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Abstract 
A rhombic planform nonlinear cross-diffusive instability analysis is applied to a particular inte-
raction-diffusion plant-ground water model system in an arid flat environment. This model con-
tains a plant root suction effect as a cross-diffusion term in the ground water equation. In addition 
a threshold-dependent paradigm that differs from the usually employed implicit zero-threshold 
methodology is introduced to interpret stable rhombic patterns. These patterns are driven by root 
suction since the plant equation does not yield the required positive feedback necessary for the 
generation of standard Turing-type self-diffusive instabilities. The results of that analysis can be 
represented by plots in a root suction coefficient versus rainfall rate dimensionless parameter 
space. From those plots regions corresponding to bare ground and vegetative patterns consisting 
of isolated patches, rhombic arrays of pseudo spots or gaps separated by an intermediate rectan-
gular state, and homogeneous distributions from low to high density may be identified in this pa-
rameter space. Then, a morphological sequence of stable vegetative states is produced upon tra-
versing an experimentally-determined root suction characteristic curve as a function of rainfall 
through these regions. Finally, that predicted sequence along a rainfall gradient is compared with 
observational evidence relevant to the occurrence of leopard bush, pearled bush, or labyrinthine 
tiger bush vegetative patterns, used to motivate an aridity classification scheme, and placed in the 
context of some recent biological nonlinear pattern formation studies. 
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Threshold-Dependent Pattern Formation 

 
 

1. Introduction 
von Hardenberg et al. [1] devised a plant-ground water (sometimes called soil water) interaction-diffusion sys-
tem to model self-organized vegetative pattern formation in arid environments (reviewed by Rietkerk et al. [2]). 
Here the positive feedback for an activator consumer (e.g., plants) in the plant equation and the self-diffusivity 
advantage for an inhibitory limiting resource (e.g., ground water) provided the necessary conditions for the onset 
of Turing [3] pattern formation. von Hardenberg et al.’s [1] model also included the effect of plant root suction 
by adding a cross-diffusion term in their ground water equation. Rietkerk et al. [4] performed numerical simula-
tions using reflecting boundary conditions on a similar interaction-diffusion model system consisting of three 
partial differential equations describing the spatio-temporal behavior of plant density, soil water, and surface 
water, respectively, but excluding the root suction cross-diffusion term in their soil water equation. That model 
had been carefully developed by HilleRisLambers et al. [5] for a flat semi-arid grazing system. 

We wish to formulate an interaction-diffusion model system for ( ), ,N X Y τ ≡  plant biomass density (gm/m2) 
and ( ), ,W X Y τ ≡  ground (soil) water content (mm of depth), where ( ),X Y ≡  two-dimensional coordinate 
system (m, m) and τ ≡  time (d), based upon the interaction terms of Rietkerk et al. [4] and the diffusion terms 
of von Hardenberg et al. [1], defined on a flat unbounded arid environment. Toward that end, we first introduce 
the auxiliary dependent variable ( ), ,O X Y τ ≡  surface water content (mm of depth) and the coupled interaction- 
diffusion model system given by 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2, , ,N W W O ONN WQ Q QO

τ τ τ
∂ ∂ ∂

−∇ ⋅ −∇ ⋅ −∇= =
∂ ∂ ∂

= ⋅J J J              (1.1) 

where ([1] [4]) 

( ) ( ) ( )2 2

1 2 1 2

, ,
,

N WM M
M

O
M

cg N k g N kQ dN Q i rW Q R i
W k N

WN f WN fO
W k N k

O
k

+ +
= − = − − = −

+ + + +
           (1.2) 

( ) ( ) ( ) ( )
2 2 2, , ,N W O

N W ON D DND W Oρ∇ ∇= − = − − = − ∇J J J             (1.3) 

with ( )2 ,X Y∇ ≡ ∂ ∂ ∂ ∂  and ( )2 1 2, JJ X Y∇ ⋅ ∂ ∂ ∂= ∂J  for ( )1 2, JJ=J . Here Mg ≡  maximum specific 
water uptake rate by the plants, c ≡  conversion of water uptake by the plants to plant growth, d ≡  specific 
loss rate of plant density due to mortality, 1k ≡  half-saturation soil water constant relevant to specific plant 
growth and water uptake, r ≡  specific loss rate of soil water due to evaporation and drainage, R ≡  rainfall 
rate, Mi ≡  maximum specific water infiltration rate, 2k ≡  plant saturation shaping constant for water infiltra-
tion , f ≡  fraction of maximum specific water infiltration rate in the absence of plants, ND ≡  dispersal coef-
ficient for plants, WD ≡  diffusion coefficient for ground water, OD ≡  diffusion coefficient for surface water, 

SD ≡  coefficient of plant root suction, and S WD Dρ = . 
More than forty years ago, Keller and Segel [6] proposed the initiation of slime mold aggregation viewed as 

an instability in a landmark paper with that title. They formulated a mathematical reaction-diffusion model sys-
tem for the aggregation of the cellular slime mold Dictyostelium discoideum involving four dependent variables: 
Namely, the density of this amoeba; the concentrations of the acrasin and acrasinase produced by it which me-
diate its aggregation; and the concentration of an intermediate complex formed by these chemicals in a reversi-
ble reaction. Keller and Segel [6] then simplified that model to a two-component system involving just the den-
sity of the amoeba and the concentration of the acrasin by making Haldane’s assumption that the complex was 
in chemical equilibrium and the additional assumption that the total concentration of the acrasinase enzyme in 
both its free and bound state was a constant. This simplified model included flux terms deduced from Fickian 
self-diffusion of its two components and a chemotaxis term for the amoeba generated by the introduction of 
cross-diffusion involving the acrasin gradient. 

For the sake of model analysis, HilleRisLambers et al. [5] introduced a quasi steady-state approximation in 
(1.1) by taking 0O τ∂ ∂ ≡ . We next, after Keller and Segel’s [6] employment of Haldane’s assumption, simplify 
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our model system (1.1)-(1.2)-(1.3) by assuming that the surface water is in hydrological equilibrium and making 
the quasi stationary approximation that 

( ) 2

2

0 .M
O N k fR i O

N
Q

k
+

≡ ⇒ =
+

                                     (1.4) 

Such an assumption is dependent upon OD  being relatively much greater than either WD  or ND  and O 
having a much faster time scale than either W or N [4]. 

Then, introducing (1.4) into (1.1)-(1.2)-(1.3) by replacing the rate of infiltration term in ( )WQ  with R, we 
obtain the final formulation of our interaction-diffusion plant-ground water model system 

( ) ( ) ( )2 2 2
2 2 2,, ,N W

N WF N G N W DN W NW D ρ
τ τ

∂ ∂
∇ = + ∇ − ∇

∂ ∂
= +                   (1.5) 

where 

( ) ( )2
2 2 2

1 1

, , , W ., M Mcg gF N W dNWN G N R rW
W k W k

WN
= − = −≡

+
∇ ∇ −

+
∇ ⋅                 (1.6) 

Our main purpose in doing so is to devise a model system of this sort that demonstrates root suction alone can 
generate the two-dimensional vegetative patterns (e.g., leopard bush, pearled bush, and labyrinthine tiger bush) 
occurring in arid flat environments as described by Rietkerk et al. [2]). 

2. Equilibrium Points and Their Linear Stability 
There exist two equilibrium points of model system (1.5) 

0 0,NN W W≡ ≡                                         (2.1) 

satisfying 

( ) ( )0 0 0 0 0, ,F N G NW W= =                                    (2.2) 

given by 

0 00, ;N W R r= =                                       (2.3) 

and 

( ) ( ) ( )0 1 0 11 1  wi ., th e e MN W k cN c d R rk dW gδ δ δ= = − = = − =−                     (2.4) 

Note that (2.3) which exists for all parameter values corresponds to a bare ground or no vegetation situation 
while (2.4) which only exists for , 0e eN W >  or, equivalently, 

11 ,rk Rδ > +                                            (2.5) 

corresponds to a community equilibrium point or a state exhibiting a nontrivial homogenous vegetative distribu-
tion. In this context, we adopt the far-field condition that 

2 2 remain bound, ed as .XN YW + →∞                             (2.6) 

We next wish to examine the linear stability behavior of these critical points and shall proceed sequentially. 
That is we begin with (2.3) by considering a separation of variables solution to system (1.5) and boundary con-
dition (2.6) of the form 

( ) ( ) ( )2
1 11 1, , 0 cos e O ,N X Y QXN ττ ε εΣ= + +                               (2.7) 

( ) ( ) ( )2
1 11 1, , cos e ,OW X Y R r QXW ττ ε εΣ= + +                               (2.8) 

2 2
1 11 11 0, 0,1, WN Qε + ≠ ≥                                    (2.9) 

and find that 

( ) ( ) 2 2
1 1 1 21 o  . rN wQ rR rk R rk D D Qδ − + −Σ = Σ = − Σ = Σ = − −                    (2.10) 
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Upon examination of (2.10) it follows that 2 0Σ <  identically and 1 0Σ <  provided 

11 rk Rδ < +                                     (2.11) 

Hence we can conclude that (2.11) represents the linear stability criterion for this bare ground equilibrium 
point. Since the community equilibrium point of (2.4) does not exist for these parameter values by virtue of (2.5), 
an exchange of stabilities between the two critical points of system (1.5) occurs at 11 rk Rδ = + . 

The primary focus of our research is on the stability behavior of this community equilibrium point. Now in-
troducing the nondimensional variables and parameters 

( ) ( ) ( )1 2, , , , , ,W eex d ny d D X Y t w W WN Nτ === =                   (2.12) 

( ) ( )1 1 ,, 1 ,,N WR rk kr d d D D cγ α δ µ β ρ−  = = = − =                 (2.13) 

we transform system (1.5) and far-field condition (2.6) into 

( ) ( )2 2 2, , ,,n wn wn w
t

w n
t

nµ αβ∂ ∂
Θ ∇ Ψ ∇ − ∇

∂ ∂
= + = +                      (2.14) 

where 2 2 2 2 2x y∇ ≡ ∂ ∂ + ∂ ∂ , 

( ) ( ) ( )
1 1

, , , 1 ,n w n n ww ww n
w w

nδ αδα γ
δ δ

= − = − −+
− +

Θ Ψ
−+

                   (2.15) 

and 
2 2 remain bound, ed as .xn yw + →∞                            (2.16) 

Observe that the equilibrium point in question corresponds to 
1n w= ≡                                      (2.17) 

in our dimensionless formulation since 

( ) ( )1,1 1,1 0.=Θ Ψ =                                (2.18) 

Here we are concerned with the stability of this solution to initially infinitesimal one-dimensional perturba-
tions. Toward that end, we consider a reduced form of our basic system with 2 2 2x∇ ≡ ∂ ∂ ; seek a separation of 
variables solution to it satisfying 

( ) ( ) ( ) ( ) ( ) ( )2 2
1 11 1 1 11 1, 1 cos e O , , 1 cos e Ot tn x t qx w x t w qxn σ σε ε ε ε= + + = + +           (2.19) 

where 0q ≥  and σ  are the wavenumber and growth rate of the linear perturbation quantities (i.e. 1 1ε 

) 
with 2 2

11 11 0wn ≠+  for the constants 11n  and 11w ; and obtain 

( ) ( ) ( )2 2 2 4 2
01 01 01 01 101; 0q qq qσ σ µ ψ σ µ µψ αβθ θ ψ + − + − += +  − =           (2.20) 

where 

( ) ( )1 11,1 , 1,1
! ! ! !

p s p s

ps psp s p sn wp ws p s n
θ ψ

+ +∂ ∂
= Θ = Ψ

∂ ∂ ∂ ∂
                   (2.21) 

which are tabulated below for the relevant values of p and s. 
Note that in (2.20) we have implicitly made use of the fact that 10 0θ = . Upon substitution of these expansion 

coefficients from Table 1 into (2.20), we obtain the explicit secular equation for σ  

( ) ( )2 2 4 2 0,1 q qqσ µ γ α σ µ µγ α µ β α+ + + ∆ + + + − ∆ + +   ∆ =           (2.22) 

where 0∆ >  for those δ  satisfying (2.5). Thus, since quadratics of the form of (2.22) have roots with nega-
tive real parts provided their coefficients are positive, we can conclude that the community equilibrium point is 
stable to linear homogeneous perturbations for which 2 0q = . Further observe that in the absence of plant root 
suction ( 0β = ) this equilibrium point would be linearly stable to heterogeneous perturbations, for which 

2 0q > , as well. When root suction is considered, to guarantee the onset of such a cross-diffusive instability we 
require that 



I. Chaiya et al. 
 

 
1282 

Table 1. Interaction expansion coefficients.                                                                      
1 1 2

10 20 21 30 01 11 02 12 030, 1 , ,θ θ θ θ θ θ δ θ θ δ θ δ− − −= = = = = = ∆ = − = = −∆ = ∆  
1 2

10 01 20 21 30 02 12 03, , 0, ,ψ α ψ γ α ψ ψ ψ ψ ψ α δ ψ α δ− −= − = − − ∆ = = = = = ∆ = − ∆  

 

( ) ( ) ( )2 2 2
0 ; , , , 1 .q qqβ β α γ µ µ α γµ α µ= +  > ∆ ∆ + + ∆                  (2.23) 

For fixed α , γ , ∆ , and µ , the curve ( )2
0 ; , , ,qβ β α γ µ= ∆  in the first quadrant of the 2q β−  plane is 

marginal since it serves as a boundary between the linearly stable region where ( )2
0 ; , ,0 ,qβ β α γ µ≤ < ∆  and 

the unstable region of (2.23). This marginal stability curve has a minimum point at ( )2 ,c cq β  given by 

( ) ( )( )2 1 1, 2 .c cq µ α β µ α γµ α µ= ∆ = ∆ ∆+ +
             

 (0.1) 

Thus, when cβ β>  there exists a band of squared wavenumbers 2q  centered about 2
cq  corresponding to 

growing disturbances for which 0 0σ >  where 0σ  represents the most dangerous mode of (2.22) while when 
cβ β<  there exists no such band (see Figure 1). 

The restriction of 2 2
cq q≡  in the expansions relevant to the weakly nonlinear stability analyses of the next 

three sections, allows us to consider ( )0 cσ σ β= , for fixed α , γ , µ  and ∆ , such that ( ) 0cσ β <  when
cβ β< , ( ) 0c cσ β =  and ( ) 0cσ β >  when cβ β>  (see Figure 1). Hence, the locus ( ); , ,cβ β α γ µ= ∆  

with ( ); , ,cβ α γ µ∆  defined by (2.24), is a marginal stability curve in the α β−  plane, with γ , ∆ , and µ  
fixed. We plot that locus in Figure 2 for 0 3.5α< ≤ , 1γ = , 0.6∆ = , and 0.01µ = , corresponding to the 
typical parameter values ([1] [4]) 

( ) ( ) ( )2 2
10.05 mm d gm m , 10 gm m mm, 0.2 d , 5 mmM c d rg k= = = = =         (2.25) 

( ) 2 2mm d 3 mm d, 0.1 m d , 10 m d.2 3 N WR D D< ≤ = =              (2.26) 

3. One-Dimensional Analysis: Stuart [7]-Watson [8] Nonlinear Stability Results 
In the previous section we deduced the critical conditions for the occurrence of cross-diffusive instabilities when 

0α > . To ascertain both the long-time behavior and spatial pattern of such growing perturbations we must con-
sider the nonlinear terms in our basic equations. Defining the vector quantities 

( ) ( )
( )

  and 
,

, , 
,

jk
jk

jk

nn x t
x y

ww x t
   

=    
 

=


vv                           (3.1) 

it is standard operating procedure to examine the weakly nonlinear stability of our community equilibrium point 
by letting [9] 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3
00 1 11 1 20 22 1 31 33, cos cos 2 cos 3 ,~ cosc c c cx t t q A t q AA x x xt q q x   + ++ ++   v v v v v v v  (3.2) 

where 00 00 1wn = = , and ( )1A t  satisfies the amplitude equation 

31
1 1 1

d
.

d
~ AA a A

t
σ −                                   (3.3) 

Then, the substitution of this solution into (2.14)-(2.15)-(2.16) and the expansion of its interaction terms in a 
Maclaurin series, yields six vector problems: The O(1) problem is satisfied identically given that 00 00 1wn = =  
are the components of the uniform homogeneous solution; the ( )1O A  problem is the same as the linear one of  
the previous section with cq q≡ , ( )2

01 11 10 11cw q nθ σ θ µ= − + , 11 1n = , and ( )cσ σ β= ; the solutions of the  

two ( )1
2O A  problems are catalogued in the Appendix; of the two ( )3

1O A  problems, we are only concerned 
with the one proportional to ( )cos cq x  containing the Landau constant 1a . Using the usual Fredholm solvabil-
ity condition on that problem, yields the following formula for the Landau constant as a function of α , γ , δ , 
and µ  
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Figure 1. Plot of ( )2
0 ; , , ,qβ β α γ µ= ∆  of (2.23) for 1α γ= = , 0.6∆ = , 

0.01µ = .                                                                   
 

 
Figure 2. Plot of ( ); , ,cβ β α γ µ= ∆  of (2.24) for 0 3.5α< ≤ , 1γ = , 

0.6∆ = , 0.01µ = .                                                  
 

( ) ( ) ( )

( )
( )

2
01 31 01 31

1 1

2

0

1

2
1 01

,; , ,
1

c

c

c

b
a a

q

q b

β β

ψ θ
α γ δ µ

µ θ ψ
=

−
=

−
=

+ − −
                        (3.4) 

where the components of 
( )

( )

1

2
,jk

jk
jk

b

b

 
 
 

=


b                                      (3.5) 

are catalogued in the Appendix. 
The stability behavior of the Landau equation (3.3) is dependent upon the sign of 1a . Thus, to predict this 

behavior, we must analyze the formula for ( )1 ; , ,a α γ δ µ  given by (3.4) with its interaction coefficients as 
listed in Table 1 and the components of (3.5) as defined in the Appendix. Hence we plot ( )1 ; , ,a α γ δ µ  in 
Figure 3 for the same α -domain and choice of parameter values as used in Figure 2 (note 0.6∆ =  corres-
ponds to 2.5δ = ). 
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Figure 3. Plot of ( )1 ; , ,a α γ δ µ  of (3.4)-(3.5) for 0 3.5α< ≤ , 1γ = , 

2.5δ = , 0.01µ = .                                                      
 
From Figure 3 we observe that ( )1 ;1, 2.5,0.01a α  has a zero at 0.172α =  such that 

1 1

1 1

0 for 0 0.172,
0 for 0.172.a

a α α
α α

< < < ≡
 > > ≡

                               (3.6) 

Given these conditions, we may conclude that there exist two supercritical cases when 1α α> : Namely, for 
0 cβ β< < , the community equilibrium point is stable, resulting in a uniform homogeneous vegetative distribu-
tion ( ) ~ 1,n x t ; while for cβ β> , there occurs a re-equilibration producing stationary parallel vegetative 
stripes 

( ) ( )c π, 2~ 1 ose cn Ax t x λ+                                   (3.7) 

of amplitude ( )1 2
1 0e c aA σ= >  and characteristic wavelength 

( )1 22π 2   and  c c c W cq D dλ λ λ∗= =                                (3.8) 

in dimensionless and dimensional variables, respectively. These supercritical stripes are plotted in Figure 4(a) 
where regions of higher density ( )1n >  appear dark and those of lower density ( )1n <  appear light. 

When 10 α α< <  that bifurcation is subcritical and there also exist two cases: Namely, again, for 
0 cβ β< <  and cβ β> , respectively. In general such subcritical behavior requires us to take into account 
higher order terms in our expansions which can cause the development of a uniform homogeneous vegetative 
distribution and isolated local vegetative patches (see the last section for a detailed discussion of this topic). 

Finally we synthesize the one-dimensional pattern formation results of this and the previous section in the 
α β−  plane of Figure 4(b). We plot the cross-diffusive instability boundary curve cβ β=  of Figure 3 and 
the vertical lines 0α = , 1α α= , in that figure. Then the regions 0α < , 1α α> , 0 cβ β< < ; and 1α α> , 

cβ β> ; can be identified with bare ground, uniform homogeneous distributions of vegetation, and stationary 
striped vegetative patterns, respectively, in that parameter space. In this context, observe that the line β µ=  
serves as a horizontal asymptote for cβ β=  while 

1   corresponds to1   0.rk Rδ α
< 
 =

< 
 = +  
 > 

 > 

                         (3.9) 

4. Two-Dimensional Analysis: Rhombic-Planform Nonlinear Stability Results 
Wishing to refine our one-dimensional predictions summarized in Figure 4(b) and to investigate the possibility  
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(a)                                                     (b) 

Figure 4. (a) Contour plot of the supercritical stripes of (3.7)-(3.8). Here, the x-variable is measured in units of cλ . (b) 
Schematic stability diagram in the α β−  plane for our one-dimensional interaction-diffusion model system denoting the 
predicted vegetative patterns. Here, the lower and upper bounds on α  correspond to 0R =  and 3, respectively, measured 
in units of mm/d.                                                                                            
 
of occurrence of the two-dimensional vegetative patterns mentioned earlier, we next consider a rhombic-plan- 
form solution of system (2.14) of the form [10] 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) { }( ) ( ) { }( )
( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0000 1 1010 1 0101

2
1 2000 2020

1 1 1111 111 1

2
1 0200 0202

3
1 3010 3030

2
1 1 2101 2121

, , cos cos

cos 2

cos cos

cos 2

cos cos 3

cos c 2

~

os

c c

c

c c

c

c c

c c

n x y t A t q B t n q

A t n q

A t B t

n n x z

n z

n z

n q x z n q x z

B t n q

A t n q n q

A t B t n q n q

x

x

x

z

−

+ +

 +  
 + + + − 

 +  

+

 + + 

+ +

+

{ }( ) ( ) { }( )
( ) ( ) { }( ) ( ) { }( )
( ) ( ) ( )

212 1

2
1 1 1210 1212 121 2

3
1 0301 0303

cos 2

cos cos 2 cos 2

cos cos 3 ,

c

c c c

c c

z n q x z

A t B n q n q x zx

z

n q x z

B t n q n zq

−

−

 + + − 
 + + + + − 

 + + 

      (4.1) 

where 

( ) ( )0000 1, cos sin ,n z x yϕ ϕ= = +                               (4.2) 

with an analogous expansion for ( ), ,w x y t , such that 

( )2 21
1 1 1 1 1 1~

d
,

d
A aA A
t

A b Bσ − +                                 (4.3) 

( )2 21
1 1 1 1 1 1~

d
.

d
B bB B
t

A a Bσ − +                                 (4.4) 

Here we are employing the notation jlkmn  for the coefficient of each term in (4.1) of the form 
( ) ( ) { }( )1 1 cosj l

cA t B t q kx mz+ . Then substituting this rhombic-planform solution of (4.1) into system (2.14),  

we again obtain a sequence of problems, each of which corresponds to one of these terms. Solving those prob-
lems we find that 

( ) ( )1 1 ,, ,, ;c aaσ σ β α γ δ µ= =                               (4.5) 

while applying the same method of analysis, as employed for deducing (3.4), to the 2j = , 1l m= = , 0k =  
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system yields the Fredholm-type solvability condition for the second rhombic-planform third-order Landau con-
stant 

( ) ( ) ( )

( )
( )

1 22
01 2101 01 2101

1 12
10 01

, ; , ,
1

,

c

c

c

q b

q

b
b b

β β

ψ θ
α ϕ γ δ µ

µ θ ψ
=

− −
=

+ −
=

−
                      (4.6) 

where the components of 
( )

( )

1
2101

2101 2
2101

,
b

b

 
 
  

=b                                      (4.7) 

as well as the solutions for the relevant second-order systems are catalogued in the Appendix. 
The rhombic-planform amplitude Equations (4.3)-(4.4) possess the following equivalence classes of critical 

points: 

1 1 1 1 1 1 0 0
2 2

1 1 1

; II : , 0; V :  witI : 0 h .B A B A B A
a a b

A Aσ σ
= = ==

+
== =           (4.8) 

Assuming that 1 1 1, 0aa b+ >  and investigating the stability of these critical points one finds that [10]: 

1 1 1 1I is stable for 0; II, for 0, and V, for 0, .;b a a bσ σ σ< > > > >           (4.9) 

Note that I and II, as in the one-dimensional analysis of the previous section, represent the uniform homoge-
neous and supercritical striped states, respectively, while V can be identified with a rhombic pattern possessing 
characteristic angle ϕ  [10]. In the next section we shall use these criteria to refine our one-dimensional predic-
tions of Figure 4(b) relevant to the former states due to the presence of the latter. Toward that end, we examine 
the sign of 1 1a b± . We first illustrate this procedure by defining the ratio of Landau constants [11] 

( ) ( ) ( )1 1, ; , , , ; , , ; , ,b aη α ϕ γ δ µ α ϕ γ δ µ α γ δ µ=                        (4.10) 

and plotting that quantity versus α  in Figure 5 for a fixed value of ϕ , namely 0.5ϕ = , and with the other 
parameters taking on their values of Figure 3. Here, there exists an interval of stable rhombic patterns, where 

1 1 0a b± >  or equivalently 11 η− < < , given by 

( ]1.2520,3.5α ∈                                      (4.11) 

provided in addition that 0σ >  or cβ β> . 
 

 
Figure 5. Plot of η  of (4.10) for 1 3.5α α< < , 1γ = , 2.5δ = , 0.01µ = , 

0.5ϕ = . Here, the α -interval of (4.11) is indicated by shading while the 
dashed horizontal lines denote 1η = ± .                                      
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Now, repeating the process used to produce Figure 5 but for other values of ϕ  we find the same generic 
behavior in that there exists an interval of stable rhombic patterns for ( ],m Mα α α∈  where  

1 3.5m Mα α α< < =  when cβ β>  and summarize these results in Table 2. Then, we plot the ratio of Landau 
constants of (4.10) versus [ ], π0ϕ ∈  in Figure 6 for 3α =  and the other parameters taking on their values of 
Figure 3. 

Restricting ourselves to the interval of interest [ ]π 20,ϕ ∈ , we see from Figure 6 that there exists a band of 
stable rhombic patterns for ( ),m Mϕ ϕ ϕ∈  where π 20 m Mϕ ϕ< <<  when cβ β> . Observe from Figure 6 
the intercept and symmetry properties 

( ) ( ) ( )π ;1,2.53,0;1, ,0.012.5,0.01 2, 3, 3, ;1, 2.5,0.01 .η η ϕ η ϕ= =−             (4.12) 

Here, these properties of (4.12) are a consequence of mode interference occurring exactly at 0ϕ =  and 
modal interchange, respectively [12]. Again, repeating the process used to produce Figure 6, but for other 

1 3.5α α< ≤ , we find the same generic behavior as for 3α =  and summarize these results for selected values 
in Table 3. 

Finally, we present a morphological interpretation of the stable rhombic patterns that can be associated with 
critical point V for the values of the characteristic angle relevant to Table 3. Then, to lowest order, the equili-
brium vegetative pattern corresponding to that critical point satisfies 

( ) ( ) ( ) ( )0~ 1  fo, , , r cos sin ,A g zz xn x y t x yϕ ϕ+ = +                    (4.13) 

 

 
Figure 6. Plot of η  of (4.10) for 0 πϕ≤ ≤ , 1γ = , 2.5δ = , 0.01µ = , 

3α = .                                                           
 
Table 2. Range of α  for stable rhombic patterns.                                                              

ϕ  mα  Mα  

2π 15  0.5090 3.5 

3π 20  0.8463 3.5 

0.5 1.2520 3.5 

π 6  1.8882 3.5 
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Table 3. Angle range for stable rhombic patterns.                                                                 

α  mϕ  Mϕ  

0.2 0.109632 0.185916 

0.4 0.243290 0.384288 

0.5 0.268140 0.416588 

0.6 0.285492 0.438294 

0.8 0.308829 0.466429 

1.0 0.324280 0.484419 

1.2 0.335538 0.497225 

1.4 0.344251 0.506968 

1.6 0.351279 0.514728 

1.8 0.357124 0.521116 

2.0 0.362099 0.526508 

2.2 0.366411 0.531150 

2.4 0.370204 0.535210 

2.6 0.373583 0.538809 

2.8 0.376622 0.542033 

3.0 0.379381 0.544949 

3.2 0.381903 0.547606 

3.4 0.385319 0.550045 

 

( ) ( ) ( )π, cos 2 cos 2 .πc cxg x zy λ λ= +                             (4.14) 

The three parts of Figure 7 are threshold contour plots of (4.14) for 0.5ϕ =  with threshold values of 1, 0, 
and 1− , respectively. Hence from right to left the parts of this figure can be identified with what Wollkind and 
Stevenson [10], Boonkorkuea et al. [13], and Cangelosi et al. [14] called upper, zero, and lower threshold pat-
terns, respectively. In this context note that ( ), 2g x z ≤ . Traditionally, most pattern formation analyses of this 
type have used the dimensional homogeneous vegetative solution value eN  of (2.4) as the threshold to trigger 
the color change from dark to light (see Figure 4(a)). Thus all spatial regions characterized by e eN NN n= ≥  
appear dark and those characterized by eN N< , light, where again dark regions correspond to high plant bio-
mass density and light ones to low plant biomass density or bare ground. This is equivalent to our zero threshold 
case of Figure 7. Note from (2.4) and (2.13) that 

( ) ( )11 .eN k cα δ= −                                      (4.15) 

For fixed values of the other parameters and δ  satisfying (2.11) we may consider α  and eN  to be in-
creasing straight line functions of R alone given by ( )Rα  and ( )eN R , respectively, where 

( ) ( ) ( ) ( )11 eR N cR kα δ −=                                 (4.16) 

is a dimensionless measure of the rainfall rate R. We now wish to select a particular cR R=  and adopt the pro-
tocol that 

( )c e cN N R=                                         (4.17) 

represents this threshold instead. Then, when ( )1 c cRα α α α< < =  or e cN N< , an upper threshold pattern of 
the type depicted in Figure 7 would occur while, when cα α>  or e cN N> , a lower threshold type would occur. 
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Figure 7. Rhombic patterns relevant to ( ),g x z  of (4.13)-(4.14) for 0.5ϕ =  with threshold values from right to left of 1, 

0, and 1− , respectively. Here, the spatial variables are being measured in units of cλ  and regions exceeding that threshold 
in each part appear dark while those below it appear light.                                                                
  
Given their appearance in Figure 7 we label these upper, zero, and lower threshold type rhombic vegetative ar-
rays as pseudo spots, rectangles, and pseudo gaps and denote them by V+ , 0V , and V− , respectively, in what 
follows. We shall defer the specific choice for cR , our rationale for making that selection, and its morphological 
interpretations until the comparison of these results with some recent vegetative pattern formation studies in-
cluded in the next section. 

5. Morphological Interpretations and Comparisons. 
As a prelude to the morphological interpretations to be developed in this section, we first demonstrate that our 
model system does not generate any hexagonal patterns. We do so by considering a hexagonal-planform expan-
sion for ( ), ,n x y t  of (2.12)-(2.13) with terms to first order given by [10] 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 2 2

3 3

~ 1 cos cos 3 2

cos 3 2

, , c c

c

A t q x t A t q x y t

A t

n y

q

x t

x y t

φ φ

φ

 + + + − −    
 + + − 

             (5.1) 

where, for ( ), ,i j k =  even permutations of (1, 2, 3), 

( ) ( )2 2 2
0 1 2

d
cos4 2 ,

d
~ i j k i j k j

i
i i k

A
AA a A A A Aa Aa

t
σ φ φ φ − + + + + −                      (5.2) 

( )0~ 4
d

sin ,
d

i
i j k i j ka A AA

t
φ

φ φ φ+ +                             (5.3) 

with a similar expansion for ( ), ,w x y t . Segel [15], who developed this six-disturbance methodology to analyze 
the Rayleigh-Bénard model of buoyancy-driven hexagonal-cellular convection, showed that the simplest way to 
deduce the additional Landau constants 0a  and 2a  contained in (5.2)-(5.3) was to consider its two-distur- 
bance reduction [16] obtained by setting 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 0,, 2,A t A t A t A t B t t t tφ φ φ= = = ≡= =                    (5.4) 

which reduces (5.1) and (5.2)-(5.3) to 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1 , , cos cos 2 cos 2 ,~ 3c c cn x y t x y t A t qh x x q yB t q− = +                 (5.5) 

with a similar expansion for ( ), ,w x y t  where 

( )2 2 2
0 1 2

d
d

~ ,A aA a B A A
t

a Bσ − − +                             (5.6) 

( )2 2
1 2 1 2

d 4 2 4 .
d

~ 2B B a aAB B a
t

A Baσ − + + −                        (5.7) 

See equation (4.4) of Wollkind and Stephenson [10] for the explicit higher-order terms in these expansions of  
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(5.6)-(5.7) proportional to ( ) ( ) ( ) ( )cos 2 cos 23j l
cA t B t Kq mx y  with proportionality constants jlKmn  and 

jlKmw . 
Then upon substitution of (5.6)-(5.7) into (2.14) we find that (4.5) holds again while 

0 0 0 0 0 0 0 0, wjk j K jK jk j K jKn n wn w= = = =                           (5.8) 

for 2K k= , and 

0111 1020 0111 1020,n wn w= =                                (5.9) 

as defined in Section 3. If we proceed in the same manner as we did with the rhombic-planform expansions of 
the last section, the Fredholm-type solvability conditions for 0220n  and 1220n , respectively, yield 

( ) ( ) ( )

( )
( )

1 22
01 0220 01 0220

0 02
01 01

; , , ,
1

c

c

c

b
a a

q

q b

β β

ψ θ
α γ δ µ

µ θ ψ
=

−
=

+
=

− −

−
                          (5.10) 

( ) ( ) ( )

( )
( )

2
0 01 0220 01 1220 01 1220

2 22
10 01

1 2

; , ,
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;
1

c

c

c

a q b
a a

q

a b

β β

θ ψ θ
α γ δ µ

µ θ ψ
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                   (5.11) 

where the components of 
( )

( )

1

2
220

220
220

,j
j

j

b

b

 
 


=
 

b                                      (5.12) 

for 0j =  and 1 as well as the solutions for the other relevant second-order systems are catalogued in the Ap-
pendix. Observe, as pointed out by Wollkind and Stephenson [10], that the expression for 2a  of (5.11) does not 
contain the component 0220 c

n
β β=

 since its coefficient vanishes identically in this limit by virtue of (5.10), and  

hence is often referred to as a free mode which is why that component is not catalogued in the Appendix. 
The six-disturbance hexagonal-planform amplitude phase-Equations (5.2)-(5.3) have equivalence classes of 

critical points given by 1 2 3 0φ φ φ= = =  and 
I: 1 2 3 0AA A= = = ; 

II: 2
1 1 2 3, 0A Aa Aσ= = = ; 

III± : ( ){ } ( )
1 22

1 2 3 0 0 0 1 2 1 22 4 4 4A A A aA a a a aaσ±= = = = ± +   + +− ; 

IV: ( ) ( ) ( )2 2
1 0 2 1 2 3 1 1 224 2,A Aa a A aa aσ σ= − − = = − +  with 

( )

2
1 0

1 2
2 1

16
2 aa

aa
σ =

−
. 

Critical points I and II represent the uniform homogeneous and supercritical striped states described in the 
previous two sections; III±  hexagonal close-packed arrays of spots and gaps, respectively; and IV, a genera- 

lized cell that reduces to II for 1σ σ=  and to III±  for ( )
( )

2
1 2 0

2 2
2 1

32

2

a a

aa

a
σ σ

+
= =

−
 [17]. Since the existence  

and orbital stability of these critical points depends, in part, upon the signs of various combinations of the Lan-
dau constants of (5.2)-(5.3), we examine the signs of 0a , 1 24a a+ , and 2 12a a−  by plotting those quantities as 
well as 2a  versus 1 3.5α α< ≤  for 1γ = , 2.5δ = , and 0.01µ =  in Figure 8 and observe that they are all 
identically negative. 

Although I is stable for 0σ < , II is not stable for 2 12 0a a− <  and III±  does not exist for 1 24 0a a+ <  
while IV is not stable for any set of parameter values [18]. Hence, we have demonstrated that this hexagonal- 
planform analysis does not yield any additional stable stationary heterogeneous vegetative patterns for our mod-
el system. 

Having established this fact, let us return to the subject with which we ended the last section: Namely, the se-
lection of the proper value to be assigned for cR  and hence, cN . In order to motivate our specific choice, we  
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Figure 8. Plots of 0a , 1 24a a+ , and 2 12a a−  versus 1 3.5α α< ≤  for 1γ = , 2.5δ = , 0.01µ = . Here, an analogous 
plot of 2a  has also been included for the sake of completeness.                                                      
 
first summarize the simulation results of Rietkerk et al. [4]. Their two-dimensional numerical simulations of 
model system (1.1), with 0ρ =  and its other parameters set at values consistent with (2.25)-(2.26), yielded 
close-packed vegetative patterns of spots or gaps depending upon whether R was less than or greater than 1 
mm/d, respectively. Motivated by the desire to replicate this behavior and given the similarity in appearance 
between these two types of patterns and the right- or left-hand parts of Figure 7, respectively, as well as the fact 
that eN  for the Rietkerk et al. [4] model is equivalent to (2.4) of our model, we then select 

1 mm d 0.5.c cR α= ⇒ =                                (5.13) 

Thus, from our rhombic planform analysis of the previous section, we can make the prediction that +V  pat-
terns will occur for cR R<  or 0.5cα α< =  and V−  ones, for cR R>  or 0.5α >  when cβ β> . Influ-
enced by that resemblance in appearance just cited, we have referred to these periodic rhombic arrays of V±  as 
vegetative pseudo spots or pseudo gaps, respectively. We now incorporate these two-dimensional rhombic- 
planform morphological stability results for 1γ = , 2.5δ = , and 0.01µ =  in the α β−  plane of Figure 9 
and identify regions corresponding to the predicted vegetative patterning. Note in this context that (4.15)-(4.16), 
(4.17), and (5.13) imply 

250 3  .gm mcN =                                  (5.14) 

Figure 9 represents the two-dimensional refinement of our one-dimensional predictions of Figure 4(b). Ob-
serve that the occurrence of striped and rhombic patterns is mutually exclusive by virtue of stability criteria (4.9). 
Hence since rhombic patterns occur for all 1α α>  in the patterned cβ β>  region this precludes the occur-
rence of any striped patterns there. Note that this is consistent with our hexagonal planform prediction of critical 
point II being identically unstable. Thus our major two-dimensional refinement of those one-dimensional pre-
dictions is the replacement of the whole region of striped vegetative patterns ( II ) appearing in Figure 4(b) with 
a rhombic (V) one instead. Specifically, these are identified in Figure 9 where cβ β>  as rhombic arrays of 
pseudo spots ( V+ ) for 1 cα α α< <  and of pseudo gaps ( V− ) for cα α>  in accordance with our morphologi-
cal threshold introduced in (5.13). Further, note that the 0 cβ β< <  region of Figure 9 which can be identified 
with a uniform homogeneous vegetative pattern varies from a relatively sparse distribution 
( 250 3  gm me cN N =< ) for 0 cα α< <  to a relatively dense one ( 250 3  gm me cN N => ) for cα α>  
and hence have been designated by I , respectively. 

So far, with the implicit exception of the above-mentioned I− , we have been concerned with the morpholog-
ical stability behavior of our model system for 1 0a > . We next consider its behavior for 1 0a > . Wollkind et al. 
[9] showed a particular partial differential evolution equation containing fourth-order spatial derivatives could 
be used to mimic pattern formation in reaction-diffusion systems. A comparison of the simulation results of Le-
jeune et al. [19] with the weakly nonlinear stability ones of Boonkorkuea et al. [13] for a strongly related evolu- 
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Figure 9. Stability diagram in the α β−  plane for our two-dimensional interaction-diffusion model system with 1γ = , 

2.5δ = , and 0.01µ = , identifying the predicted vegetative patterns. Here Sβ  denotes the root suction characteristic of 

(5.24)-(5.25) as a function of saturation with ( )0 0.22β = .                                                               
 
tion equation describing vegetative pattern formation in arid isotropic environments led to the conjecture that 
when 1 0a <  localized structures would occur where 0σ >  characterized by isolated patches of vegetation at 
low densities that were a spatial compromise between the periodic patchy vegetation and bare ground stable 
states. Chen and Ward [20] found local structures occurring in conjunction with such subcriticality for the Gray- 
Scott reaction-diffusion chemical model system. Cangelosi et al. [14] employed the same argument to identify a 
region of their relevant parameter space with isolated clusters for a mussel-algae interaction-diffusion model 
system. The resulting morphological sequence deduced from that identification provided close agreement with 
mussel bed patterning observations both in the field and laboratory [21] [22]. Given the similarity of behavior 
among all these phenomena we conjecture with some confidence that isolated patches of vegetation would occur 
for 10 α α< <  where cβ β>  and identify that region graphically in Figure 9 using the designation ℘ . 

Taking into account the next higher-order term in the expansions and the amplitude equation of (3.1)-(3.2)- 
(3.3) when 1 0a <  by, in particular, considering 

3 51
1 1 1 3 1d

~
d A a AA

t
a Aσ − −  

and calculating 3a , we might enhance our understanding of the morphological stability of this system in the 
subcritical regime. Should 3 0a >  that equation will have three equilibrium points: Namely, 0 and 

2 2
1 3 12 4e a aA a σ± ± + −= . Then 0 is stable for ( )2

1 1 34 0a aσ σ−< = − < ; 
2

eA+ , for 0σ > ; and in the overlap 

region 1 0σ σ− < <  where both can be stable depending on initial conditions 0 is stable for ( ) 22
10 0 eA A−< <  

and 
2

eA+ , for ( ) 22
1 0 eA A−> , while 

2

eA−  only exists in that bistability region but is not stable there [23]. Here  
the potentially stable equilibrium points 0 and 

2

eA+  would correspond to I−  and ℘ , respectively. 
Determining the generalized marginal curve for our problem analogous to (2.24) but with 0σ ≠  we would 

find that [see Kealy and Wollkind [24] for the derivation procedure involved] 

( ) ( ) ( )1 2 1 22; , , ,
12

σ

µγ µ σµβ α γ µ α γ α σ σ µ
α α

∆ ∆ + + ∆ + +
∆

+
=  ∆

  +  

where ( ) ( )0 ; , , ; , ,cσβ α γ µ β α γ µ= =∆ ∆ . Plotting the marginal curve associated with 1σ σ−= , 

( ) ( ) ( )
11 ; , , ; , , ; , , ,cσβ β α γ µ β α γ µ β α γ µ
−− =∆ ∆ ∆<=  

in Figure 9, we could make the proper morphological identifications. These would differ from those already 
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appearing in this figure only due to the presence of the overlap region 1 cβ β β− < <  where ℘  as well as I−  
patterns could now occur. Should ( )2

1 34 1a a  , as was the case for a similar situation in Kealy and Wollkind 
[24] involving hexagonal patterns, the marginal curves would coincide or 1 cβ β− ≅  causing the overlap region 
virtually to disappear and resulting in the exact same identifications as the ones appearing in Figure 9. 

Traditionally, morphological sequences of the sort referred to above have been generated from stability dia-
grams such as Figure 9 by traversing appropriate horizontal or vertical lines in that two-component parameter 
space (e.g., Cangelosi et al. [14]; Kealy and Wollkind [24]). A procedure of this sort is inherently dependent 
upon the implicit assumption that these two components are independent of each other. In the case of Figure 9, 
however, α  and β , being nondimensional measures of rainfall and the coefficient of plant root suction, re-
spectively, are actually related. To obtain the proper morphological sequence of vegetative states along a rainfall 
gradient predicted from Figure 9, it is first necessary for us to deduce that relationship. Toward this end, em-
ploying our basic definitions and the parameter values of (2.25)-(2.26), we find that 

( )4 gm d mm m .S W Sc cD D Dβ ρ= = = ⋅ ⋅                            (5.15) 

Note in (5.15) the units for SD  as indicated below, are mm m4/(gm⋅d) consistent with β  being a dimen-
sionless parameter. Adopting the root suction characteristic of Roose and Fowler [25], we take 

( ) ( ) ( )0 4 mm m gm dS mD f Sβ= ⋅ ⋅                               (5.16) 

where 

( ) ( )11 1   for  0 1  and  0 1.
mm

mf S SS m
−−= − < < < ≤                      (5.17) 

Here S ≡  the relative water saturation in the soil while the parameters ( )0β  and m are determined from 
experimental data for different soils. To complete our formulation we let 

  for  0 mm dM MRS R R R< ≤=                              (5.18) 

where, specifically, 
3 mm d.MR =                                      (5.19) 

Upon recalling that 

( ) ( )1 1R k d α γ δ+ −=                                 (5.20) 

and substituting (5.20) into (5.18)-(5.19), yields 

( ) ( ) 0  for  M MS α γ α γ α α α+ + < ≤=                          (5.21) 

where, specifically, 

0 1, 3.5.Mα γ α= − = − =                                (5.22) 

Hence 

( )   for  1 4. 1 3.5.5S α α− < ≤= +                             (5.23) 

Finally, selecting 0.5m =  after Roose and Fowler [25], and incorporating (5.23) and (5.16)-(5.17) into 
(5.15), we obtain the one-parameter family of root suction characteristic curves 

( ) ( )0
0.5 4.

1   for  1 3 5
5

.S f αβ β α β α =  


− < ≤


+
=                          (5.24) 

where 

( ) ( )1 22
0.5 1 .f S SS = −                                      (5.25) 

We plot this curve with ( )0 0.22β =  in Figure 9, where the assignment of that parameter has been made 
both for the purpose of definiteness and to be consistent with our silt loam soil choice for m [25]. Representing 
the stability boundary in that figure by ( )cβ α , for ease of exposition, we observe that there exist two points of 
intersection between it and ( )Sβ α  satisfying 
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( ) ( )0,2 0,2S cp pβ β=                                  (5.26) 

where, specifically, 

0 20.13217, 2.47622.p p= =                             (5.27) 

Here, from (5.20), these α -values of (5.27) correspond to 

0 20.75478 mm d, 2.31748 mm d,R R= =                         (5.28) 

respectively. In this context, we define 

1 1 0.78, 133 mm dcp Rα= =                             (5.29) 

where ( )1 1Rα α= . The morphological sequence of predicted stable vegetative states along a rainfall gradient 
obtained upon traversing the curve ( )Sβ β α=  in the α β−  plane of Figure 9 is tabulated below. Note, in 
general, that 

( )
0 1

0  if 0 .20.p α β
< >   
   = =   
   > <  

=



                            (5.30) 

Thus, isolated patches are only predicted for transit curves of the form of (5.24)-(5.25) provided ( )0 0.20β > . 
We next compare these theoretical predictions with relevant observational evidence. The relevant reported 

vegetative patterns [2] consist of spots (leopard bush) and gaps (pearled or spotted bush). After Boonkorkuea et 
al. [1], we now associate our rhombic arrays of pseudo spots ( V+ ) or pseudo gaps ( V− ) with these leopard or 
pearled bush vegetative patterns, respectively, and then investigate the predicted wavelength of those vegetative 
patterns. From (2.24) and (3.8), we can deduce that 

( )442π .c cλ µ α λ α= ∆ =                                (5.31) 

Designating the α ’s associated with V±  by α± , respectively, it follows from Table 4 that 

1 21 .c p pα α α α+ −< < < = < <                             (5.32) 

Then, we can see from (5.31) and (5.32) that 

( ) ( ) ,c c cλ λ α λ λ α+ + − −=>=                               (5.33) 

and hence conclude that the vegetative distributions of spots in leopard bush have a tendency to be more widely 
spaced than the bare patches which regularly punctuate the vegetation cover in pearled bush [26]. Employing the 
length scale of (3.8) and the parameter values of (2.25)-(2.26), yields the associated dimensional wavelength re-
lationships 

 m 19 m 12.7 m25 c cλ λ∗+ ∗−> > > >                             (5.34) 

consistent with field observations and in agreement with Boonkorkuea et al. [13], who interestingly enough 
found an identical power law relationship to (5.31) between their pattern wavelength and plant biomass for the 
evolution equation of Lejeune et al. [19]. 

It remains for us to compare our results with those from some recent biological nonlinear pattern formation 
studies. We begin with the work of Gowda et al. [27]. These authors examined the standard sequence of pat-
terned states (gaps → labyrinth → spots) generated in a general activator-inhibitor reaction-diffusion system as a 
bifurcation parameter was varied and then applied their results to the particular von Hardenberg et al. [1] 
plant-ground water model as its precipitation parameter was decreased. They employed both numerical simula-
tion and analytical weakly nonlinear hexagonal-planform bifurcation methods. Gowda et al. [27] found, for the 
default set of parameter values von Hardenberg et al. [1] used in their numerical integration, that, although the 
simulation method reproduced the latter’s standard sequence, the hexagonal planform analysis as in our problem 
failed to predict vegetative patterns. These calculations, in accordance with (2.25)-(2.26), were performed for 
1 100µ = . When those calculations were repeated for 1 27µ = , they found that the same standard sequence of 
vegetative patterns was produced for both the simulation and weakly nonlinear stability methods with the transi-
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tion between the two hexagonal states occurring exactly where the second-order Landau constant changed sign 
[13]. Gowda et al. [27] concluded that weakly nonlinear stability theory failed to produce the correct results in 
the first instance because the simulated morphological sequence of vegetative patterns occurred for large ampli-
tudes as the precipitation parameter was decreased. Given our results, we wish to suggest another possible ex-
planation for this discrepancy: Namely, that a rhombic-planform weakly nonlinear stability analysis might yield 
a predicted morphological sequence involving pseudo gaps → rectangles → pseudo spots as the precipitation 
parameter was decreased in this case. As supporting evidence for such a conjecture we offer the following ob-
servation. The gap- and spot-type simulated patterns for 1 100µ =  appearing in both Gowda et al. [27] and 
von Hardenberg et al. [1] were much less regular in nature than were the corresponding simulated hexagonal 
patterns for 1 27µ =  appearing in Gowda et al. [27]. The simulated transition states between these two types 
of patterns were also different consisting of labyrinths in the former instance but of parallel stripes in the latter 
case. Since for each value of α we predict multistable rhombic states with an interval of characteristic angles 
(see Figure 6 and Table 3) and as initial conditions vary point by point over a flat environment these states can 
be selected quite randomly, it is possible to generate simulated patterns resembling those appearing in von Har-
denberg et al. [1] from families of pseudo gaps and pseudo spots including labyrinths from families of rectan-
gles. Incidentally these labyrinthine patterns have been associated with certain types of so-called tiger bush or 
banded thicket vegetative distributions found in arid or semiarid flat environments [28]. In this context, the nu-
merically simulated two-dimensional patterns of Rietkerk et al. [4] used earlier to motivate our choice for cR  
also bore a strong resemblance to those of von Hardenberg et al. [1] including a labyrinthine transition state at 

m d1 mR = . Unlike the von Hardenberg et al. [1] model ours is extremely robust to variations in µ . We per-
formed additional rhombic and hexagonal planform nonlinear stability analyses on system (2.14) and found 
identical qualitative behavior for all 0.001 1µ≤ ≤ . 

We end this phase of our discussion by restating von Hardenberg et al.’s [1] claim that the power of model 
systems such as ours of (1.5) is their predicted sequence of stable states along a rainfall gradient such as the one 
summarized in Table 4 can be used to motivate an aridity classification scheme which is characterized by the 
three rainfall thresholds 

0 1 20.13217 0.5 2.47622.p pp = < = < =                          (5.35) 

Here we are employing the notation of von Hardenberg et al. [1] for these dimensionless rainfall (precipita-
tion) rate thresholds and use them to introduce the following possible aridity classes based upon the inherent 
vegetative states of our system: 
• Dry-subhumid ( 2 3.5p α< < ): The only vegetative state the system supports corresponds to a dense homo-

geneous distribution. 
• Semiarid ( 1 2p pα< < ): The only vegetative state the system supports corresponds to pseudo gaps of low 

threshold type. 
• Arid ( 0 1p pα< < ): The only vegetative states the system supports correspond to either pseudo spots of high 

threshold type or isolated patches. 
• Hyperarid ( 01 pα− < < ): The only possible stable states the system supports correspond to either a sparse 

homogeneous vegetative distribution or bare ground. 
 
Table 4. Morphological stability predictions along a rainfall gradient for ( )Sβ β α=  in Figure 9.                        

α -range R -range (mm/d) Stable Pattern 

01 α− < <  0 2 3R< <  Bare Ground 

00 pα< <  02 3 R R< <  Sparse homogeneous 

0 1p α α< <  0 1R R R< <  Isolated patches 

1 1c pα α α< < =  1 1cRR R< < =  Pseudo spots 

1c pα α= =  1cR R= =  Rectangles 

1 2c p pα α= < <  21c RR R= < <  Pseudo gaps 

2 3.5p α< <  2 3R R< <  Dense homogeneous 
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As pointed out by von Hardenberg et al. [1] the advantage of the proposed aridity classification scheme per-
tains to the information it contains about dynamical aspects of drylands. Regions whose aridity classes imply the 
occurrence of upper threshold vegetative patterns, isolated patches, or a sparse homogeneous distribution are 
vulnerable to desertification. The mere knowledge of that threat, however, allows land managers to reverse this 
process for those regions by implementing crust disturbance, seed augmentation, or irrigation strategies. Meron 
et al. [29] suggested a cycling mechanism between plants and water to account for the formation of bare patches 
characteristic of vegetative patterning along such a precipitation gradient. Note that a process of this sort occurs 
in all directions for two-dimensional vegetative patterns (pseudo spots or gaps, rectangles, and isolated patches) 
but only in two directions for one-dimensional ones (stripes). 

We close with a more detailed commentary on the role played by cross-diffusion in generating pattern forma-
tion instabilities for our two-component model system. Given that 10 0θ = , our system violates the activator 
positive feedback necessary condition for the occurrence of a Turing self-diffusive instability which requires 

10 0θ > . Hence the cross-diffusive effect of plant root suction on ground water generates our instability since as 
noted earlier if 0β =  its community equilibrium point would be identically linearly stable. Indeed, the other 
requirement of 1µ <  for a Turing self-diffusive instability to occur might also be violated should 1µ = , and a 
cross-diffusive instability of this type could still be generated although, in our actual parameter range, it is not 
violated. Recently, Stancevic et al. [30] considered a reaction-chemotaxis-diffusion three-component in-host 
viral dynamics model system for the concentrations of uninfected or infected cells and the virus. They found that 
the cross-diffusive effect of chemotaxis toward the infected cells by the uninfected ones generated their pattern 
formation instability in a similar manner as for our two-component system. Since the community equilibrium 
point of their system was linearly stable in the absence of diffusion and chemotaxis, Stancevic et al. [30] re-
ferred to this as a Turing instability. To distinguish between these two cases, we shall refer to ours as a Turing 
cross-diffusive instability instead. The von Hardenberg et al. [1] two-component nondimensional model system 
also included the cross-diffusive effect of plant root suction on ground water. Since that system’s interaction 
terms satisfied the activator positive feedback condition for its community equilibrium point while 1 100µ =  
in their default set of parameter values, the presence of this cross-diffusive effect mediated rather than generated 
their Turing self-diffusive instability. In particular, von Hardenberg et al. [1] took the coefficient of that term 

3b =  in this default set. Upon inspection of (2.14) we can see that this coefficient is related to our parameters 
by 

.b αβ=                                            (5.36) 

Thus that assignment would yield the root suction characteristic curve 
3 ,β α=                                           (5.37) 

which, as a decreasing function of α  is in qualitative accord with our formulation of (5.24). The three-compo- 
nent model systems of Rietkerk et al. [4] and HilleRisLambers et al. [5] by explicitly including surface water 
were able to generate Turing instabilities where none would have occurred for our simplified two-component 
version of that model without root suction. Finally, Wang et al. [31] conducted a definitive analysis of Turing 
instabilities for their predator-prey model system by including both self- and cross-diffusion terms in the prey 
and predator equations and performing weakly nonlinear hexagonal-planform bifurcations and numerical simu-
lations on its community equilibrium point. Since the Allee positive feedback effect for the activator prey and 
the self-diffusivity advantage for the inhibitory predator were satisfied for their specific model, this was an in-
vestigation of cross-diffusion mediated rather than generated instabilities. 

6. Conclusions 
In summary, we formulated an interaction-diffusion plant-ground water model system in an arid flat environ-
ment. That system basically was formed from two existing models by coupling a simplified version of the inte-
raction terms of one of those systems with the exact diffusion terms of the other. These terms included a cross- 
diffusion effect in the ground water equation due to plant root suction and a nonautocatalytic effect in the plant 
equation that precluded the occurrence of Turing self-diffusive instabilities. We then performed a rhombic plan-
form nonlinear cross-diffusion instability analysis on that system and found an interval of characteristic angles 
for which stable rhombic patterns occurred. Defining a critical plant biomass threshold to interpret such rhombic 
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arrays, those patterns were of an upper, zero, and lower threshold type which we labeled as pseudo spots, rec-
tangles, and pseudo gaps, respectively. Our main result could be plotted in a coefficient of root suction versus a 
rate of rainfall parameter space. Traversing that parameter space along an experimentally determined root suc-
tion characteristic curve as a function of rainfall, we produced a predicted morphological sequence of vegetative 
patterns consisting of bare ground, isolated patches, these rhombic arrays, and uniform homogeneous distribu-
tions from low to high density. Then that predicted sequence of stable states along a rainfall gradient was shown 
to be in good qualitative and quantitative agreement with observations involving the occurrence of leopard bush, 
labyrinthine tiger bush, and pearled bush in arid flat environments including the wavelength behavior of such 
patterns. Finally, we introduced an aridity classification scheme, with classes based upon the inherent vegetative 
patterns included in that predicted morphological sequence along a rainfall gradient, which could be used to an-
ticipate desertification and subsequently to implement land management reversibility strategies. Implicit to our 
continuum formulation were the assumptions that the pattern wavelength was relatively large when compared 
with the mean coverage diameter of an individual plant but quite small when compared with the territorial length 
scale characteristic of the arid environment which allowed us to have considered our interaction-diffusion equa-
tions on an unbounded spatial domain [32]. 

We conclude by noting that although these results of our weakly nonlinear stability analyses are asymptoti-
cally valid only in the neighborhood of the marginal stability curve and the rhombic vegetative arrays along our 
specific coefficient of root suction characteristic curve occurred in this region, numerical simulations of pattern 
formation for several reaction-diffusion systems and evolution model equations have shown that such theoretical 
predictions can be extended to regions of the relevant parameter space relatively far from the marginal curve [13] 
[33]. Given that a weakly nonlinear hexagonal planform analysis of our system did not predict any stable pat-
terns, we also offered an alternative explanation involving these stable rhombic patterns for why numerical si-
mulations analyses of similar systems have in the past yielded periodic pattern formation over a parameter range 
where theoretical weakly nonlinear hexagonal ones did not. We finish by reiterating for the purpose of emphasis 
the fact that all of our pattern formation results for this model have been generated by the cross-diffusion 
process of root suction as opposed to the mediating effect it has often had on self-diffusion generated Turing 
patterns. 
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Appendix 
In this appendix we catalogue the nonhomogeneous terms and second-order solutions relevant to our expansions 
of (3.1)-(3.2)-(3.3), (4.1)-(4.2)-(4.3)-(4.4), and (5.4)-(5.5)-(5.6)-(5.7). 

For (3.1)-(3.2)-(3.3) we have: 
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For (4.1)-(4.2)-(4.3)-(4.4) we have: 
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For (5.4)-(5.5)-(5.6)-(5.7) we have: 
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