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Abstract 
The phytohormones are pivotal chemical messengers produced within the plant that regulate its 
growth and development, and responses to environmental stimuli. Drought and salinity are ad-
verse environmental factors that disturb the plant hormonal balance. Accordingly, these hormon-
al fluctuations modify the cellular dynamic and hence they play a central role in regulating plant 
growth responses to abiotic stresses such as drought and salinity. The present review gives an 
update about the alterations of endogenous phytohormones such as abscisic acid (ABA), auxins 
(Aux), cytokinins (CKs), ethylene (ET), gibberellins (GAs), jasmonates (JAs), salicylic acid (SA), 
brassinosteroids (BRs), strigolactones (SLs) and nitric oxide (NO) that occur as part of the adapta-
tive responses of plant against drought and salt stresses. Better understanding of the endogenous 
hormonal changes during the plant response to both abiotic stresses will contribute, in part, to the 
development of stress-tolerant plants. 
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1. Introduction 
Stressful environmental factors such as drought and salinity cause widespread crop losses throughout the world 
[1]. Both stresses affect more than 10% of arable land which causes approximately 50% decline in the average 
yields of major crops worldwide. In view of various climate change models, the scientists suggest that in several 
regions of the world, the crop losses due to increasing in water shortage and salinization of soils will further ag-
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gravate its impact [2].  
The acclimation of plants to drought and salt stresses is the result of different events leading to adaptive 

changes such as cellular homeostasis (ion homeostasis and osmotic adjustment), detoxification (neutralization of 
reactive oxygen species) and growth regulation [3]. [4] developed the concept of the “two-phase growth re-
sponse to salinity”, in which the first phase of growth reduction happened quickly (within minutes) after expo-
sure to salinity due to the osmotic changes outside the root, causing modifications in cell-water relations (os-
motic effect). The second effect is slower and it can take days, weeks or months, being the result of salt accu-
mulation in leaves which lead to salt toxicity in plant (salt-specific effect). Based on this two-phase concept, the 
initial growth reduction for both salt-sensitive and salt-tolerant plants is caused by an osmotic effect of the salts 
in the medium outside the roots. By contrast, in the second phase, a salt-sensitive differs from a salt-tolerant 
species by its inability to prevent the salt accumulation to toxic levels. Nevertheless, some physiological plant 
responses to drought and salinity show high similarity and the components of both types of stresses interacting 
with each other, which ultimately results in cell dehydration and osmotic imbalance [5]. In fact, both drought 
and salinity (osmotic stresses) are often interconnected and they cause disruption of ion homeostasis and distri-
bution, leading to arrest of plant growth, cell division and expansion. Consequently, plants have developed a 
wide range of adaptive responses, including morphological, anatomical, physiological, biochemical and mole-
cular, allowing them to respond and properly adapt to drought and salinity [6] [7]. Thus, various tolerance me-
chanisms have been described on the basis of physiological modifications to overcome the harmful effects of 
drought and salt stresses. Among them, one of the most important is the alteration in endogenous phytohormone 
levels (Figure 1). It is well established that plant hormones modulate several responses during the whole plant 
life cycle both under stress and non-stress conditions [6]. The main phytohormones include ABA, GAs, CKs, 
Aux, ET, JAs, SA, BRs, SLs and NO. The regulation of plant growth responses by alterations in endogenous le-
vels of above phytohormones in response to drought and salinity constitute the focus of this review.  

2. Effect of ABA on Plant Growth Responses under Drought and Salinity 
A huge amount of information had been accumulated on ABA. It has been documented that it is integrated into a 
complex signaling network that transcriptionally and post-translationally regulates several process of plant 
growth and development [8]. After germination, ABA temporarily delays the transition to the phase of seedling 
growth under unfavorable conditions, because it induces ABI5 protein accumulation, which would function as a 
checkpoint during early development to slow growth under adverse conditions [9]. Therefore, ABA is a key 
plant stress-signaling hormone and this role is an undisputed fact. Particularly, ABA is well known for confer-
ring tolerance to abiotic stresses, among the most important are drought and salinity [10]. In response to drought, 
Arabidopsis plants synthesize ABA in the shoot which has been reported to be transported to the root [11]. It 
seems to be correlated with a higher ABA precursor (carotenoids) concentration in shoot than roots. The uptake, 
distribution and movement of ABA in different tissues of A. thaliana were analyzed by [12] who developed 
sensor proteins called “ABAleons”. These biosensors revealed that the ABA concentration in guard cells in-
creases when humidity is low, or when salt levels are high. Low water levels, or high salt levels, also slowly in-
creased the concentration of ABA in the roots. The authors argument that this ABA increase may arise from an 
increment in ABA biosynthesis and/or a decrease in ABA breakdown. On this point, [13] showed that drought 
enhanced both ABA biosynthesis and catabolism, resulting in an increase of ABA and catabolites. For example, 
ABA increased in seedlings of sunflower F3 tolerant families grown under water stress generated by 400 mM 
mannitol, while in the sensitive families the ABA level was lower (<500 pmol∙g−1 DW). These findings suggest 
that constitutively high ABA levels in tolerant F3 families confer an advantage for these sunflower plants to cope 
with adverse conditions [14]. Similarly, [15] reported that drought (without irrigation) triggered an abrupt peak 
of ABA in both Kanlow and Greenville cv of Panicum virgatum L. (switchgrass) being higher in the tolerant 
Kanlow (11-fold) than in the sensitive Greenville (4.5-fold). However, the correlation between ABA endogen-
ous level and stress-tolerance is not always positive. Thus, some native species from the arid regions display a 
plastic response to these environmental conditions. [16] showed that the highest ABA levels were found in the 
mesophytic plant Poa ligularis which is a native species from Patagonian Monte (Argentina). Remarkably, the 
xerophytic species Papostypa speciosa had the lowest ABA levels. Considering that ABA is a key hormone in 
regulating drought stress responses, the exposure of plants to salinity has been known to induce an increase in 
ABA levels. For example, ABA increased in leaves of salt stressed Brassica [17], Phaseolus vulgaris [18] and  
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Figure 1. Chemical structures of phytohormones and roles they play in plant growing in adverse conditions, such as water 
and salt stresses. These compounds are multifunctional molecules playing several different roles in plant responses. 

 
Zea mays [19]. Among the tools used to understand the mechanism of hormone action under abiotic conditions 
is the ABA application. Indeed, [20] reported that foliar ABA application (15 μmol/l) under salinity condition 
improved shoot dry matter, photosynthesis rate, peroxidase and catalase activity, and shoot K+ concentration 
while decreased shoot Na+ concentration in Okamer cv of canola, as consequence an increased salinity tolerance 
was observed; but ABA excess (30 μmol/l) reduced the growth in this cultivar. Moreover, the ABA level varied 
depending species, organ analyzed and age of plant as well as salt type and concentration. This assumption was 
reported in Prosopis strombulifera halophyte [21] [22]. The authors showed that endogenous ABA in leaves was 
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higher than in roots showing the rapid biosynthesis and transport from roots. Indeed, an increase of ABA conju-
gate, ABA-glucose ester (ABA-GE), was found in both roots and leaves in salt-treated plants. Thus, these results 
suggest that ABA-GE and free ABA may act together to create a specific stress signal. In this review, we 
showed several studies confirming that ABA acts as a key mediator in plant responses to drought and salinity 
(Figure 2). However, the endogenous level of this hormone oscillate according to its biosynthesis, catabolism 
and transport through the plant, species and organ particular, duration and severity of both abiotic stresses.  

3. Effect of ET on Plant Growth Responses under Drought and Salinity 
In response to both drought and salinity there is often a significant increase in the ET production which has ad-
verse effects on plant growth [23]. In general, the plants that produce low ET are more tolerant to the harmful 
effects of environmental stresses as compared to those that produce higher levels [24]. For example, the ET 
production differed significantly between two spring wheat cultivars, 8139 (with relatively low drought resis-
tance) and 504 (with relatively high drought resistance) during water stress. The changes were higher in the 
drought-sensitive cv 8139 than in the drought-resistant cv 504 [25]. It appears that the high ET production in 
earlier period of water stress might be a signal helping to the plants to sense the stress condition, and to take 
some adaptative physiological response in advance. Interestingly, in response to salinity, ET appears to negatively 
affect salt tolerance because a correlation between increased 1-aminocyclopropane-1-carboxylic acid (ACC) levels 
and reduced salt tolerance was found in Arabidopsis. This phenomenon was opposite those observed in the ACC 

 

 
Figure 2. This figure summarizes the changes in the endogenous level of each hormone and its physiological effects mediat-
ing the plant responses to drought and salinity stresses. These changes in the hormonal level are represented by arrows inside 
of the each rectangle as follow: increases are shown by upward arrows (), decreases are shown by downward arrows (), 
whilst pointless arrows (I) indicate no change. Ex: exogenous applications of hormones. The circles represent the physiolog-
ical effect associated with each phytohormone. ABA, abscisic acid; IAA, indole-3-acetic acid; CK, cytokinin; ET, ethylene; 
GAs, gibberellins; JA, jasmonic acid; SA, salicylic acid; BRs, brassinosteroids; SLs, strigolactones; NO, nitric oxide. 
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synthase Arabidopsis mutant, acs7. The mutant showed an enhanced salt tolerance which suggests that ACS7 
gene negatively regulates the salt tolerance though a low ET production [26]. By contrast, elevated ET produc-
tion was found in the sst1 (soil salinity tolerant1) Arabidopsis mutant. The enhanced salt tolerance of this mutant 
seems to occur through an improved Na+/K+ homeostasis resulting of the reduced root influx and shoot delivery 
of Na+ [27] (Figure 2). Likewise, the use of an ACC oxidase (ACO) antisense in tomato plants confirmed the ET 
role under drought. In these plants, ET production was much lower than wild-type both under well-watered and 
drought. Thus, in response to drought a decrease in leaf growth was measured in wild-type but not in ACO anti-
sense tomato plants [28] (Figure 2). Otherwise, in maize the ET production could not be correlated with reduc-
tions in leaf growth under drought [29]. Taking together, these studies suggest that ET may play a role in de-
creased leaf growth in some plant species and that ACC may be a long distance root-sourced signal under 
drought. Accordingly, both drought and salinity stresses can act on ET production and this phytohormone could 
have a negative or positive role in regulating plant stress-tolerance. 

4. Effect of JA on Plant Growth Responses under Drought and Salinity 
Traditionally, JAs have been associated with plant defense to biotic stresses. However, it is becoming increa-
singly evident that these compounds have direct and/or indirect roles in abiotic stresses. Thus, several researches 
showed that JAs levels were increased upon exposure to drought and salt stresses [30] [13]. Some studies dem-
onstrated that JA accumulation during drought is not stable; for example, water-stressed soybean plants exhi-
bited a transient increase in JA, followed by a decrease to below wild-type levels [31]. Nevertheless, in two 
Kanlow and Greenville cv of P. virgatum the JA level did not increase significantly in response to drought [15]. 
Despite of these fluctuations, in the literature there are numerous studies showing a JAs endogenous increase 
under abiotic stresses. For example, JA increased in spear tips of Asparagus officinalis [32], Carica papaya 
seedlings [33], Pinus pinaster plants [34], Oryza sativa leaves and roots [35] and citrumelo CPB 4475 (a com-
mercial citrus rootstock) [36] exposed to drought. Similarly, under salinity, JA increased in salt-tolerant cv HF 
tomato from the beginning of salinization, while in salt-sensitive cv Pera it decreased after 24 h of treatment [37]. 
An increase in JA precursor the 12-oxo-phytodienoic acid (OPDA) and JA metabolite methylJA (MeJA) was 
observed in barley, tomato and A. thaliana plants treated with sorbitol or mannitol [38] [39]. Also, MeJA accu-
mulation was reported in young panicles of rice plant overexpressing JA carboxyl methyl transferase gene 
(AtJMT) grown under severe drought [40]. These authors suggest that the MeJA accumulation may stimulate 
the ABA production. Recently, JA and OPDA were detected in seedlings of two sunflower (Helianthus annuus 
L.) inbred lines, B59 (drought-sensitive) and B71 (drought-tolerant) in response to water stress generated by 
mannitol. In both lines the stress produced a considerable increase in OPDA, and it was 3-fold higher in tolerant 
line. This finding suggests that OPDA might participate in the mechanisms that confer tolerance to water stress 
in B71 seedlings (Andrade, unpublished data). In concordance, [41] demonstrated that Arabidopsis plants pro-
ducing higher OPDA levels exhibited a reduction in the stomatal aperture, and as result enhanced drought toler-
ance (Figure 2). It should be pointed out that this study confirmed OPDA as a drought-responsive regulator of 
stomatal closure which might act effectively together with ABA in this response. On the other hand, in response to 
salinity, [42] reported the detection of JA, OPDA, 11-hydroxyjasmonate (11-OH-JA), 12-hydroxyjasmonate 
(12-OH-JA) and MeJA in seedlings of tomato cv Moneymaker (wild-type) and its tss1, tss2 and tos1 mutants 
under 100mM NaCl treatment. Interestingly, the mutant seedlings showed different patterns of JAs according to 
their differential hypersensitivity to abiotic stress. Likewise, in the halophyte P. strombulifera different endo-
genous levels of JAs (JA, OPDA, 11-OH-JA and 12-OH-JA) in roots and leaves treated with distinct salt treat-
ments were observed. The 12-OH-JA level was higher in leaves than in roots in both control and treated plants, 
and this response may be the result of an active hydroxylation pathway in leaves or transport of root-generated 
12-OH-JA [43]. In this regard, the occurrence of biosynthetic pathway of octadecanoic and jasmonates in roots 
was determined previously in cultures of tomato hairy root by [38] (Figure 2). This background exposes that the 
most family members of JAs would participate in abiotic stress tolerance. In spite of JA and MeJA were pre-
viously thought to be key regulators of JAs responses induced by stresses, it has been demonstrated that the iso-
leucine conjugate of JA (JA-Ile) acts in the signal transduction pathway of JA regulating stress-responses [44]. 

5. Effect of SA on Plant Growth Responses under Drought and Salinity 
SA is a phytohormone of phenolic nature associated with biotic stress but in recent years there have been in-
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creasing reports about SA participation in the plant responses to abiotic stresses, among them drought and salin-
ity [45]. In some cases, the endogenous SA levels increased. For example, in leaves of Phillyrea angustifolia L. 
SA increased progressively up to 5-fold during drought [46]. Similarly, leaves of soybean showed a significant 
increase of SA with the application of 8% and 16% of PEG during pre-flowering growth stage; however, this 
increase was insignificant during post-flowering growth stage [47]. Likewise, under salt stress the level of SA 
increased in rice seedlings [48]. In addition, SA increased in roots but it did not change in leaves of barley in 
response to water deficit [49]. Contrary, the drought caused a decrease of SA in drought-sensitive sunflower F3 
seedlings compared to control [14]. Also, SA level has been shown to decrease with salinity in Iris hexagona 
[50]. Recently, [15] reported that SA level was not modified by water stress in drought-tolerant cv Kanlow of P. 
virgatum while it decreased in drought-sensitive cv Greenville. These studies above mentioned demonstrated 
that the endogenous SA level is a plastic response due to it is modified according to organ, ontogenetic stage, 
particular species and type of stress. Moreover, [51] informed that SA accumulation may play a protective role 
during water stress through the regulation of SA-inducible PR1 and PR2 genes. Nevertheless, some studies 
showed that the SA accumulation aggravated the salinity negative effects. Indeed, transgenic NahG Arabidopsis 
lines under NaCl treatment accumulated SA and they displayed impairment in photosynthesis, which was coun-
teracted by the decrease of SA due to nahG mutation [52]. In coincidence, the high SA level observed in 
Na2SO4-treated P. strombulifera plants was correlated with a failure in ion compartmentalization (Figure 2). In 
addition, low humidity conditions (30% RH) accentuated the salt stress effect and increased SA. These res-
ponses indicate that SA accumulation is not a protective hormonal signal but rather a signal of injury in P. 
strombulifera under adverse conditions [21]. In spite of the SA involvement in plant responses to abiotic stress, 
it is not yet clear its role regulating the drought and salinity tolerance because some studies have reported the 
improved stress tolerance by SA accumulation whereas others have demonstrated less stress tolerance when the 
endogenous SA level remain high. 

6. Effect of GAs on Plant Growth Responses under Drought and Salinity 
GAs are other important group of phytohormones and its central role in the response to abiotic stress is becom-
ing increasingly evident. The plant growth reduction under both drought and salinity may be due, at least in part, 
to lower production of GAs or to the inability of the plant to respond to this hormone. Thus, several studies 
showed that under drought the endogenous GAs levels markedly decreased because this stress appeared to inhi-
bit the GA biosynthesis and/or increase its degradation. Early reports demonstrated that drought reduced the 
GAs accumulation in lettuce [53], cottonwood saplings [54] and in rice grains during early grain filling [55]. 
Similarly, in leaves of unstressed and water stressed maize seedlings showed that GA3 decreased considerably 
during drought [56]. More recent evidences support the endogenous GAs changes produced by drought. For 
example, GA3 levels were markedly reduced in shoots of common bean with increasing levels of drought when 
compared with those of control (80% hold water capacity) [57]. Furthermore, [58] also found that in Lupinus 
albus the drought gradually declined the GAs levels. Similarly, in transgenic plants of Populus tremula x Popu-
lus alba a decrease in GAs caused inhibition of primary growth (e.g., height and number of internodes) under 
drought [59]. These studies above demonstrate that the reduction of GA levels and signaling has been shown to 
contribute to plant growth restriction on exposure to drought as well as salinity (Figure 2). In response to salin-
ity, [60] reported that salt-treated Arabidopsis plants showed a decrease in bioactive GAs levels. Modifications 
of GAs levels may be involved in adjustment of plants under limiting environmental conditions and maintains 
source-sink relation, leading to an increase in sucrose in source leaves, with a decrease in photosynthesis rate by 
feedback inhibition responses [61] (Figure 2). The concentration and chemical composition of the salts present 
in the soil modulate the GAs metabolism. This fact was reported in the P. strombulifera halophyte under differ-
ent salt treatments. The roots showed a high GA4 level in NaCl treatment. In leaves, a 5-fold increase respect to 
control was determined at −1.9 MPa in correlation with optimum growth for this species. Also GA1 level was 
significantly increased (3.5 fold at −1.9 MPa) in both organs, indicating that both GAs play a role in controlling 
shoot growth. Under Na2SO4 (−2.6 MPa) was observed the lowest levels of GA4 and GA1 in coincidence with 
the maximum growth inhibition related to sulfate toxic effect [22]. Therefore, these results suggest that differen-
tial growth responses to both salts would be mediated, at least in part, by modifications in GA1 and GA4 levels. 
In summary, the evidences are accumulating that reduction of GAs endogenous levels is a general response to 
abiotic stress. However, the action of GAs cannot be considered in isolation of the other hormone signals be-
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cause of the rapidly emerging evidence for crosstalk between hormonal signaling pathways. Moreover, a deep 
understanding of GAs regulating the abiotic stress responses would be an important step towards improving 
plant growth under adverse environmental conditions. 

7. Effect of Aux on Plant Growth Responses under Drought and Salinity 
The participation of Aux in stress responses has been deduced from observations that genes associated with Aux 
signaling pathways are stimulated in plants expose to different abiotic stresses [62]. Under drought, controver-
sial results have been reported regarding the endogenous levels of indole-3-acetic acid (IAA). For example, an 
increased IAA level was observed in response to drought in maize roots [63] and sunflower plants [64]. In addi-
tion, during a prolonged drought, a significant increase of IAA was observed in lower and middle leaves and 
roots of Nicotiana tabacum L. wild-type and transgenic SAG12::ZOG1, 35S::ZOG1 and 35S:P5CSF129A 
plants [65]. On the contrary, [66] found that drought resulted in a decrease of IAA level in leaves of wheat. [67] 
reported that the leaf IAA level decreased during drought and no difference in this hormone was found between 
both tall fescue cultivars, Van Gogh (relatively drought-tolerant) and AST7002 (relatively drought-sensitive). 
Therefore, to date there is no generalized response about how IAA levels oscillate in water-stressed plants. Nev-
ertheless, some studies showed that the application of IAA was positively correlated with drought tolerance. For 
example, the indole-3-butyric acid application increased endogenous IAA level which improved the drought to-
lerance in tall fescue [68]. Likewise, in Arabidopsis, the activation of YUCCA7 and YUCCA6 [69] gene, encod-
ing a flavin monooxygenase belonging to the tryptophan-dependent auxin biosynthetic pathway, resulted in ele-
vated endogenous Aux levels and enhanced drought tolerance. Recently, [70] reported alterations of IAA levels 
according to drought severity in rice leaves. Thus, under slight drought IAA level had no significant change, af-
ter moderate drought stress IAA level was reduced to about 81%, and after severe drought stress the level of this 
Aux was reduced to 72% of the control. The salinity stress induces an Aux accumulation in Arabidopsis and its 
redistribution to the root tip, resulting in the primary root growth inhibition, a marked reduction in lateral root 
primordia formation, and significantly increases in the elongation of existing lateral roots [71] (Figure 2). Thus, 
these results suggest that Aux transport appears to be essential for the adaptive remodeling of root system archi-
tecture under salinity. Indeed, roots of P. strombulifera halophyte accumulated IAA under salt treatments [22]. 
The highest IAA levels were in concordance with an increase of lateral root formation in this specie confirming 
that IAA may be associated with an enlarged root system under salinity. This response also was observed after 
the IAA application. For example, [72] reported that the IAA application had a highly stimulatory effect on the 
root and shoot growth of wheat seedlings under salt conditions. Interestingly, [73] showed differences in endo-
genous IAA levels in expanding leaves and roots of two maize cultivars. The salt-resistant genotype significant-
ly increased IAA levels in leaves and maintained its concentration in roots. This background exposes the in-
volvement of Aux in the regulation of plant physiological responses under both drought and salinity. However, 
there is a remaining information gap to properly understand the role of endogenous Aux in plant grown in ad-
verse environmental conditions. 

8. Effect of CK on Plant Growth Responses under Drought and Salinity 
Likewise to Aux, CKs have been traditionally associated with developmental processes; however, in the last 
years it has proposed a relevant participation of this hormone in drought and salinity plant responses. Against 
theses stresses CKs may help the plants to resist. Thus, several studies show beneficial effects of an increase in 
CKs levels associated with the stomatal conductance, transpiration and photosynthesis under water stress [74]. 
In addition, a decrease in CKs levels and signaling suppression was found in alfalfa under drought [75] but it 
was accompanied with accelerated senescence (Figure 2). This response was used by plants to adapt to drought. 
In this regard, [76] demonstrated that among the most physiologically active CKs, the tZ-type CKs rather than 
the iP-type CKs, act as negative regulators in drought response in Arabidopsis. Moreover, the authors proposed 
that CKs levels reduction enhance survival rates of the CK-deficient plants by minimizing water loss. Similarly, 
under salinity some reports have demonstrated that the endogenous levels and transport of CKs were also re-
duced in several plant species [77]. Studies with the halophytes Suaea depressa and S. maritima suggested that 
CKs applications may emphasize the symptoms associated with salt stress [78]. It should be pointed out that this 
response could be the result of the action of CKs on stimulating stomatal opening, thus facilitating transpiration 
and therefore magnifying the effect of salinity. Likewise, [22] showed a low endogenous CKs level in leaves of 
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NaCl-treated P. strombulifera plants, which was correlated with a low transpiration, probably as a result of syn-
thesis or transport decreased of CKs from the roots. On the contrary, the leaves of Na2SO4-treated plants showed 
an accumulation of CKs, which may explain the high transpiration in these plants. Taken together, these reports 
demonstrate a controversial role of endogenous CKs in response to both drought and salinity (Figure 2). Thus, 
molecular approaches could be useful to contribute to knowledge about the CKs role in both abiotic stresses. For 
example, [79] working with two approaches assessed whether specific root-localized transgenic IPT (a key en-
zyme for CKs biosynthesis) gene expression could substantially improve tomato plant growth and yield under 
salinity. The authors demonstrated that enhancing root CKs synthesis modified the shoot hormonal and ionic 
status, thus ameliorating salinity-induced decreases in growth and yield. In concordance, tobacco plants showing 
root specifically increased cytokinindehydrogenase/oxidase (CKX) gene expression, indicated that overexpres-
sion of CKX1 is linked to greater root system and dwarf shoots improving the salt stress-tolerance [80]. Howev-
er, a more in-depth understanding on the CK functioning/signaling mechanisms is required to allow us to ex-
plore its possible role in alleviating the adverse effects of drought and salinity. 

9. Effect of BRs on Plant Growth Responses under Drought and Salinity 
BRs are a group of steroidal phytohormones that play pivotal roles in wide range of developmental phenomena 
as well as in plant responses to abiotic stress [81]. In view of some reports, it is evident that BRs application im-
proves growth and yield of some species (Figure 2). In this regard, the application of BRs was reported to in-
duce stress-related genes expression, which results in the maintenance of photosynthesis activity, activation of 
antioxidant enzymes, accumulation of osmoprotectants, and induction of other hormonal responses [82]. Partic-
ularly, the BRs treatment compensated the biomass reduction in sugar-beet plants caused by mild drought [83]. 
The BRs treatment has also been reported to increase seedling growth of Sorghum vulgare under osmotic stress 
[84], and improve the drought tolerance in Phaseolus vulgaris [85]. Also, [86] found that in rice the BRs appli-
cation improved the leaf water economy and CO2 assimilation, and enabled it to withstand drought. In addition, 
it has been shown that the treatment with other BR, 24-epibrassinolide (24-EBR) increased the survival rate of A. 
thaliana and Brassica napus seedlings subjected to drought stress [87]. Similarly, the exogenous application of 
BRs can also alleviate the adverse effects of the salinity. [88] reported that 28-homobrassinolide (28-HomoBL) 
spray to the foliage or supply through roots of Brassica juncea plants generated from the seeds soaked in NaCl 
enhanced the growth and seed yield under normal conditions. However, this compound has no effect on cell ul-
trastructure but significantly reduced the damage induced by salt stress on chloroplast. Also, the application of 
this compound significantly increased the pigment levels in several species under salinity [89]. This response 
may be associated to an effect of BRs on transcription and/or translation in the synthesis of pigments. Likewise, 
24-EBR significantly enhanced the growth and photosynthetic capacity of salt-tolerant and salt-sensitive wheat 
plants [90]. As above, although exogenous BRs has been reported to improve the plant resistance to several abi-
otic stresses, there are controversies about the mode of action of endogenous BRs in plant stress responses. Inte-
restingly, [91] working on BR mutants lkb (a BR-deficient mutant) and lka (a BR-perception mutant), and on 
wild-type pea plants showed that BRs level did not increase under drought and impaired in BRs biosynthesis or 
signaling had no influences on drought-stress tolerance. Accordingly, these authors argued that endogenous BRs 
are not participating of the plant stress responses. Besides the question remains if exogenous vs. endogenous 
BRs have different roles in drought and salinity, or whether the role of BRs is species-specific. Therefore, future 
studies can be warranted to elucidate the mechanism by which endogenous BRs levels regulate both drought and 
salinity responses. 

10. Effect of SLs on Plant Growth Responses under Drought and Salinity 
SLs are multifunctional compounds recognized as a new class of phytohormones that controls different pro- 
cesses in plants. Their biosynthesis has been suggested to occur throughout the plant, although at low or even 
undetectable levels [92]. The SLs occurrence has been demonstrated in a wide variety of plant species, including 
dicots and monocots, in which different types of these compounds have been found (reviewed by [92]). Because 
they are still relatively unknown phytohormones its mode of action in response to abiotic stress has been studied 
mainly through the exogenous application. Thus, a comparison of SL-deficient and SL-response max Arabidop-
sis mutants subjected to drought with or without SLs applications revealed that the drought-sensitive phenotype 
of the max3 and max4 mutants could be rescued when they were sprayed with SLs. Furthermore, SL-treated 
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wild-type Arabidopsis plants were more tolerant to drought than the untreated plants [93]. It seems to support 
the role of SLs as a positive regulator of plant response to drought. In addition, it has been proposed that endo-
genous SLs may positively modulate both drought and salt stress responses through ABA-dependent and 
ABA-independent pathways. This complexity is reflected in the functions of ABA, CKs, and SLs on the regula-
tion of stomatal closure and leaf senescence [94] (Figure 2). Also, [95] demonstrated the potential use of genetic 
engineering to improve the drought and salt tolerance of plants by manipulating the endogenous SLs levels 
and/or SLs signaling. However, the question of which SLs are active endogenously has not been resolved. More- 
over, up to date scarce knowledge is available about how the endogenous SLs levels vary in response to drought 
and salinity. 

11. Effect of NO on Plant Growth Responses under Drought and Salinity 
NO is being now classified as a novel phytohormone regulating the plant growth and development as well as the 
plant responses to abiotic stresses [96]. This fact is supported because an increase in NO production has been 
generally reported when plants were subjected to stresses [97]. For example, drought-induced NO production 
has been reported in many plant species, including pea, wheat and tobacco [98]. Also, an increase of endogenous 
NO level via application of exogenous NO donor (sodium nitroprusside, SNP) has been shown to confer resis-
tance to drought and salinity [99]. [100] reported in cucumber seedling subjected to water deficit (5 to 10 h at 
the stage of the third fully expanded leaf) a slight NO production in cells of root tips and in the surrounding 
elongation zone compared with 17 h of water deficit, which resulted in a high increase in NO production. Under 
both stress conditions, drought or salinity, NO could act as an antioxidant and activator of reactive oxygen spe-
cies (ROS) scavenging enzymes, as well as inductor of certain stress-related genes increasing the plant resis-
tance [96]. Therefore, an increase in antioxidant enzyme activities and reduced ROS accumulation in rat neu-
ronal NO synthase (nNOS) transgenic Arabidopsis plants confirmed that in vivo NO reduces drought-triggered 
oxidative stress and thereby the cell damage [101]. Similar to NO role in antioxidant activity in response to 
drought, some studies support the same NO role during the salinity tolerance. In this regard, [99] showed that 
exogenous NO application induce antioxidant enzymes activity, promote the maintenance of the cellular redox 
homeostasis and mitigate the oxidative damage produced by salt stress. Moreover, there is some experimental 
evidence that pre-exposure to NO efficiently protect plants to salinity. Thus, NO-associated salt priming action 
was an enhanced tolerance of both halophytes and glycophytes to salinity during germination and early seedling 
stages after pre-exposure of their seeds to NO donors [102]. Arabidopsis mutant (Atnoa1) plants with an im-
paired in vivo NO synthase (NOS) activity exhibit hypersensitivity to salinity [103]. Therefore, these reports 
suggest that NO participates in signaling responses against salinity. Several experiments using NO donors and 
NO inhibitors indicated that NO acts as a signal in inducing salt tolerance by increasing the Na+/K+ ratio, which 
was dependent on increased plasma membrane (PM) H+-ATPase as well as vacuolar (V) H+-ATPase and 
H+-PPase activities. In spite of the literature above mentioned that confirmed the involvement of NO in response 
to drought and salt stresses, more studies should be carried out to demonstrate how vary the NO production and 
its mode of action. 

12. Conclusions and Perspectives 
In this review, we highlight several experimental evidences on the variability in hormonal responses to both 
drought and salinity, although it is clear that these responses share common components that are likely working 
in different organs or tissues of whole plant either individually or in concert. Unravelling new mode of action of 
the different phytohormones is promising. A figure summarizing the changes in the endogenous hormone level 
and its physiological effects mediating the drought and salinity responses is depicted in Figure 2. More recently, 
the mechanisms underlying the crosstalk among different phytohormones signaling pathways have been de-
scribed, leading to the elucidation of partial or entire crosstalk hormonal cascades. Whereas most plant hormonal 
studies are based on exogenous applications and/or the genetic and biotechnological tools in order to elucidate 
the phytohormones role in response to drought and salinity, the knowledge about how the endogenous hormone 
levels are modified in response to both stresses during plant growth still remains scarce. 
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