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Abstract 
For the expected value formulation of stochastic linear complementarity 
problem, we establish modulus-based matrix splitting iteration methods. The 
convergence of the new methods is discussed when the coefficient matrix is a 
positive definite matrix or a positive semi-definite matrix, respectively. The 
advantages of the new methods are that they can solve the large scale stochas-
tic linear complementarity problem, and spend less computational time. Nu-
merical results show that the new methods are efficient and suitable for solv-
ing the large scale problems. 
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1. Introduction 

The complementarity problems have been widely used in the engineering design, 
information technology, economic equilibrium, etc. Since some elements may 
involve uncertain data in practical applications, many problems can be attri-
buted to stochastic variational inequality problems or stochastic linear comple-
mentarity problems, and arouse the attention of many researchers. Gurkan et al. 
[1] proposed the expected value (EV) formulation of stochastic variational in-
equality by using the sample-path method. Chen and Fukushima [2] proposed 
the expected residual minimization (ERM) formulation for stochastic linear 
complementarity problems by quasi-Monte Carlo methods. Lin and Fukushima 
[3] proposed the stochastic mathematical programs with equilibrium constraints 
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(SMPEC) for the stochastic nonlinear complementarity problems. Zhou and 
Cacceta [4] transformed the monotone stochastic linear complementarity prob-
lem (SLCP) in finite sample space into a constrained minimization problem, and 
solved it with the Feasible Semi-smooth Newton Method. Mangasarian and Ren 
[5] given a new error bound for the monotone LCP based on the error bounds. 
Chen et al. [6] studied the SLCP involving a random matrix whose expectation 
matrix is positive semi-definite. Zhang and Chen [7] proposed a smooth projec-
tion gradient algorithm to solve the SLCP. However, these methods are only 
suitable for solving the small-scale SLCP.  

In recent years, some scholars have proposed a series of methods for the study 
of large-scale complementarity problems. Dong and Jiang [8] proposed a class of 
modified modulus-based method. Bai [9] presented a class of modulus-based 
matrix splitting iteration methods. Bai and Evans [10] [11] also proposed a class 
of modulus-based synchronous multi-splitting (MSM) iteration methods. Bai 
and Zhang [12] further proposed a synchronous two-stage multi-splitting itera-
tion method, which can be applied to solving the large-scale linear complemen-
tarity problems. Zhang [13] summarized the latest development and achieve-
ments of the modulus-based matrix splitting iteration methods, including the 
corresponding multi-splitting iteration methods, etc. Zhang [14] improved the 
convergence theorem of matrix multi-splitting methods for linear complemen-
tarity problems. Such methods are easy to be implemented and very efficient in 
practical applications, and there is no need to project iteration results into space 

nR+ . Li et al. [15] [16] [17] [18] applied a class of modulus-based matrix splitting 
iteration methods to solving the nonlinear complementarity problem. Numerical 
results show that the methods are efficient. In the past decade many scholars 
have made many new achievements in this field, see the literatures [19]-[30].  

In this paper, we extend the modulus-based matrix splitting iteration methods 
to solve the large-scale stochastic linear complementarity problems. We also 
prove the convergence of these methods when the coefficient matrix is a positive 
definite matrix or a positive semi-definite matrix. The numerical results show 
that these methods are efficient.  

The outline of the paper is as follows. In Section 2 we present some necessary 
results and lemmas. In Section 3 we establish the modulus-based matrix splitting 
iteration methods for solving the SLCP. The convergence of the methods is 
proved in Section 4. The numerical results are shown in Section 5. Finally, in 
Section 6, we give some concluding remarks. 

2. Preliminaries 

In this section, we briefly introduce some necessary results and lemmas. 
Let ( ) n n

ijA a ×= ∈ , A is said to be positive semi-definite if T 0x Ax ≥  for all 
nx∈ , and positive definite if T 0x Ax >  for all { }\ 0nx∈ . n nA R ×∈  is 

called a 0P -matrix if all of its principle minors are nonnegative. 
Let ( ), ,FΩ Ρ  be a probability space, where Ω  is a sample subset of m

 . 
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Suppose that probability distribution is known, we consider the stochastic linear 
complementarity problem (SLCP): finding a vector nz∈  such that 

( ) ( ) ( ) ( )( )T0, 0, 0, .M z q z z M z qω ω ω ω ω+ ≥ ≥ + = ∈Ω        (1) 

where ( ) n nM ω ×∈  and ( ) nq ω ∈  are the rand matrices and vectors for 
ω∈Ω , respectively. 

Usually there not exists z for all ω∈Ω  for Problem (1). In order to get a 
reasonable solution of (1), in this paper we use the EV formulation proposed by 
Gurkan et al. [1]. 

The Expected Value (EV) Formulation [1]:  
Let ( ) ( ) ( ),F z M z qω ω ω= + , ( )EM M ω=    , ( )q E q ω=    , and E be the 

expectation. We consider the following EV formulation: finding a vector nz∈  
such that 

( ) ( ) ( )T, q 0, 0, 0.F z E F z Mz z z F zω= = + ≥ ≥ =             (2) 

We briefly denote it as ( )LCP q, M . 
Define 

( ) ( )RES : min , qz z Mz= +  

where the min operator denotes the componentwise minimum of two vectors. It 
is generally known that *z  solves the ( )LCP q, M  if and only if *z  solves the 
equations 

( )RES 0z =  

The function RES is called the natural residual of the ( )LCP q, M  and is of-
ten used in error analysis. 

Lemma 1 (see [8]) Let ( )0,α ∈ +∞  be a scalar, then the ( )LCP q, M  (2) is 
equivalent to the following fixed-point problem: finding nx∈ , satisfying that 

( ) ( ) qI M x I M xα α+ = − −                    (3) 

Moreover, if x is the solution of (3), then 

( ):r x xα= − , :z x x= +                     (4) 

define a solution pair of Problem (2). On the other hand, if the vector pair z and 
r solves Problem (2), then ( ): 1 2x z r α= −  solves the fixed-point problem (3). 

3. Modulus-Based Matrix Splitting Iteration Methods 

In this section, we aim at the EV formulation of the stochastic linear com-
plementarity problem (2). We give some corresponding modulus-based ma-
trix splitting iteration methods.  

For the strong monotone stochastic linear complementarity problem, the 
coefficient matrix is positive definite. For this case, we can apply the method 
proposed by Dong and Jiang [8]. 

Method 3.1  
Step 1: Select an arbitrary initial vector ( )0 nx ∈  and set : 0k = ; 
Step 2: Calculate ( )+1kx  through the iteration scheme 
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( ) ( ) ( ) ( )+1k kI M x I M x qα α+ = − −  

Step 3: Let ( ) ( ) ( )+1 +1 +1k k kz x x= + , if ( )+1kz  satisfies the termination rule, 
then stop; otherwise, set : 1k k= +  and return to Step 2. 

Unfortunately, the coefficient matrices of some stochastic linear comple-
mentarity problems are positive semi-definite, Method 3.1 is not suitable for 
solving the problem (2). Cottle et al. [31] presented a regularization method. 
Based on this method, we establish a regularized modulus-based matrix split-
ting iteration method. To simplify the notation, we will denote { }ε  and 

{ }kxε  for { }kε  and { }k

kxε , and denote the regularization problem for 

( )LCP ,q M Iε+ . 
Method 3.2  
Step 1: Select a positive number 0 Rε ∈ and an arbitrary initial vector 

( )0 nxε ∈ , and set : 0k = ; 
Step 2: Generate the iteration sequence ( )+1kxε  through solving the follow-

ing equations 

( ) ( ) ( ) ( )+1 .k kI M I x I M I x qε εα ε α ε+ + = − − −  

Let ( ) ( ) ( )+1 +1 +1k k kz x xε ε ε= + . 
Step 3: Set ε αε= , where ( )0,1α ∈  is a positive number, : 1k k= + , and 

return to Step 2. 

4. Convergence 

In this section, we analyze the convergence of Method 3.1 and Method 3.2 when 
the coefficient matrix of the ( )LCP ,q M  is a symmetric positive definite matrix 
and a symmetric positive semi-definite matrix. 

4.1. The Case of Symmetric Positive Definite Matrix 

We first discuss the convergence of Method 3.1 when the coefficient matrix is 
symmetric positive definite. 

Theorem 1 Suppose that the system matrix n nM ×∈  is symmetric positive 
definite, then the sequence ( ){ }kx  generated by Method 3.1 converges to x∗ . 

Proof. By Lemma 1 we get 
( ) ( ) ( ) ( ) ( )1 11 .k kx I M I M x I M qα α α

− −+ = + − − +  

If x∗  is a solution of (3), then 

( ) ( ) ( )1 1
.x I M I M x I M qα α α

− −∗ ∗= + − − +  

We can get that 
( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

1+1

1

1

k k

k

k

x x I M I M x x

I M I M x x

I M I M x x

α α

α α

α α

−∗ ∗

− ∗

− ∗

− = + − −

≤ + − −

≤ + − −
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Since matrix M  is a symmetric positive definite, we have 

( ) ( )
( )

( )1
max : .
i

i

M i

I M I M
λ λ

α λ
α α σ α

α λ
−

∈

−
+ − = =

+
 

where ( )Mλ  denotes the set of all the eigenvalues of M . As 0iλ > , it follows 

that 

1i

i

α λ
α λ
−

<
+

 

and thus 

( ) ( ) ( )1
1.I M I M xα α σ

−
+ − = <  

Hence, by the Banach contraction mapping theorem, we have the convergence 

of the infinite sequence ( ){ }kx  to the unique solution x∗  of the fixed-point 

equation. 

4.2. The Case of Symmetric Positive Semi-Definite Matrix 

We now discuss the convergence of Method 3.2 when the coefficient matrix is 
symmetric positive semi-definite. 

Lemma 2 (See [31]) Let M  be a 0P  matrix, { }ε  be a decreasing sequence, 

where ε  is a positive scalar with 0ε → . For each k, let kz  be the unique so-
lution of the ( ),LCP q M Iε+ . 

1) If 0M R∈ , then the sequence { }kz  is bounded; moreover, every accu-

mulation point of { }kz  solves the ( )LCP ,q M ;  

2) If M  is positive semi-definite and the ( )LCP ,q M  is solvable, then the 

sequence { }kz  converges to the least 2l -norm solution of ( ),q M .  

Theorem 2 Suppose that the system matrix M  is symmetric positive 

semi-definite, { }ε  is a decreasing sequence, then the infinite sequence ( ){ }kxε  

produced by Method 3.2 is bounded. Moreover, every accumulation point of 

{ }kzε  solves the ( )LCP ,q M ; 

Proof Note that ( )E M I M Iω ε ε+ = +    is symmetric positive definite. By 

the Step (3) of Method 3.2, we can get 

( ) ( ) ( ) ( ) ( )1 1+1k kx I M I I M I x I M I qε εα ε α ε α ε
− −

= + + − − − + +  

Then 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1+1

1 1
+ .

k k

k

x I M I I M I x I M I q

I M I I M I x I M I q

ε ε

ε

α ε α ε α ε

α ε α ε α ε

− −

− −

= + + − − − + +

≤ + + − − + +
 

Let ( ) ( )1
m I M I I M Iε α ε α ε

−
= + + − −  and ( ) 1

q I M I qε α ε
−

= + + , 

there exist any positive numbers 1 1m <  and 2m , we have 
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1m mε ≤ , 2q mε ≤ , 

Moreover, 
( ) ( )

( ) ( )

( )

+1
1 2

1
1 2

1 0
1 2

k k

k k

x m x m

x m x m

x m x m

ε ε

ε ε

ε ε

−

≤ +

≤ +

≤ +



 

Therefore 

( ) ( )( )
( )

( )( )
( )

+1 1
1 1 2 2

12
1 1 2 2

22
1 1 2 1 2 2

23 2
1 1 2 1 2 2

k k

k

k

k

x m m x m m

m x m m m

m m x m m m m

m x m m m m m

ε ε

ε

ε

ε

−

−

−

−

≤ + +

= + +

≤ + + +

= + + +



 

               

( )

( )

1 1 2
1 1 2 1 2 1 2 2

01 1
1 2

1

1
1

k k k

k
k

m x m m m m m m m

mm x m
m

ε

ε

− −

+

≤ + + + + +

−
= +

−



 

When k → +∞ , the infinite sequence ( ){ }kxε  is bounded. Since  

( ) ( )k kkz x xε ε ε= + , we get that the sequence { }kzε  is bounded. 

By Lemma 2, we have that every accumulation point of { }kzε  solves the LCP

( ),q M . The proof is completed. 

5. Numerical Results 

In this section, we test some numerical results to show the efficiency of our me-
thods. Let 5RES 10−≤ , n be the order of the matrix M , IT denote the average 
iteration steps, and CPU denote the average iteration time. 

Let ( ) 1 , 1,2, ,j jp j m
m

ω= Ρ ∈Ω = = 
. The steps to generate test problems 

can be found in the literature [4]. Numerical experimental results are shown in 
Tables 1-3. 

Table 1 shows that Method 3.1 is effective when the coefficient matrix is 
symmetric positive definite. 

Table 2 and Table 3 list the numerical experimental results of Method 3.2 
when the coefficient matrix is symmetric positive semi-definite. We know that 
Method 3.2 is effective. (In the following, we briefly denote that Feasible 
Semi-smooth Newton Method is FSNM.) 

Table 4 shows that, Method 3.2 is more effective than FSNM [19]. By Tables 
1-4, we know that Method 3.2 improves the computational efficiency and is 
suitable for solving the large scale problems. 
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Table 1. The numerical results of Methods 3.1 ( 0.9, 50mα = = ). 

n IT CPU RES 

500 
1000 
2000 
3000 
3300 

39 

37 
38 
43 
42 

0.100 
0.825 
4.320 
10.677 
12.448 

3.60e-06 
1.31e-06 
3.81e-06 
8.57e-06 
1.38e-06 

 
Table 2. The numerical results of Methods 3.2 ( 71.4, 50, 10mα ε −= = = ). 

n IT CPU RES 

500 
1000 
2000 
3000 
3300 

47 

41 
50 
44 
49 

0.139 
0.933 
5.200 
11.081 
13.711 

2.88e-06 
6.99e-07 
4.24e-06 
2.53e-06 
6.26e-07 

 
Table 3. The numerical results of Methods 3.2 ( 91.4, 50, 10mα ε −= = = ). 

n IT CPU RES 

500 
1000 
2000 
3000 
3300 

47 

41 
50 
44 
49 

0.120 
0.800 
4.770 
10.903 
13.730 

2.88e-06 
6.99e-07 
4.24e-06 
2.53e-06 
6.26e-07 

 
Table 4. Comparison of numerical results of Method 3.2 and FSNM[19]. 

Method 
      n = 30                   n = 60           n = 150 

CPU CPU CPU 

Method 3.2 
FSNM[10] 

0.0078 
0.0300 

0.0156 
0.0499 

0.0188 
1.5356 

6. Conclusion 

In this paper, we study the fast numerical methods for solving the stochastic linear 
complementarity problems. Firstly, we convert the expected value formulation of 
stochastic linear complementarity problems into the equivalent fixed point equa-
tions, then we establish a class of modulus-based matrix splitting iteration me-
thods, and analyze the convergence of the method. These new methods can be 
applied to solve the large-scale stochastic linear complementarity problems. The 
numerical results also show the effectiveness of the new methods. 
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