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Abstract 
Posterior constraint optimal selection techniques (COSTs) are developed for 
nonnegative linear programming problems (NNLPs), and a geometric inter-
pretation is provided. The posterior approach is used in both a dynamic and 
non-dynamic active-set framework. The computational performance of these 
methods is compared with the CPLEX standard linear programming algo-
rithms, with two most-violated constraint approaches, and with previously 
developed COST algorithms for large-scale problems. 
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1. Introduction 
1.1. The Nonnegative Linear Programming  

Consider the linear programming (LP) problem  

( ) T Maximize P z c x=                      (1) 

subject to 

≤Ax b                             (2) 

0,≥x                             (3) 

where c  and x  are n-dimensional column vectors of objective coefficients 
and variables respectively; A  is an m n×  matrix ija    with 1 n×  row vec-
tors , 1, , ;i i m= a  b  is an 1m×  column vector; and 0 is an 1n×  vector of 
zeros.  

The non-polynomial simplex methods and the polynomial interior-point bar-
rier-function algorithms are currently the principal two-solution approaches for 
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solving problem ,P  but for either there are problem instances for which it 
performs poorly [1]. Since the principle use of LP in industrial applications is in 
binary and integer programming algorithms, however, pivoting algorithms with 
efficient post-optimality analysis are frequently preferable to interior-point me-
thods. On the other hand, simplex methods often cannot solve large-scale LPs at 
a speed required by many current applications. The purpose here is to develop 
an approach for solving a certain class of LPs faster than existing methods.  

In this paper we consider the nonnegative linear programming problem 
(NNLP), which is the special case of P  with 0i ≥a  but 0, 1, , ;i i m≠ = a

0>b ; and 0.>c  NNLPs model a large number of linear programming appli-
cations such as determining an optimal driving path for navigation systems us-
ing traffic data [2], updating flight status due to weather conditions [3], and de-
tecting errors in DNA sequences [4]. NNLPs have the following two important 
properties:  

1) the origin    0=x  is feasible, 

2) 
1, ,

. min : 0 , 1, ,i
j ji m ij

b
x a j nia=

 
≤ > = 

 

  

Thus NNLPs have a bounded feasible region and bounded objective function 
if and only if no column of A  is a zero vector. It follows that the boundedness 
of an NNLP objective function is easily verifiable without computation. 

1.2. Background 

We propose here an active-set method to solve nonnegative linear programming 
problems faster than current approaches. Our method divides the constraints of 
problem P  into operative and inoperative constraints at each active-set itera-
tion. Operative constraints are those active in the current relaxed subproblem 

, 1, 2, ,rP r =   of P  at iteration ,r  while the inoperative ones are constraints 
of the problem P  not active in .rP  In our active-set method we iteratively 
solve 1, 2, ,,rP r =   of P  after adding one or more violated inoperative con-
straints from (2) to 1rP − until the solution *

rx  to rP  is a solution to P . 
Active-set methods have been studied by Stone [5], Thompson et al. [6], Adler 

et al. [7], Zeleny [8], Myers and Shih [9], Curet [10], and Bixby et al. [11], 
among others. The term ‘‘constraint selection technique’’ was introduced in [9], 
while the approaches of [7] and [8] illustrate two distinct classes of active-set 
methods. When the constraint selection metric for choosing violated inoperative 
constraints to be added to rP  does not depend on the solution *

rx , the asso-
ciated active-set method is called a prior method. On the other hand, if the con-
straint selection at rP  does depend on *

rx , it is called a posterior method. Ad-
ler et al. [7] developed a prior method in which a violated inoperative constraint 
was chosen randomly at each active-set iteration. Zeleny [8] proposed a post-
erior method in which the inoperative constraint most violated by *

rx  was 
added. This method is a classical cutting-plane generation technique and is 
called VIOL here. VIOL is also used as a pricing rule in delayed column genera-
tion [12], as an approach for adding multiple constraints in the interior point 
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cutting plane method of [13], and as part of the sifting algorithm of [11] for 
column generation.  

More recently, Corley et al. [14] developed a geometric prior active-set me-
thod for P  called the cosine simplex method. At each active-set iteration ,r  a 
single violated constraint maximizing the cosine of the angle between ia  and 
c  is added to the operative set for rP . This cosine constraint selection crite-
rion is equivalent to the “most-obtuse-angle” pivot rule for the modified simplex 
algorithm introduced by Pan [15], where it was applied to the dual problem for 
P. Junior and Lins [16] also utilized a cosine criterion to choose an initial basis 
for the simplex algorithm on P  resulting in a fewer number of simplex itera-
tions. 

References [17] [18] [19] [20] are most directly related to the current work 
and involve the authors here. In [17], Corley and Rosenberger proposed the 
constraint selection metric maximizing 

( ), , i
i i

i
RAD b b=

a ca c                         (4) 

for NNLPs. RAD is a geometric constraint selection criterion for determining 
the constraints most likely to be binding at optimality. In the associated ac-
tive-set algorithm of [18], all constraints of (2) are initially ordered by decreasing 
value of RAD prior to solving an initial bounded problem 0P  by the primal 
simplex. The dual simplex is then used when violated inoperative constraints are 
added according to their RAD value. In computational experiments, RAD 
proved superior to existing linear programming methods for NNLPs. A similar 
constraint selection metric GRAD was developed in [19] to solve general linear 
programs (LPs). Finally, in [20] a dynamic active-set method was developed for 
adding a varying number of violated constraints at rP  based on progress at 

1.rP −  It was incorporated into both RAD and GRAD to improve the computa-
tional results of [18] and [19].  

1.3. Overview 

In this paper a posterior constraint selection metric NVRAD is developed for 
NNLPs. NVRAD may be considered as a posterior version of RAD. The post-
erior NVRAD is then implemented in the dynamic framework of [20]. It should 
be noted that a constraint selection metric and the associated active-set method 
are identified by the same name - in this case NVRAD. For the active-set method 
NVRAD, we provide extensive computational extensive computational experi-
ments to show that it solves NNLPs faster than other computational methods, 
including RAD and various versions of the existing posterior active-set method 
VIOL described above. 

More specifically, in Section 2 we state the posterior constraint selection me-
tric NVRAD and provide a geometric interpretation. A dynamic version of 
NVRAD for NNLPs is then developed. In Section 2 we extend NVRAD to a hy-
brid approach HYBR, where RAD and NVRAD are alternated. In Section 3, 
computational results are presented. NVRAD is shown to be significantly faster 
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for NNLPs than all CPLEX solvers, as well as faster than VIOL and RAD. HYBR 
appears slightly faster than NVRAD. In Section 4, we present conclusions. 
Throughout the paper, both a constraint selection metric and the associated ac-
tive-set algorithm are identified by the same name-RAD or NVRAD, for exam-
ple. The use the term should be clear from context. The active-set algorithm it-
self is called a COST, i.e., a “Constraint Optimal Selection Technique”.  

2. NVRAD  
2.1. Definition and Interpretation 

Let *
rx  be the current optimal solution for some rP  with a perpendicular dis-  

tance 
*
ri i

i

bd
−

=
xa
a

 to a violated hyperplane .ii b=a x  It follows that  

*

.ri i
ii

i

d b
bb
−

=
x a
 

a

                       (5) 

Note that i

i

b
a

 is the perpendicular distance of hyperplane ii b=a x  to the  

origin. Consequently, it follows that choosing a violated hyperplane ii b=a x   

with a maximum value 
*
ri i

i

b
b
−x a

 
 on the right side of (5) can be interpreted  

from the left side of (5) as selecting a violated constraint giving the deepest cut  

based on information derived from *
rx . But from [18], the expression i

ib
a c

 on  

the right side of (4) is the distance from the origin to the hyperplane ii b≤a x
along the vector ,c  i.e., the direction of steepest ascent for the objective func-
tion (1) of the NNLP .P  For this reason, in [18] the inoperative constraint 
maximizing ( ), ,i iRAD ba c  is deemed the best constraint to add to rP  based 
on prior information. We combine this prior information (4) with the posterior 
information on the right side of (5) by multiplying them to give 

( ) ( )* *
2, , , .i

i i r i r i
i

c
NVRAD b b

b
= −

a
a c x a x               (6) 

Equation (6) thus incorporates global information from RAD with local in-
formation at *

rx , and our posterior active-set method adds to rP  an inopera-
tive constraint *i  for which 

( )* **
2OPERATIVE

arg max : .i
i iir r i

i i

i b b
b∉

  −∈ > 
  

a c
a x a x             (7) 

We mention that the term 2
ib  in the denominator of (7) works better than 

simply .ib  This fact was established in computational results not reported here 
but obtained to support the above derivation. 

2.2. The Dynamic Active-Set Algorithm  

A dynamic version of RAD was developed by the authors in [20]. A similar ap-
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proach is now used for NVRAD. Let *
rx  be the optimal extreme point for rP , 

with rθ  the angle between *
rx  and .c  Then 

*T

* cos  ,r
i

r
θ =

x c
cx 

                        (8) 

is nonnegative since rP  is also an NNLP. We would like to decrease rθ  at each 
active-set iteration so that *

rx  points more in the same direction as the gradient 
c  of the objective function in (1). We adapt our dynamic heuristic of [20] that 
adds a varying number of violated inoperative constraints to rP  according to 
the progress made 1rP −  in reducing the angle 1.rθ −  

As our ideal goal, let 0rθ =  in (8) to give    
T * * .r r=c x x c                         (9) 

When 0rθ = , it follows from (9) that 

( )
*

21 *
12

1

.
n

j rj nj
rjjn

jj

c x
x

c

=
=

=

=
∑

∑
∑

                  (10) 

Letting ⋅  denote absolute value, define  

( ) ( )
*

21* *
12

1

n
j rj nj

r r rjjn
jj

c x
x

c
δ =

=

=

= −
∑

∑
∑

x               (11) 

as a measure of the performance of our active-set method at iteration .r  The 
value of ( )*

r rδ x  decreases as rθ  decreases. Such a decrease usually occurs as 
*
rx  approaches an optimal extreme point of P  itself. 
The dynamic COST NVRAD for solving NNLPs is described as follows. Con-

straints are initially ordered by the RAD constraint selection metric (4). To con-
struct 0P  we choose constraints from (2) in descending order of RAD (since 
there is no *

rx ) until the 0A  matrix of has no 0 column, i.e., until each variable 

jx  has an 0.ija >  These selected constraints become the constraints of 0P , 
and we say that the variables are covered by the inequality constraints of the ini-
tial problem. 0P  is then solved by the primal simplex to achieve an initial solu-
tion *

0 ,x  and ( )*
0 0δ x  is calculated. At iteration r  let rγ  be the number of 

constraints of problem P  violated by *
rx . Then at iteration 1r −  and ,r  the 

values of ( )1
*

1r rδ − −x  and ( )*

rrδ x  are calculated; and the percentage of im-
provement made in reducing the angle between vectors *

rx  and c  at iteration 
r  is measured by 

( ) ( )
( )

* *
1 1

*
1 1

 
max 0, 100, 1,2, .

r r r
r

r r

r r
δ δ

ω
δ

− −

− −

  −  = × =     



x x

x
       (12) 

With [ ]⋅  denoting the greatest integer function, let  

( )( )1
1

1

 

 

  1 ln , 1, 2, ,  if   1

, 1, 2, ,  if    1,

r r r r

r r r

r

r

ϕ ϕ ω ω

ϕ γ ω

−
+

+

 × = + = > 
= = ≤









        (13) 
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where 1 200.ϕ =  The value of rϕ  is an upper bound on the possible number 
of violated constraints that can be added at active-set iteration .r  The actual 
number added is { }1min , .r rϕ γ+  The active-set function rϕ  increases at every 
iteration since the optimal value of the objective function for rP  is usually less 
affected by a constraint with a small value of (6) than one with a large value. 
Hence, more violated constraints should be added as r  increases. Equation 
(13) represents one approach for doing so. If > r eω  (Euler’s number), for ex-
ample, then 1 .r rϕ ϕ+ =  If 1.01,rω =  then 1 101 .r rϕ ϕ+ =  In other words, a 
much larger number and perhaps all of the remaining violated constraints could 
be added. NVRAD stops when 0,rγ =  i.e., when there are no more violated 
constraints. 

The pseudocode for dynamic NVRAD algorithm is as follows. 
Step 1—Identify constraints to initially bound the problem.  
1: *  0,  BOUNDING← ←∅a  
2: while * 0a  do 
3: ( )*

  EXPLORED
arg maxLet , , .i i

i
i RAD b

∉
∈ a c  

4: * * if  0 and 0 thenj ijj a∃ = > a  
5: { }BOUNDING BOUNDING ?i← ∪  
6: end if 
7: *

i← +* *a a a  
8. Optimized false←  
9: end while 
Step 2—Using the primal simplex method, obtain an optimal *

0x  for the ini-
tial problem. 

( )0
T

            

  Maximize
subject to

, BOUNDING
                0.

ii

P z

b i

=

≤ ∈

≥

c x

a x
x

 

Step 3—Perform the following iterations until an answer to problem P  is 
found. 

1: 0r ←  
2: while Optimized = false do 
3: Calculate ( )* .r rδ x  

4: 
( ) ( )

( )
* *

1 1

*
1 1

 
 

if  1 then max 0, 100
r r r

r
r r

rr
δ δ

ω
δ

− −

− −

  −  > = ×     

x x

x
 

5: ( )( )1
1if 1 then 1 lnr r r rω ϕ ϕ ω −
+ = +×  >    

6: else if 1rω ≤  then 1  r rϕ γ+ =  
7: end if  
8: else   0rϕ ←  
9: end if 
10: * , 1, , rowsif  then i r i ib => 

a x  
11: { }* , 1, , ro# ws{ ir r ib iγ ← => 

a x  
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12: ( ) ( )* * * *

  OPERATIVE
arg max , , ,Let : .2

i
i i i iir r r i

i i

bi NVRAD b b
b∉

  −∈ = > 
  

a c
a c x a x a x

 
13: { } { }1for min , OPERATIVE OPERATIVE   e, , d1  nr r ii ϕ γ+ ← ∪=   
14: Solve the following  rP  by the dual simplex method to obtain *.rx  
15: 1r r← +  
16: Go to 3 
17: * else Optimized true r← x// is an optimal solution to P . 
18: end if 
19: end while 

2.3. A Hybrid Approach 

A reasonable conjecture is that that combining the global information of RAD 
and the local information of NVRAD might be advantageous. Therefore, we will 
also consider an approach that alternates the dynamic RAD and NVRAD me-
trics in a single algorithm at even and odd iterations, respectively, to yield a hy-
brid COST designated here as HYBR. The results obtained for HYBR demon-
strate that combining posterior and prior COSTs may be superior to either a 
prior or posterior approach by itself. 

3. Computational Experiments 

Dynamic NVRAD is compared in this section with the CPLEX primal simplex, 
dual simplex, and barrier methods. It is also compared with the prior active-set 
method RAD and the standard posterior active-set method VIOL, as well as to a 
normalized version of VIOL called NVIOL that was superior to VIOL in com-
putational results not reported here. Both dynamic and multi-bound, multi-cut 
versions of NVRAD were compared to dynamic and multi-bound, multi-cut 
versions of the other active-set methods for insight into the individual merits of 
the dynamic and posterior approaches. 

3.1. Problem Instances 

Five sets of NNLPs from [18] are used to evaluate the performance of the dy-
namic posterior COST NVRAD. Each of Sets 1 - 4 contains 105 randomly gen-
erated NNLPs at 21 different density levels ranging from 0.005 to 1, and four ra-
tios of ( m  constraints)/( n  variables) ranging from 200 to 1. The ratios for Sets 
1 - 4 are 200, 20, 2, and 1, respectively. For each of Sets 1 - 4, there are five prob-
lem instances per combination of density level and ratio. In these problem sets, 
randomly generated real numbers between 1 and 5, 1 and 10, and 1 and 10 were 
assigned to the elements of , ,A b  and ,c  respectively. To prevent any con-
straint of P  from having the form of an upper bound on some variable, each 
constraint is required to have at least two nonzero ija . Next, problem Set 5 of 
NNLPs is a set of large-scale problems with 5000 variables and 1,000,000 con-
straints. In this set, real numbers between 1 and 100 are assigned to the elements 
of b  and c  with densities p  ranging from 0.0004 to 0.06. Again, each con-



H. W. Corley et al. 
 

33 

straint is required to have at least two nonzero ija . 

3.2. CPLEX Preprocessing 

Two CPLEX parameters for solving linear programming are discussed here. The 
preprocessing pre-solve indicator (PREIND) and the preprocessing dual setting 
(PREDUAL) are the two parameters that CPLEX uses for solving linear pro-
gramming. Preprocessing pre-solver is enabled with the parameter setting 
PREIND = 1 (ON), which reduces both the number of variables and the con-
straints before any type of algorithm is used. The pre-solver routine in CPLEX is 
disabled by setting PREIND = 0 (OFF). The second preprocessing parameter in 
CPLEX affecting the computational speed is PREDUAL. By setting parameter 
PREDUAL = 0 (ON) or PREDUAL = −1 (OFF), CPLEX automatically selects 
whether to solve the dual of the original LP or not, respectively.  

Both PREIND and PREDUAL were turned off for CPLEX when CPLEX was 
used as part of NVRAD or HYBR. However, all computational results reported 
here for any individual CPLEX solver had PREIND and PREDUAL turned on. 
In other words, our NVRAD was compared to CPLEX at its fastest setting. 
CPLEX would choose automatically whether to solve either the primal or dual, 
whichever seemed best. Moreover, preprocessing would substantially reduce the 
size of any problem P  by removing appropriate rows or columns of the con-
straint matrix A  before applying the primal simplex, dual simplex, or inte-
rior-point barrier method. In fact, much of the speed of the CPLEX solvers is 
due to its proprietary preprocessing routines.  

3.3. Computational Results 

The experiments were performed on an Intel®CoreTM 2 Duo X9650 3.00 GHz 
processor with a Linux 64-bit operating system and 8 GB of RAM. The COST 
NVRAD uses the IBM CPLEX 12.5 callable library to solve 0P  by the primal 
simplex and then , 1, 2,rP r =   by the dual simplex when selected constraints 
are added to 1rP − . The CPU times shown in the tables below represent the aver-
age computation time of five problem instances at each density level.  

The results of Table 1 for Set 1 compare NVRAD to VIOL, as well as to both a 
dynamic and non-dynamic version of NVIOL. In addition, the dynamic 
NVRAD described in Section 2.2 was compared to a non-dynamic NVRAD that 
applies the multi-cut and multi-bound technique of [18]. The dynamic version 
was significantly faster. The efficacy of the dynamic approach was further dem-
onstrated by the fact that in higher density problems a dynamic version of 
NVIOL was up to 21 times faster than the multi-cut, multi-bound NVIOL. 
Overall, dynamic NVRAD was faster than VIOL and NVIOL on every problem 
instance. 

In Table 2, the CPU times of the test problems solved by dynamic NVRAD 
are compared with those for RAD. In problem Set 1, RAD is slightly faster than 
NVRAD over all densities and averages 3.98 compared to 4.55 seconds. Howev-
er, in problem Set 2, the average computation times for RAD and dynamic  
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Table 1. CPU times for multi-cut, multi-bound and dynamic active-set approaches on 
problem Set 1 for random NNLPs with 1000 variables, 200,000 constraints, and 

1 5,ija = −  1 10ib = − , 1 10jc = − . 

  
VIOL−− NVIOL−− NVRAD−− NVIOL−− NVRAD−− 

Multi-Cut & Multi-Bound Dynamic 

Density No.CPU Time (Sec)++CPU Time (Sec)++ 

0.005 1 6.54 4.56 2.51 2.49 2.26 

0.006 2 6.84 5.06 2.92 2.96 2.62 

0.007 3 7.15 5.34 3.03 3.03 2.75 

0.008 4 6.61 4.96 3.02 3.13 2.83 

0.009 5 7.02 5.16 3.11 3.39 3.09 

0.01 6 6.83 5.14 3.41 3.51 3.12 

0.02 7 6.11 4.81 3.36 3.79 3.44 

0.03 8 5.79 4.79 3.33 3.99 3.52 

0.04 9 5.71 4.45 3.31 3.99 3.71 

0.05 10 5.41 4.62 3.49 4.10 3.64 

0.06 11 5.32 4.3 3.52 3.91 3.63 

0.07 12 5.87 4.73 3.79 3.93 3.73 

0.08 13 5.53 4.68 3.68 3.86 3.61 

0.09 14 5.76 4.89 3.99 4.06 3.65 

0.1 15 6.04 5.07 4.31 4.08 3.89 

0.2 16 10.9 9.64 8.28 4.96 4.82 

0.3 17 17.3 15.15 13.05 6.03 5.68 

0.4 18 24.64 22.12 20.53 7.28 6.56 

0.5 19 32.93 29.85 27.67 7.63 7.34 

0.75 20 62.21 57.36 54.97 10.53 10.50 

1 21 261.23 251.65 245.5 11.43 11.13 

Average  23.89 21.82 20.04 4.86 4.55 

++Average of 5 instances at each density. −− Used CPLEX presolve = OFF and predual = OFF. 

 
NVRAD over all densities are 19.07 and 16.86 seconds, respectively. For Set 3, 
dynamic NVRAD is superior to RAD averaging 38.91 seconds compared to 
41.87 seconds. Similarly, for Set 4 the averages are 41.87 for NVRAD as com-
pared to 46.98 for RAD. Thus the results of Table 2 affirm NVRAD’s ability to 
add appropriate constraints at each iteration. The results for Set 1 simply reflect 
how well the prior COST RAD performs when m  is very much larger than .n  

Table 3 presents the CPU times for problem Sets 1 - 4 solved by dynamic ver-
sions of both RAD and HYBR. In Table 3 HYBR is superior to RAD. Moreover, 
a comparison of Table 3 with Table 2 shows that HYBR is also slightly better 
than dynamic NVRAD on these problem sets. Such observations suggest that 
combining the global information of RAD and the local information of NVRAD 
gives a superior performance than either RAD or NVRAD by itself. We note 
further that HYBR can probably be improved. However, it is not our goal to seek 
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the optimal combination of RAD and NVRAD in HYBR since an optimal com-
bination would likely differ depending on various factors such as density and the 
ratio m/n. 

Table 4, taken from [18], provides a comparison of the posterior COST NVRAD 
with the standard CPLEX solvers. Comparing the results of Table 4 for the 
CPLEX solvers with the results for NVRAD in Table 2 shows that NVRAD was 
significantly faster across virtually all ratios m n  and all densities. For example, 
the primal simplex was the most robust CPLEX solver, but on the average across 
all densities the primal simplex took approximately 3 to 14 times more CPU 
time for the different rations m n  than NVRAD. For the dual simplex, the av-  
 
Table 2. CPU times for multi-cut, multi-bound and dynamic active-set approaches on 
problem Sets 1 - 4 for random NNLPs with 1 5,ija = −  1 10ib = − , 1 10jc = − . 

  NVRAD−− RAD−− 

 n 1000 3163 10,000 14,143 1000 3163 10,000 14,143 

 m 200,000 63,246 20,000 14,143 200,000 63,246 20,000 14,143 

 m/n 200 20 2 1 200 20 2 1 

  Dynamic Active-Set Multi-Cut & Multi Bound 

Density No. CPU Time (Sec)++ CPU Time (Sec)++ 

0.005 1 2.26 25.00 88.36 106.27 2.10 30.82 108.70 127.55 

0.006 2 2.62 27.23 88.73 97.31 2.42 31.48 104.87 114.03 

0.007 3 2.75 25.79 82.04 90.65 2.65 29.41 92.45 104.18 

0.008 4 2.83 27.49 78.04 78.92 2.54 30.63 88.20 90.73 

0.009 5 3.09 27.43 74.65 75.18 2.78 30.10 83.53 85.21 

0.01 6 3.12 26.07 68.23 73.29 2.79 27.81 77.90 80.43 

0.02 7 3.44 22.48 45.06 46.24 3.09 24.69 47.63 49.95 

0.03 8 3.52 18.59 34.78 38.25 3.22 20.49 36.68 38.33 

0.04 9 3.71 16.92 29.96 30.75 3.33 19.06 32.74 32.53 

0.05 10 3.64 15.47 26.31 28.01 3.34 16.97 28.23 28.59 

0.06 11 3.63 13.62 24.62 25.62 3.20 14.94 27.58 27.27 

0.07 12 3.73 12.93 22.24 23.19 3.41 14.88 23.59 23.79 

0.08 13 3.61 11.99 20.74 22.30 3.32 13.57 23.44 24.19 

0.09 14 3.65 11.39 20.47 21.64 3.38 12.67 23.09 23.80 

0.1 15 3.89 10.81 19.65 20.18 3.39 12.92 22.93 20.85 

0.2 16 4.82 8.98 16.31 19.44 4.30 11.09 18.87 20.31 

0.3 17 5.68 8.84 15.66 19.09 4.97 10.58 18.11 19.46 

0.4 18 6.56 9.77 15.76 17.23 5.76 12.31 18.55 18.88 

0.5 19 7.34 10.60 15.82 17.89 6.98 11.92 18.00 19.89 

0.75 20 10.50 11.24 15.80 16.73 8.26 12.01 17.19 18.06 

1 21 11.13 11.34 13.85 11.12 8.39 12.20 17.71 18.50 

Average  4.55 16.86 38.91 41.87 3.98 19.07 44.28 46.98 

++Average of 5 instances of LP at each density. −−Used CPLEX presolve = OFF and predual = OFF. 
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erage CPU across all densities was approximately 15 to 50 times greater than 
NVRAD over the different ratios. However, the CPLEX barrier method was 
slightly faster than NVRAD in problem instances with 20m n =  and with 
densities less than 0.02. On the other hand, when the density reached 0.08 for 

20m n = , NVRAD was already more than ten times faster than the barrier 
solver. Furthermore, note that average CPU times in Table 4 greater than 3000 
seconds (50 minutes) at any density were not reported. This situation occurred 
for the CPLEX barrier solver for the ratios 1, 2, 20, and 200 with densities at least 
0.3, 0.4, 0.5, and 0.75, respectively. 

Finally, for large-scale, low-density test problems with 5000n =  and  
 

Table 3. CPU times for dynamic HYBR and dynamic RAD on problem Sets 1 - 4 for 
random NNLPs with 1 5,ija = −  1 10ib = − , 1 10jc = − . 

 
RAD−− HYBR−− 

n 1000 3163 10,000 14,143 1000 3163 10,000 14,143 

 
m 200,000 63,246 20,000 14,143 200,000 63,246 20,000 14,143 

 m/n 200 20 2 1 200 20 2 1 

 
 

Dynamic Active-Set Dynamic Active-Set 

Density No. CPU Time (Sec)++ CPU Time (Sec)++ 

0.005 1 2.02 29.51 106.42 127.70 2.19 27.14 94.26 113.63 

0.006 2 2.32 30.20 107.61 116.08 2.53 28.51 95.25 103.78 

0.007 3 2.49 29.07 95.87 104.79 2.78 26.14 84.13 95.47 

0.008 4 2.47 29.80 89.37 93.12 2.76 27.63 78.88 83.75 

0.009 5 2.67 28.59 80.46 86.46 2.93 27.21 77.09 81.11 

0.01 6 2.65 27.09 75.60 81.28 3.02 25.68 70.59 75.25 

0.02 7 2.85 22.01 45.39 48.01 3.28 20.90 44.45 46.91 

0.03 8 2.83 17.30 33.40 36.20 3.19 17.46 34.44 36.18 

0.04 9 2.82 14.97 29.29 27.47 3.18 15.08 27.58 29.31 

0.05 10 2.97 13.91 24.38 24.70 3.04 13.68 24.61 24.94 

0.06 11 2.85 11.43 22.31 22.82 3.19 11.81 23.03 23.32 

0.07 12 2.93 11.04 19.40 20.48 3.31 11.55 19.99 20.88 

0.08 13 2.91 10.37 18.75 19.87 3.30 10.36 19.19 20.72 

0.09 14 3.16 9.16 18.11 18.93 3.34 9.37 18.52 19.54 

0.1 15 3.06 9.54 17.35 17.34 3.51 9.18 17.74 17.89 

0.2 16 4.34 8.12 14.39 15.99 4.36 7.92 14.01 15.55 

0.3 17 5.70 8.57 13.31 15.32 5.40 7.86 12.92 14.66 

0.4 18 7.00 9.28 13.55 14.58 6.50 8.95 12.65 13.93 

0.5 19 7.95 9.85 13.60 16.35 7.84 9.60 13.38 14.52 

0.75 20 10.64 12.05 14.43 15.56 9.81 10.77 12.38 14.13 

1 21 12.66 11.71 12.60 14.72 11.00 9.76 11.39 11.59 

Average  4.25 16.84 41.22 44.66 4.31 16.03 38.40 41.76 

++Average of 5 instances of LP at each density. −−Used CPLEX presolve = OFF and predual = OFF. 
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1,000,000.m =  Table 5 compares dynamic NVRAD to multi-cut and mul-
ti-bound RAD, VIOL, NVIOL, and NVRAD, as well as to the CPLEX primal 
simplex, dual simplex, and barrier solvers. Only the prior COST RAD was com-
petitive. NVRAD averaged 63.45 seconds overall as compared to 71.79 for RAD. 
It should be noted that the highest density used in problem Set 5 was 0.0600 
since the CPLEX solvers could not solve denser problems of such magnitude in a 
reasonable amount of time. Average CPU times greater than 2400 seconds (40 
minutes) at any density were not reported in Table 5. This situation occurred 
beginning at some individual threshold density level for each CPLEX solver. 
 

Table 4. CPU times from [18] for CPLEX solvers on problem Sets 1 - 4 for random NNLPs with 1 5,ija = −  1 10ib = − , 

1 10jc = − . 

  Primal+
 Dual+ Barrier+ 

 
n 1000 3163 10,000 14,143 1000 3163 10,000 14,143 1000 3163 10,000 14,143 

 
m 200,000 63,246 20,000 14,143 200,000 63,246 20,000 14,143 200,000 63,246 20,000 14,143 

 
m/n 200 20 2 1 200 20 2 1 200 20 2 1 

Density No. 
 

CPU Time (Sec)++  

0.005 1 7.01 71.02 228.51 309.83 54.84 762.62 1597.24 1169.04 2.36 14.52 240.17 650.83 

0.006 2 10.36 77.28 245.60 291.07 60.29 803.97 1607.16 2413.42 2.39 16.30 224.08 666.54 

0.007 3 12.98 75.84 219.72 265.09 91.39 876.85 1483.20 1702.47 3.04 18.34 233.55 671.56 

0.008 4 15.72 82.01 206.45 239.30 100.06 912.75 1445.54 1236.76 3.90 20.70 232.38 668.82 

0.009 5 19.25 80.35 196.72 216.23 114.95 898.99 1375.73 427.95 4.76 22.66 232.23 649.26 

0.01 6 21.92 78.50 182.47 216.60 123.49 912.63 1252.05 436.31 5.53 24.29 228.76 650.30 

0.02 7 39.90 78.80 118.28 127.59 203.08 963.66 807.29 362.34 17.13 32.08 242.54 711.26 

0.03 8 45.42 79.75 98.02 108.60 217.18 1207.76 545.91 723.98 28.79 45.03 266.90 727.61 

0.04 9 50.30 78.78 89.75 88.32 248.75 1489.40 450.08 539.92 41.50 62.28 292.15 806.80 

0.05 10 55.16 78.92 81.09 82.14 256.49 1746.46 418.69 519.50 53.72 81.32 327.01 837.67 

0.06 11 60.34 77.49 77.28 78.27 251.39 2124.31 378.71 409.47 67.58 100.48 359.53 897.58 

0.07 12 62.07 78.93 70.44 70.37 251.74 2446.69 310.89 544.15 84.70 125.49 401.72 948.01 

0.08 13 62.92 76.96 70.21 69.81 264.48 2799.62 307.25 388.94 99.51 149.37 454.01 1038.86 

0.09 14 66.57 79.07 71.46 72.37 258.14 2523.03 718.04 427.95 119.26 186.06 495.28 1153.31 

0.1 15 71.00 74.57 67.43 62.64 287.36 2251.10 267.14 436.31 138.67 207.54 539.64 1194.56 

0.2 16 87.49 83.12 64.38 62.99 294.39 1450.82 201.73 362.34 379.68 691.77 1298.76 2529.97 

0.3 17 94.57 77.91 67.14 66.61 341.44 1280.71 175.16 267.16 657.45 1333.29 2418.75 b 

0.4 18 99.33 78.46 73.58 71.48 384.10 1236.30 146.09 233.39 985.86 2076.09 b b 

0.5 19 111.30 84.30 86.50 75.62 427.16 1173.49 133.49 208.65 1350.82 b b b 

0.75 20 128.26 99.35 115.00 102.51 410.98 1056.18 132.25 181.95 b b b b 

1 21 207.55 94.09 393.54 145.96 375.89 411.19 148.90 165.45 b b b b 

Average  63.30 80.26 134.46 134.45 238.93 1396.60 662.03 626.55 n/a n/a n/a n/a 

+CPLEX presolve = ON and predual = ON. ++Average of 5 instances at each density. b Runs with CPU times > 3000 s are not report. 
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Table 5. CPU times for NVRAD versus RAD, VIOL, NVIOL, and the CPLEX solvers on problem Set 5 for random NNLPs with 
5000 variables, 1,000,000 constraints, and 1 5,ija = −  1 100ib = − , 1 100jc = − . 

No. Density NVRAD−− RAD−− VIOL−− NVIOL−− NVRAD−− 
CPLEX 
Primal+ 

CPLEX 
Dual+ 

CPLEX 
Barrier+ 

  
Dynamic 

 
Multi-Cut & Multi-Bound Not Active-Set Methods 

CPU Time (Sec)++ CPU Time (Sec)++ 

1 0.0004 6.21 7.54 157.92 73.09 72.19 11.90 14.08 12.31 

2 0.0005 9.22 12.26 177.96 100.86 106.31 23.41 29.83 16.61 

3 0.0006 11.94 16.51 252.74 75.41 76.12 13.45 107.61 20.45 

4 0.0007 15.45 22.19 282.95 92.70 93.64 18.99 176.50 24.60 

5 0.0008 20.16 27.66 325.51 108.42 95.22 28.88 257.06 27.43 

6 0.0009 23.70 33.24 346.76 120.57 91.06 40.17 339.49 29.80 

7 0.0010 28.01 39.81 374.06 141.35 107.34 50.91 427.60 31.73 

8 0.0020 70.01 89.57 393.48 222.63 174.78 173.03 1775.03 48.79 

9 0.0030 90.09 104.83 368.92 245.17 190.37 244.01 b 61.31 

10 0.0040 99.32 113.40 346.56 224.35 183.58 316.53 b 85.60 

11 0.0050 103.78 113.17 322.98 215.49 172.42 366.80 b 91.11 

12 0.0060 112.15 122.85 320.97 217.81 171.40 443.43 b 112.46 

13 0.0070 106.61 116.00 283.16 214.48 160.63 474.40 b 136.03 

14 0.0080 100.14 113.05 258.56 184.76 148.74 529.44 b 158.54 

15 0.0090 94.43 104.68 229.32 165.47 138.51 566.20 b 198.31 

16 0.0100 100.91 112.82 233.08 171.28 137.64 629.59 b 239.87 

17 0.0200 76.77 83.83 142.85 106.45 90.60 1134.77 b 899.87 

18 0.0300 69.41 76.69 114.25 86.83 76.77 1740.28 b b 

19 0.0400 65.87 67.36 103.22 79.26 71.60 1865.70 b b 

20 0.0500 63.71 64.58 100.60 80.35 71.87 2159.55 b b 

21 0.0600 64.57 65.62 102.05 82.42 74.41 b b b 

Average  63.45 71.79 249.42 143.29 119.29 n a  n a  n a  

++Average of 5 instances at each density.b Runs with CPU times > 2400 s are not reported. −−Used CPLEX presolve = OFF and predual = OFF. +Used CPLEX 
presolve = ON and predual = ON. 

4. Conclusion 

An efficient posterior COST called NVRAD was developed here for NNLPs to 
utilize both prior global information and posterior local information. The asso-
ciated constraint selection metric NVRAD is a heuristic, so a geometric inter-
pretation was presented to offer insight into its performance. NVRAD’s inherent 
active-set efficiency was enhanced by a dynamic approach varying the number of 
constraints added at each iteration. In addition to NVRAD, adynamic active-set 
approach HYBR was also proposed. HYBR alternates between the posterior me-
thod NVRAD and the prior method RAD. To check their performance, both 
NVRAD and HYBR were used to solve five sets of large-scale NNLPs. Dynamic 
NVRAD outperformed the previously developed COST RAD, as well as the 
standard posterior cutting-plane method VIOL. Dynamic NVRAD significantly 
outperformed the CPLEX primal simplex, dual simplex, and barrier solvers. On 
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the other hand, HYBR appears slightly faster than NVRAD or RAD. The results 
of this paper provide further evidence that active-set methods may be the fastest 
approach for solving linear programming problems.  
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