperature for 72 hr and defined as Total Dry 
Matter (TDM). Recording of TDM was started from 2 day after germination 
(DAG) and continued daily until 15 day after germination (DAG). Mobilized 
seed reserve indicates the amount of seed reserved material which is mobilized 
from the germinating seeds to the growing radicle and plumule. The ratio of 
mobilized seed reserve to initial seed dry weight was considered as seed reserve 
depletion percentage (SRDP) [19]. Mobilized seed reserve and seed reserve dep-
letion was calculated as Harb (2013) by the following formulae [20]: 

mg Original seed weight dry weight of remnant seedMobilized seed reserve
seed Number of seed

−  = 
   

( ) weight of mobilized seed reserveSeed reserve depletion % 100
original seed weight

= ×  

The respiration efficiency was calculated by the following formula: 

( ) Original seed weight Total seedling dry matterRespiration efficiency % 100
Original seed weight

−
= ×  

Transpiration rate was recorded during 11, 12 and 13 days after germination by 
the following formula: 

22 1

2 1

1Transpiration Rate  mg cm hr
W W
T T LA
−

= ×
−

 

where, 
W1 = weight at initial time, T1= Initial time. 
W2 = weight at final time, T2 = Final time. 
LA = Leaf area. 

( ) Transpiration RateTranspiration Efficiency % 100
Original seed weight

= ×  

All statistical analysis was performed by MSTAT program. The treatment 
means were compared using Duncan’s Multiple Range Test (DMRT) at 5% 
level of significance and simple data were calculated by using Microsoft Excel 
2007. 
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3. Results 

Seed germination and vigorous seedlings are important characteristics for wheat 
which could provide advantages for crop establishment. In this study, tempera-
ture significantly influenced germination and related traits of various wheat va-
rieties. Mobilized seed reserve (MSR) was more or less similar at 25˚C in three 
wheat genotypes. But at 35˚C Mobilized seed reserve (MSR) was higher in BARI 
Gom varieties (BARI Gom 25 and 26) in comparison to Pavon 76 at 5, 10 and 15 
Days after germination (DAG) (Figure 1). At 35˚C Mobilized seed reserve 
(MSR) of Pavon 76 affected more at 10 and 15 DAG. This might be due to a 
smaller loss of remnant seed dry matter in respiration for same amount of dry 
matter translocation to seedling in BARI Gom 25 and BARI Gom 26 compared 
to Pavon 76 [21]. Many other researchers [22] [23] also reported the same trend 
of seed reserve utilization efficiency. 

The results of seed reserve depletion (SRD) showed the same trend as that 
shown for Mobilized Seed Reserve (MSR) (Figure 2). Percent of seed reserve 
depletion (SRD) was more or less similar at both 25˚C and 35˚C in BARI Gom 
25 and BARI Gom 26. But with the increase of temperature from 25˚C to 35˚C 
percent of seed reserved depletion was decreased in Pavon 76 at 5, 10 and 15 
days after germination (DAG) due to maximum reduction of reserve mobiliza-
tion at high temperature. Other researchers [19] [24] and [25] also found same 
result under drought stress condition in wheat seedling. 

At 25˚C the respiration efficiency was more or less similar in all three wheat 
genotypes. But at 35˚C the respiration efficiency was higher in Pavon 76 com-
pare to other genotypes and maximum was observer at 10 days after germination 
(DAG) (Figure 3). On the other hand transpiration efficiency was increased 
with increasing temperature from 25˚C to 35˚C in all the three wheat genotypes. 
Maximum transpiration efficiency was observed in Pavon 76 (Figure 4). The result 
proved that respiration and transpiration was accelerated and mobilized seed re-
serve depletion was decelerated by the effect of high temperature. Therefore, 
 

 
Figure 1. Mobilized seed reserve (mg/seed) of three wheat genotypes at 25˚C and 35˚C 
temperature at 5, 10 and 15 DAG. Vertical lines are standard errors of selected data 
points. 
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Figure 2. Seed reserved Depletion (%) of three wheat genotypes at 25˚C and 35˚C tem-
perature at 5, 10 and 15 DAG. Vertical lines are standard errors of selected data points. 

 

 
Figure 3. Respiration efficiency (%) of three wheat genotypes at 25˚C and 35˚C tempera-
ture at 5, 10 and 15 DAG. Vertical lines are standard errors of selected data points. 

 

 
Figure 4. Transpiration efficiency (%) of three wheat genotypes at 25˚C and 35˚C tem-
perature at 5, 10 and 15 DAG. Vertical lines are standard errors of selected data points. 
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more amount of seed dry matter was lost while performing respiratory and 
transpiration process rather than contributing to the growing seedlings under 
heat stress condition [26]. 

At 35˚C temperature trend of seedling growth found nearly same of 25˚C in 
BARI Gom 25 and BARI Gom 26 but it was different in Pavon 76 where seedling 
growth is about half of other two varieties. It was also observed that seedling 
growth decreased with the increase of temperature as well as days after germina-
tion (DAG) in all three wheat genotypes but maximum reduction observed in 
Pavon 76 (67.91%) especially at 10 to 15 DAG. The results indicated that heat 
stress reduced the conversion efficiency of mobilized seed reserve into seedling 
tissues but the degree of increase in respiratory loss of seed reserve was higher. 
So the degree of increase in seedling dry weight was lower at high (35˚C) tem-
perature than under normal (25˚C) temperature. Decline in seedling growth 
under heat or drought stress also reported for wheat [26]. 

This result clearly indicated that wheat genotypes having maximum loss of 
respiration and transpiration at 35˚C temperature was found to produce low 
seedling dry matter. Growth inhibition of the developing seedling under heat 
stress can be a measurement of heat tolerance in growing seedlings. 

Seedling growth decreased with the increase of days after germination (DAG) 
(Figure 5). Percent reduction of seedling growth found maximum (67.91%) in 
Pavon 76 whereas it was nearly same in BARI Gom 25 and BARI Gom 26 at both 
5 - 10 DAG and 10 - 15 DAG (Figure 6). This result revealed that with the in-
crease of days after germination the seed reserve is decreased which expressed as 
reduction of seedling growth. 

Under high temperature conditions the better mobilized seed reserve, seed 
reserve depletion and subsequently minimum loss of respiration and transpira-
tion collectively contributed a positive role for better seedling development in 
BARI Gom 25 and BARI Gom 26. There is indication that seed metabolic effi-
ciency could be poor in Pavon 76 due to alternate oxides pathway in seed 
 

 
Figure 5. Seedling growth (mg/day) of three wheat genotypes at 25˚C and 35˚C temper-
ature at 5 to 10 and 10 to 15 DAG. Vertical lines are standard errors of selected data 
points. 
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Figure 6. Percent reduction of Seedling growth (%) of three wheat geno-
types at 25˚C to 35˚C temperature at 5 to 10 and 10 to 15 DAG. 

 
respiration [17]. The result of the present experiment also agreed that the high 
alternate oxides pathway activity might cause a larger loss of CO2 with minimal 
reserve translocation to seedling. The autotrophic seedling development of 
plants was found to be well-associated with Mobilized Seed Reserve (MSR) and 
Seed Reserve Depletion (SRD) which agreed with other researchers [20] [22] and 
[23]. 

4. Discussion 

The present experiment suggested that the better mobilized seed reserve, seed 
reserve depletion and subsequently minimum loss of respiration and transpira-
tion during seedling development are indicators of the thermo tolerance in 
growing wheat seedling. Therefore, on the basis of seed metabolism and seedling 
growth, BARI Gom 25 and BARI Gom 26 can be concluded as the heat-tolerant 
genotype and Pavon 76 as the heat-sensitive genotype. 
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