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Abstract 
An algorithm is proposed in this paper for solving two-dimensional bi-level 
linear programming problems without making a graph. Based on the classifi-
cation of constraints, algorithm removes all redundant constraints, which 
eliminate the possibility of cycling and the solution of the problem is reached 
in a finite number of steps. Example to illustrate the method is also included 
in the paper. 
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1. Introduction 

Multilevel programming is developed to solve the decentralized planning pro- 
blem in which decision makers are often arranged within a hierarchical ad- 
ministrative structure. The bi-level programming problem is a hierarchical 
optimization problem in which a subset of the variables are constrained to be 
solution of a given optimization problem parameterized by the remaining vari- 
ables. The linear bi-level programming problem, which is a specific case of the 
Multilevel programming problem with a two levels structure is a set of nested 
linear optimization over a single polyhedral region. Two decision makers are 
located at different hierarchical levels, each independently controlling only one 
set of decision variables, and with different and perhaps conflicting objectives. 
The hierarchical optimization structure appears normally in plenty of appli- 
cation when lower level moves are controlled by upper level decisions. Transpor- 
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tation, management, planning and optimal design are the few application fields 
of bi-level programming problems.  

In mathematical terms, in bi-level programming problems it is required to 
find a solution to the upper level problem  

( ),min ,x y F x y  

such that ( ), 0g x y ≤ , 

where y for each value of x, is the solution of the lower level problem:  

( )min ,y f x y  

such that ( ), 0h x y ≤ . 

The lower level problem is also referred as the follower’s problem. In a similar 
way, the upper level problem is also called the leader’s problem. The original 
formulation for bi-level programming problem appeared in 1973, in a paper 
authored by J. Bracken and J. McGill [1], although it was W. Candler and R. 
Norton [2] that first used the designation bi-level or multilevel programming. 
However, it was not until the early eighties that these problems started receiving 
the attention they deserve [3] [4] [5] [6]. Motivated by the game theory of H. 
Stackelberg [7], several authors studied bi-level programming problems in- 
tensively and contributed to its proliferation in the mathematical programming 
community. Since 1980, a significant efforts have been devoted to understanding 
the fundamental concepts associated with bi-level programming. Various ver- 
sions of the linear bi-level programming problem are presented by [8] [9] [10] 
[11]. At the same time, various algorithms have been proposed for solving these 
problems. One class of techniques inherent of extreme point algorithms and has 
been largely applied to the linear bi-level programming problems because for 
this problem, if there is a solution, then there is at least one global minimizer 
that is an extreme point [12]. Two other classes of algorithms are branch and 
bound algorithm and complementarily pivot algorithms [13] [14]. A survey on 
the linear bi-level programming problems has been written by O. Ben-Ayed [15]. 
The complexity of the problem has been addressed by a number of authors [16] 
[17] [18]. It has been proved that even the linear bi-level programming problem 
where all the involved functions are affine, is a strongly NP-hard problem [19] 
[20]. 

In this paper, an attempt has been made to develop a method in which 
constraints are analyzed, and used for solving two-dimensional linear bi-level 
programming problems. Constraints have been classified broadly in two cate- 
gories; we have named them as concave constraints and convex constraints. 

2. Fundamental Principles  

We define two types of constraint classes for the proposed method, which lay the 
foundation of this algorithm. Considering the normal to be towards the half 
plane region not satisfied by constraints, we define the following: 

Concave Constraints: -constraints whose normal make angles with the x-axis 
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in the range [0, π] . 
Convex Constraints: -constraints whose normal make angles with the x-axis 

in the range [π,2π] . 
Concave and Convex constraints defined here are other than non-negativity 

constraints.Various types of constraints on the basis of the above definition are 
given in the table below: 

 
constrained type aix + biy ≤ ci 

S. No. 
sign of Class of 

constraint ai bi ci 

1 + + + concave 

2 + + - concave 

3 - + + concave 

4 - + - concave 

5 + 0 + concave 

6 0 + + concave 

7 + - + convex 

8 + - - convex 

9 - - + convex 

10 - - - convex 

11 - 0 - convex 

12 0 _ _ convex 

 
The form of bi-level linear programming problem considered here is of the 

following type: 

( )1max or min , where solves
xx

f x y y                   (1) 

( )2max or min ,
yy

f x y                         (2) 

i i ia x b y c+ ≤                            (3) 

, 0x y ≥                              (4) 

It can be observed easily that inducible region, for the finite solution is one 
among following two cases: 1) a part of the line of concave constraints; 2) a part 
of the line of convex constraints or part of the x-axis. Reason behind this 
observation is the fact that in (2), the control is only on the y variable, therefore 
for a given x, if (2) is to be maximized in the positive direction of the y-axis, then 
the extreme point will be a point on a line of concave constraint as shown in 
Figure 1, and if (2) is to be minimized in the positive direction of the y-axis, 
then the extreme point will be a point on the line of convex constraint or on the 
x-axis as shown in Figure 1. 

While dealing with this method of solving problems we come across two types 
of redundant concave constraint and one type of redundant convex constraint. A 
concave constraint which is redundant when no convex constraints are con- 
sidered is one type of redundant concave constraints, 2l′  is a line of such type of  
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Figure 1. Location of extreme point in case of maximization or minimization 
problems. 

 
redundant constraint as shown in Figure 2, hereafter represented as RCC. A 
concave constraints which is redundant when convex constraints are also con- 
sidered with concave constraints is another type of redundant concave con- 
straints, 1l  is a line of such type of redundant concave constraint as shown in 
Figure 2, hereafter represented as RCC1. One type of redundant convex con- 
straints used for the proposed method is redundant when no concave constraint 
are considered, hereafter represented as RCX. 

RCC are removed in two steps, at the first step those RCC are removed which 
can be identified just by inspection, it can be easily seen that a concave con- 
straint having line i i il y m x c≡ = +  is RCC with respect to concave constraint 
having line j j jl y m x c≡ = +  if i jm m>  and i jc c> . After removal of such 
RCC let the concave constraints sustained are those whose lines are represented 
by 1 1 1,l y m x c≡ = +  2 2 2 ,l y m x c≡ = +  ,  ,j j jl y m x c≡ = +  ,   

1 1 1p p pl y m x c≡ = + , where 1 2 1j pm m m m> > > > >   and  

1 2 1j pc c c c< < < < <  . 
From Figure 2 we can observe that 1 2,l l  and 3l  are three lines of constraint 

such that their slopes 1 2,m m  and 3m  respectively and their intercepts with y- 
axis 1 2,c c  and 3c  respectively follow relation 1 2 3m m m> >  and 1 2 3c c c< <  
and none of the three are RCC but under the same condition constraint with the 
line 2l′  is RCC with respect to constraint having lines 1l  and 3l . Such RCC 
can be removed by finding out the x-coordinates for point of intersection of the 
line of concave constraints. x coordinate 12x  for point of intersection of 1l  and  

2l  is given by 1 2
12

2 1

c cx
m m

−
=

−
, similarly the x coordinate 23x  of point of 

intersection of 2l  and 3l  is given by 2 3
23

3 2

c cx
m m

−
=

−
, for constraint having the  

line 2l  not to be RCC with respect to constraint having lines 1l  and 3l  we  
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Figure 2. Redundant constraint. 

 
must have 12 23x x< . In case constraint having the line 2l  is redundant with 
respect to constraint having lines 1l  and 3l , replace constraint having the line  

2l  by constraint having the line 3l  and constraint having the line 3l  by  

constraint having the line 4l  and find out 1 3
13

3 1

c cx
m m

−
=

−
 and 3 4

34
4 3

c cx
m m

−
=

−
,  

thus one by one all the redundant concave constraints can be removed. Here it is 
assumed that 12x  and corresponding y coordinate 12y  are non-negative 
otherwise constraint having the line 1l  become RCC and we replace constraint 
having the line 2l  by constraint having the line 1l  and so on. While finding 

ijx  to check redundancy for concave constraints we also find corresponding y 
coordinates ijy . In this process after 1l  is obtained if we come across 0ijy ≤  
for a positive ijx , the concave constraint having ( ),ij ijx y  as terminal point is 
considered to be the last non-redundant concave constraint. It is to be noted that 
a line segment parallel to y-axis cannot be a part of inducible region, therefore 
while removing RCC, if a concave constraint parallel to the y-axis having line pl  
is encountered then point of intersection lP  of the line of concave constraint 
just before pl  and pl  is considered to be the terminal point of the last non- 
redundant concave constraint making the reaction set. 

RCX can be removed in the similar way as RCC, for this let i i il y m x c′ ′ ′≡ = +  
and j j jl y m x c′ ′ ′≡ = +  be two lines of convex constraint, such that i jm m′ ′<  and 

i jc c′ ′<  then constraint having line il′  is RCX with respect to convex constraint 
having line jl′ . After removal of such RCX let the convex constraint left are 
those having lines 1 1 1l y m x c′ ′ ′≡ = + , 2 2 2l y m x c′ ′ ′≡ = + ,  , j j jl y m x c′ ′ ′≡ = + , 
 , 1 1 1p p pl y m x c′ ′ ′≡ = + , where 1 2 1j pm m m m′ ′ ′ ′< < < < <   and  

1 2 1j pc c c c′ ′ ′ ′> > > > >  . 
Such RCX can be removed by finding out the x-coordinates of the point of 

intersection of lines of convex constraint, x-coordinate 12x′  for point of  

intersection of 1l′  and 2l′  is given by 1 2
12

2 1

c cx
m m
′ ′−′ =
′ ′−

, similarly x coordinate 
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23x′  of point of intersection of 2l′  and 3l′  is given by 2 3
23

3 2

c cx
m m
′ ′−′ =
′ ′−

, for con-  

straint having the line 2l′  not to be RCX with respect to constraint having the 
line 1l′  and constraint having line 3l′  we must have 12 23x x′ ′< . In case 
constraint having the line 2l′  is redundant with respect to constraint having the 
line 1l′  and constraint having the line 3l′ , replace constraint having the line 2l′  
by constraint having the line 3l′  and constraint having the line 3l′  by constraint  

having the line 4l′  and find out 1 3
13

3 1

c cx
m m
′ ′−′ =
′ ′−

 and 3 4
34

4 3

c cx
m m
′ ′−′ =
′ ′−

, thus one by  

one all the redundant convex constraints can be removed. 
Non-redundant concave constraints obtained after removal of RCC as dis- 

cussed above are such that constraint having line kl  is nearer to y-axis than 
constraint having line ml  if k m< . Also during this process we have obtained, 
coordinates of corners made by all non-redundant concave constraint lines, after 
removal of RCC, except the starting point of first non-redundant concave con- 
straint line and the terminal point of last non-redundant concave constraint line 
in general. 

To obtain the starting point of first non-redundant concave constraint line, 
find its intersection first with the y-axis if the coordinate so obtained is 
( )0, 0y ≥  then this is the required point, otherwise we find its intersection with 
x-axis. To obtain the terminal point of last non-redundant concave constraint 
line we find its intersection with the x-axis, if the coordinate so obtained is 
( )0,0x ≥  then this is the required point, otherwise terminal point is un- 
bounded. 

3. Algorithm  

Method and algorithm in case inducible region is a part of concave constraints 
line is given below. A similar method and algorithm can be given in case in- 
ducible region is a part of convex constraints line. 

Step 1: Remove RCC from all concave constraints and find ijy  for all ijx  
obtained during the process of removal. Find RCX from all convex constraints. 

Step 2: Find starting point 1P  of first non-redundant concave constraint line, 
and the terminal point lP  of last non-redundant concave constraint line which 
may be part of inducible region. 

Step 3: Check if end points 1P  and 2P  of first non-redundant concave con- 
straint line 1l  satisfy all non-redundant convex constraint lines or not, if they 
do so go for 2P  and 3P  of 2l  and so on, to check the same, otherwise there 
may be one of the following three cases: 

1) There is at least one non-redundant convex constraint not satisfied by both 

1P  and 2P  in this case constraint having line 1l  become RCC1 otherwise 1l  
become part of boundary of the feasible region, and we move to constraint 
having lines 2 3, , .l l   

2) There is at least one non-redundant convex constraint not satisfied by 1P  
but satisfied by 2P . Let 1l′  be one such line of convex constraint, then find the 
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intersection point of 1l′  and 1l  and shift 1P  to this point of intersection, with 
this new 1P  and 2P  if jl′  is again line of such constraint do the same, and so 
on, till all such constraints are exhausted, then move to constraint having line 

2 3, , .l l   
3) There is at least one non-redundant convex constraint not satisfied by 2P  

but satisfied by 1P . Let constraint having line pl′  be one such convex constraint, 
then find the intersection point of pl′  and 1l  and shift 2P  to this point of 
intersection, with this new 2P  and 1P  if constraint having line ql′  is again 
such constraint do the same, and so on, till all such constraints are exhausted, in 
this case 2P  become the last point to be considered for solution. 

Step 4: The points 1 2, ,P P   satisfying all non-redundant convex constraints, 
obtained from step 3 are used to find optimal solution by putting its value in the 
objective function (1). 

If there are some feasible points than in either of the following two cases we 
may have unbounded solution 1) No concave constraint exist 2) No constraint 
of the type 1, 5 and 7 as given in the table is present in the problem. If there is at 
least one of the convex constraints not satisfied by any of the point 1 2, ,P P   
then there is a case of no feasible solution.  

4. Example  

1max 3 2
x

z x y= +  

where y solves 

2max 2 4
y

z x y= +  

5 5 15x y− + ≤                          (5) 

4.5y ≤                             (6) 

4 3 24x y+ ≤                           (7) 

2 4x y− − ≤ −                           (8) 

8 4 12x y− ≤                           (9) 

3x ≤                             (10) 

, 0x y ≥  

Solution: 
As per the classification (5), (6), (7) and (10) are concave constraints and (8) 

and (9) are convex constraints, inducible region is a part of concave constraints. 
Step 1: Part of ration reaction set are 1 3,l y x≡ = +  2 0 9 2l y x≡ = +  and 

3 4 3 8l y x≡ = − + . 
None of the concave constraint is RCC and none of the convex constraint is 

RCX. ( ) ( )2 12 12, 3 2 ,9 2P x y =  and ( ) ( )3 23 23, 21 8,9 2P x y = . 
Step 2: ( )1 0,3P =  and ( )4 3, 4P = . 
Step 3: 1 2 3, ,P P P  and 4P  satisfy both (8) and (9). 
Step 4: z1 for all the 1 2 3, ,P P P  and 4P  are ( )1 0,3 6,z =  ( )1 3 2 ,9 2 27 2,z =  
( )1 21 8,9 2 135 8z =  and ( )1 3, 4 17z = . 
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Therefore solution is ( )1 3, 4 17z = .  

1max 3 2
x

z x y= +  

where y solves 

2max 2 4
y

z x y= +  

5 5 15x y− + ≤                          (11) 

4.5y ≤                             (12) 

4 3 24x y+ ≤                          (13) 

2 4x y− − ≤ −                          (14) 

8 4 12x y− ≤                          (15) 

3x ≤                             (16) 

, 0x y ≥  

Solution: 
As per the classification (5), (6), (7) and (10) are concave constraints and (8) 

and (9) are convex constraints, inducible region is a part of concave constraints. 
Step 1: Part of ration reaction set are 1 3,l y x≡ = +  2 0 9 2l y x≡ = +  and 

3 4 3 8l y x≡ = − + . 
None of the concave constraint is RCC and none of the convex constraint is 

RCX. ( ) ( )2 12 12, 3 2 ,9 2P x y =  and ( ) ( )3 23 23, 21 8,9 2P x y = . 
Step 2: ( )1 0,3P =  and ( )4 3, 4P = . 
Step 3: 1 2 3, ,P P P  and 4P  satisfy both (8) and (9). 
Step 4: 1z  for all the 1 2 3, ,P P P  and P4 are ( )1 0,3 6,z =  ( )1 3 2 ,9 2 27 2,z =  
( )1 21 8,9 2 135 8z =  and ( )1 3, 4 17z = . 

Therefore solution is ( )1 3, 4 17z = .  

5. Conclusion  

The proposed method is based on the analysis of constraints. Unlike the tra- 
ditionally used method of finding optimum such as interior point method or 
simplex method in which search is made by moving along the boundary of the 
feasible region, an attempt made in this paper conveys that by properly exploiting 
the properties of constraints there is a possibility of developing a method which 
solves the problem in finite number of steps efficiently. 
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