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Abstract 
This research considers the time-dependent vehicle routing problem (TDVRP). 
The time-dependent VRP does not assume constant speeds of the vehicles. 
The speeds of the vehicles vary during the various times of the day, based on 
the traffic conditions. During the periods of peak traffic hours, the vehicles 
travel at low speeds and during non-peak hours, the vehicles travel at higher 
speeds. A survey by TCI and IIM-C (2014) found that stoppage delay as per-
centage of journey time varied between five percent and 25 percent, and was 
very much dependent on the characteristics of routes. Costs of delay were also 
estimated and found not to affect margins by significant amounts. This study 
aims to overcome such problems arising out of traffic congestions that lead to 
unnecessary delays and hence, loss in customers and thereby valuable reve-
nues to a company. This study suggests alternative routes to minimize travel 
times and travel distance, assuming a congestion in traffic situation. In this 
study, an efficient GA-based algorithm has been developed for the TDVRP, to 
minimize the total distance travelled, minimize the total number of vehicles 
utilized and also suggest alternative routes for congestion avoidance. This 
study will help to overcome and minimize the negative effects due to heavy 
traffic congestions and delays in customer service. The proposed algorithm 
has been shown to be superior to another existing algorithm in terms of the 
total distance travelled and also the number of vehicles utilized. Also the per-
formance of the proposed algorithm is as good as the mathematical model for 
small size problems. 
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1. Introduction 

Vehicle travel times in the cities and urban areas vary due to various reasons and 
factors, like congestions in traffic, accidents, road repairs, movement of impor-
tant personalities who need high security, and weather conditions. If these travel 
time variations are ignored during the process of developing route plans for 
pick-up and/or delivery vehicles, the development of route plans may be ineffi-
cient in terms of the vehicles travelling into congested urban traffic conditions. 
Due to these travel time variations, in some cases the vehicles waste valuable 
time in traffic jams and customers have to wait unreasonably long without hav-
ing any reliable information about the actual arrival times of vehicles. In these 
circumstances, it becomes difficult to satisfy the time windows during which the 
demand nodes must be visited. 

In addition, insertion of new demands for pick-up that arise after completion 
of route planning, in the planned vehicle routes in real time, may result in sig-
nificant savings. Considering time-dependent travel times as well as information 
regarding demands that arise in real time in solving vehicle routing problems 
can reduce the costs of ignoring the changing environment. 

2. Literature Review 

The basic VRP relies on the assumption that travel times remain constant 
throughout the whole planning horizon. In reality, however, travel times may 
vary during the day. The variation in travel times may result from predictable 
events such as congestion during rush hours or from unpredictable events such 
as accidents (Ichoua et al. [1]). The TDVRP takes these predictable events into 
account by assuming time-dependent travel times, i.e. the travel time between 
two locations depends on the distance between these two points and on the time 
of the day (Malandraki and Daskin [2]). 

According to Ichoua et al. [1], the optimal solution of a VRP which assumes 
constant travel times, may be suboptimal or infeasible for the time-dependent 
problem. For example, time windows might be missed because of late arrivals, 
transportation costs might increase because of overtime hours, etc. The TDVRP 
captures this aspect by taking predictable travel time variations into account. 
The aim of the problem is to construct feasible routes which minimize the total 
travel time and offer a higher reliability.  

The vehicle routing problem with time windows (VRPTW) models many real- 
world optimization problems in logistics, supply chain management, where we 
need to have distribution and collection of materials in geographically distri-
buted facilities, from suppliers and to customers. But in reality, the classical 
VRPTW model is often not adequate to model the real-world situation, because 
of the assumption of constant travel times between customer sites or locations. 
Time-varying factors, such as traffic conditions whether they have a significant 
impact on the actual travel time also need to be considered. According to Eglese 
et al. [3], travel times are also influenced by other factors like the direction of the 
trip, the day of the week or the season of the year. 
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Hence, the total time taken for travel between two locations is dependent on 
the specific departure time. Hence to take these external influences into consid-
eration, the VRPTW is extended and is studied as time-dependent vehicle 
routing problem with time windows (TDVRP). The driving time that changes 
with the time of the day, is suitably represented by a time-dependent function. 

Time-dependent travel times (or travel speeds) are either simulated or derived 
from traffic monitoring systems. When analyzing the data from traffic monitor-
ing systems, one can observe that most travel times follow a certain pattern dur-
ing the day. This helps to predict future traffic situations. Especially travel time 
variations during rush hour congestion show a high predictability. This is prov-
en by Eglese et al. [3] who mention a study from the United Kingdom which 
examines speedometer analysis and data from a vehicle tracking and tracing sys-
tem. It shows that on one road segment of a motorway, the same commercial 
vehicle speeds vary in one week from 5 mph (at 8:45 am on a Monday) to 55 
mph (at 8:15 pm on a Wednesday). When comparing the observed speeds over a 
period of ten weeks, the variation in speed for the same time of a day and the day 
of a week is less than 5%. According to Eglese et al. [3], this small variation 
shows that travel speeds are highly predictable and can be forecasted for any 
road length and any time of the day.  

2.1. Time-Dependency in Vehicle Routing Problem 

The literature relating to the TDVRP is rather scarce when compared to other 
VRP variants. However, Ichoua et al. [1] mention three related time-dependent 
problems which have been extensively studied:  

The first problem mentioned is the time-dependent shortest path problem 
which was introduced in the late 1950s (Ford and Fulkerson [4]). It belongs to 
the earliest models dealing with time-dependency. Marguier and Ceder [5] con-
sider a time-dependent path choice problem. In this case, a set of passengers is 
distributed in a transportation network consisting of overlapping bus routes 
with common stops. The passenger waiting times are represented by time-de- 
pendent distributions. The last problem mentioned is the time-dependent trav-
eling salesman problem (TSP) (Miller et al., [6]). The problem concerns the de-
termination of a least-cost route which visits each city exactly once. The travel 
cost between each city is time-dependent.  

2.2. Time-Dependent VRP (TDVRP)  

Most VRPs assume that the travel times between depots and customers are de-
terministic and constant (Kok et al., [7]) or equal to the distance between cus-
tomers (Li et al., [8]; Lei et al., [9]). The study by Kok uses a modification of the 
set of benchmark instances for the VRP with time dependent travel speeds pro-
posed by an early working paper by Figliozzi [10]. In real life, variable travel 
times due to congestion are prevalent, which impact transportation cost because 
of increased fuel consumption (Kuo [11]). The TDVRP assumes that the travel 
times are a function of current time. As such, the effects of congestion on the to-
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tal route duration, the number of vehicles and transportation cost can be deter-
mined. All TDVRP articles which have been studied satisfy the First-In First-Out 
(FIFO) property (Ichoua et al. [1]), which states that a vehicle that leaves earlier 
from some customer will arrive earlier at its destination. The time-dependent 
travel are modelled following the example of Ichoua et al. [1], where the work-
day is partitioned into several periods and a constant travel speed is assigned to 
each time interval, resulting in speed being a step function of the departure time 
for all the arcs. The higher the number of time intervals, the more realistic the 
model will be because the travel speeds will change more gradually instead of 
abruptly (Kok et al. [7]). The travel time between two customers is then depen-
dent on the departure time from the first customer and the time-dependent 
speed on the associated arc between the two customers. 

2.3. Classification of Time-Dependent Models  

According to Ichoua et al. [1], TDVRP models can be classified into four main 
categories based on the type of travel time function:  

The first category refers to models based on simple travel time functions. In 
this case, multiplier factors are used to integrate time-dependency.  

Other TDVRP models assume discrete travel times (Malandraki and Daskin 
[2]). For this purpose, the time horizon is partitioned into discrete time intervals 
and the travel time is defined as a step function as in Figure 1, from the starting 
time as the origin node. As the travel time changes appear in the form of jumps, 
it might happen that the FIFO property is not satisfied if the travel time in a 
consecutive time interval decreases. The FIFO property guarantees that if two 
vehicles depart from the same origin node for the same destination node, the 
one which started earlier will also arrive earlier. 

Ahn and Shin [12] investigated the effect of the first feasibility condition in an 
insertion heuristic and the effect of the third feasibility condition in the tour im-
provement heuristic. In their study, they observed a substantial reduction in 
computation times when compared to the case where no feasibility conditions 
are implemented. Malandraki and Daskin [2] discuss a TDVRP with time win-
dows. The objective is to minimize the total route time, consisting of the sum of  

 

 
Figure 1. Travel time function with a single peak (Ahn and Shin 
1991). 
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all travel times, service times and waiting times. The authors developed a model 
based on a mixed integer linear programming (MILP) formulation. The heuris-
tics are tested on 32 randomly generated problems which consist of 10 to 25 
customers.  

Hill and Benton [13] proposed a model for the vehicle scheduling problems. 
This is formulated on the basis of intra-city time-dependent travel speeds. Their 
model consists of n nodes. This model does not satisfy the FIFO property as 
mentioned by Ichoua et al. [1]. They used a single vehicle and five locations. 
They solved this problem and published the results. They used a small set of 
historical travel time data and assumed 24 periods per day of 1 hour intervals.  

Ichoua et al. [1] conducted research on the TDVRP. They presented a VRP 
based on time-dependent travel times and speeds. This problem has each cus-
tomer associated with a soft time window [ei, li] and a service time. If the vehicle 
arrives earlier, it results in a waiting time while a late arrival time will incur a 
penalty cost. The objective of the problem is to minimize the weighted sum of 
the total travel time and the total lateness over all customers. The authors de-
velop a parallel tabu search heuristic with an adaptive memory based on the 
work of Taillard et al. [14]. Finally, the TDVRP is implemented in a dynamic 
setting where new customer demands occur during the day. To solve the dy-
namic version, they used an algorithm based on the work of Gendreau et al. [15] 
where vehicles are allowed to wait at their current location so that they can react 
to new requests in their vicinity. In this case, a departure time which prevents 
too early arrival at the next customer location needs to be determined.  

Fleischmann et al. [16] implemented the time-varying travel times in various 
vehicle routing algorithms with time windows. The travel time data is provided 
by the traffic information system LISB (Berlin). The most important work con-
sidered in the literature of this study is the work done by Haghani and Jung [17]. 
They examined the dynamic VRP with time-dependent travel times, soft time 
windows and real-time vehicle control. In the problem, routes are adjusted at 
different times of the day. During each adjustment, new information about ve-
hicle locations, travel times and demands is integrated into the model. The au-
thors used a continuous travel time function where the slope is set to be less than 
one in case of a travel time decrease as shown in Figure 2. 

 

 
Figure 2. Continuous travel time function (Haghani and Jung 2005). 
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Haghani and Jung [17] defined the VRP as a MILP problem. The objective is 
to minimize the total cost, consisting of the fixed vehicle costs, the routing costs 
and the penalties for time window violations. They developed a GA solution, a 
lower bound (LB) solution and an exact solution. These are based on a set of 
randomly generated test problems. The authors obtained exact solutions for up 
to ten customers and LB solutions for 15 to 30 customers. For problems with up 
to ten customers, they implemented 10 to 15 time intervals whereas for problems 
with 30 customers, they used 30 time intervals. They reported that the GA re-
sults based on ten customers are similar to the exact results. The gaps between 
the GA results and the lower bounds are below 5% for all problems where the 
number of customers ranges between 5 and 25 (10 time intervals). Given the 
problem with 30 customers (30 time intervals), the gap amounts to 7.9%. Finally, 
they tested the GA in a simulated network where accidents cause significant 
congestion in certain parts of the road network. They compared a static and a 
dynamic approach. The dynamic approach allows the re-planning of routes 
based on real-time travel time information at regular intervals during the day. In 
this case, the travel speed of a link can be calculated at any time during the day. 
The authors concluded that the dynamic routing plan leads to better results than 
the static one especially if the traffic situation is very unstable.  

Woensel et al. [18] presented a dynamic vehicle routing problem with time- 
dependent travel times by taking traffic congestion into consideration. This 
model which was developed by them is based on queuing models which capture 
the stochastic and dynamic aspects of travel time. They compared three different 
speed approaches. In the first case, they assumed constant travel speeds. In the 
second case, they modelled the travel time function by dividing the day into 
three time intervals, each corresponding to a different travel speed. In the third 
case, the day is divided into 10 minute-intervals where the associated travel 
speeds are based on queuing models. They used TS to solve the problem. For the 
sake of comparison, they recalculated the resulting solutions with a different va-
lidation dataset for a different day. The authors then conducted tests based on 
the benchmark instances of Augerat et al. [19]. They established that the time- 
dependent case comprising of three time zones performs considerably better 
than the time-independent case. The authors hence concluded that when there is 
a high variability of travel speeds, it is best to take into account the time-depen- 
dent travel times to achieve efficient results. Moreover, the solution quality in-
creases, when more time intervals and road types are considered.  

Maden et al. [20] studied vehicle routing and scheduling with time-varying 
data. They developed an algorithm called LANTIME. It integrates data from a 
road timetable which was developed by Eglese et al. [3]. The objective of the 
problem is to minimize the total travel time. The authors enforce capacity con-
straints, a limit on driver times and time windows. They used the parallel inser-
tion algorithm of Potvin and Rousseau [21] to compute the initial solution. Next, 
the LANTIME algorithm is applied for further improvement. The authors use an 
adaptation of neighbour moved by Taillard et al. [14]. They used the benchmark 
instances of Solomon [22] to test their algorithm. 
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Balseiro et al. [23] tested the performance of the TDVRP with time windows. 
First they developed a MACS algorithm hybridized with insertion heuristics 
(MACS-IH) based on the minimum delay technique (MDL). The aim is to create 
an insertion heuristic which leads to a higher number of feasible solutions. They 
formulated the problem as a MILP problem. They used the earlier formulation 
of Malandraki and Daskin [2] as a starting point. Vehicles are required to wait at 
the customer locations, to satisfy the time window constraint if they arrive too 
early. They divided the time horizon into M time intervals and the end of an in-
terval is denoted Tm. A hierarchical objective is proposed, in which the primary 
objective minimizes the number of vehicles whereas the secondary objective mi-
nimizes the total time of all routes, consisting of all travel times, service times 
and waiting times. Furthermore, the authors performed tests with the time-de- 
pendent instances of Ichoua et al. [1].  

Ehmke et al. [24] considered the TDTSP and the TDVRP. They used time- 
dependent travel times which are based on Floating Car Data (FCD) from Stutt-
gart, Germany. These travel times are transformed into planning data sets 
through Data Mining procedures. They used two types of travel time planning 
sets: The first planning set is based on FCD averages which represent day-spe- 
cific travel times derived from aggregating historical FCD to one average meas-
ure per network segment and day of the week. The second planning set relies on 
FCD hourly averages which represent travel times derived from aggregating his-
torical FCD to 24 averages per network segment, dependent on the day of the 
week and the time of the day. The authors examined two routing approaches, viz. 
the static routing approach which is based on the first travel time planning set 
whereas the time-dependent routing approach relies on the second travel time 
planning set. They used time-dependent distance matrices which are determined 
with shortest path algorithms. These algorithms are based on a time-dependent 
digital road map of the city road network which satisfies the FIFO property.  

2.4. Summary of the Literature Review 

In this section, the reviewed papers are summarised in the Table 1.  

3. Mathematical Model and Algorithm Development 

In this section, the mathematical model which is developed in this research to 
solve the TDVRP and the genetic algorithm for the TDVRP are discussed in de-
tail. Usinga flow-arc formulation [Desrochers et al. [25]], TDVRPTW is de-
scribed as follows. Let G = (V, A) be a graph where A = {(vi, vj): i ≠ j (for alli, j ∈ 
V) is an arc set and the vertex (node) set is V = (v0, …, vn+1). Vertices v0 and vn+1 
denote the depot at which vehicles of capacity qmax are based. Each vertex in V 
has an associated demand qi ≥ 0, a service time gi ≥ 0, and a service time window 
[ei, li]; in particular the depot has g0 = 0 and q0 = 0. The set of vertices C = 
{v1, …,vn} specifies a set of n customers. The arrival time of a vehicle at customer 
i, is denoted ai and its departure time bi. Each arc (vi, vj) has an associated con-
stant distance dij ≥ 0 and a travel time (and hence the speed of the vehicle) tij (bi) ≥  
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Table 1. Overview of TDVRPTW articles. 

Article Variant of TDVRP Objective (Min.) Solution method 

Kuo et al. 
(2009) 

TDVRP Total route duration Tabu search 

Kok et al. 
(2012) 

TDVRP with hard TW Total route duration 
Dijkstra algorithm and 

restricted dynamic 
programming heuristic 

Balseiro et al. 
(2011) 

TDVRP with hard TW 
First number of 

routes, second total 
route duration 

Ant colony algorithm 
with insertion heuristics 

Figliozzi 
(2012) 

TDVRP with hard and soft 
TW 

First number of 
routes, second total 

route duration 

Iterative route  
construction and  

improvement heuristic 

Hagani & 
Jung (2005) 

Dynamic vehicle routing 
problem with 

time-dependent travel times 

Total distance  
travelled 

Genetic Algorithm 

 
0 which is a function of the departure time from customer i. The set of available 
vehicles is denoted by K. 

The cost per unit of route duration is denoted as Ct; the cost per unit distance 
travelled is denoted Cd. It is assumed that the problem is feasible, i.e. it is always 
feasible to serve any individual customer starting from the depot. The primary 
objective function for the TDVRP is the minimization of the number of routes 
or the number of vehicles utilized. The optimal number of routes is unknown. A 
secondary objective is the minimization of total time or distance travelled. There 
are two decision variables in this formulation; k

ijx  is a binary decision variable 
that indicates whether vehicle k travels between customers i and j. The real 
number decision variable k

iy  indicates service start time for customer i served 
by vehicle k.  

3.1. Mathematical Model for TDVRPTW 

The mathematical model of TDVRPTW is given as below. 

0min imize k
j

k K j C
x∑∑

 

                           (1) 

( )
( )1 0 0

,
min imize ,k k k k k

d ij ij t n j
k K i j A k K j C

C d x C y y x++ −∑ ∑ ∑∑
   

             (2) 

Subject to: 

max ,k
i ij

i C j V
q x q k K≤ ∀∑ ∑

 

                          (3) 

1,k
ij

i C j V
x i C= ∀∑∑

 

                           (4) 

0, ,k k
il ij

i V i V
x x i C k K− = ∀ ∀∑ ∑

 

                       (5) 

0 1,0,  0,  ,k k
i n ix x i V k K+= = ∀ ∀                      (6) 
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0 1,  k
j

j V
x k K= ∀∑



                         (7) 

, 1 1,  k
j n

j V
x k K+ = ∀∑



                        (8) 

,  ,  k k
i ij i

j V
e x y i C k K≤ ∀ ∀∑


                      (9) 

,  ,  k k
i ij i

j V
l x y i C k K≥ ∀ ∀∑


                     (10) 

( ) ( ), ,  ,  , ,  k k k k
ij i i i j i i jx y g t y g y i C i j A k K+ + + ≤ ∀ ∀            (11) 

{ } ( )0,1 ,  , ,  k
ijx i j A k K∀ ∀                     (12) 

The objectives of the TDVRPTW are defined by (1) and (2) respectively. The 
constraints are defined as follows: the total demand in a particular route should 
not exceed the vehicle capacity (3); all the customers must be served and each 
customer must be served exactly once (4); a vehicle that arrives at a customer 
should also depart from that customer (5); routes must start at the depot and 
end at the depot (6); each vehicle leaves from the depot and returns to the depot 
exactly once, (7) and (8) respectively; service times must satisfy time window 
start (9) and ending (10) times specified; service start time must allow for travel 
time between customers (11). Decision variables type is indicated in (12). 

During real-time traffic situations, the assumption of constant speed will not 
hold good. Hence we need to find out alternate routes, to minimize the distance 
travelled and the number of vehicles utilized as well as to minimize the total time 
taken to cover the entire tour. The problem lies in finding an efficient GA-based 
meta-heuristic which is more efficient than existing algorithms. A genetic algo-
rithm to solve the TDVRP is developed. The problem that has been considered is 
a pick-up or delivery vehicle routing problem to various customers or from the 
various supplier sites with time windows in which we consider multiple vehicles 
with different capacities, with real-time variations in travel times between the 
different nodes. To load and start the time dependent VRP variant in Heuristic-
Lab, we first need a valid file to load the time-dependent VRP data from. We use 
the data from the Solomon (CVRPTW) instances and add the travel time ma-
trices. The dimension of the travel time matrix must match the number of cities. 
For the travel times, random values between 0.5 and 1.0 were generated using 
random function in Excel. The performance of the genetic algorithm for TDVRP 
is evaluated by comparing its results with one more existing algorithm for the 
TDVRPTW developed by Hashimoto et al. [26]. 

A modified version of the Genetic Algorithm formulation developed for the 
VRPTW solution developed by Nandakumar and Panneerselvam [27] has been 
used in this stud. This algorithm is described below. 

3.2. Chromosome Representation 

The representation of the chromosome as a set of genes representing the nodes 
in a route is shown in Figure 3. 



S. N. Kumar, R. Panneerselvam 
 

10 

 
Figure 3. Chromosome sample. 
 

In the Figure 3, n is the total number of customers. Each chromosome con-
sists of a set of genes. In the chromosome shown in the Figure 3, the genes c1, 
c2, ···, cn are defined as Customer IDs/Nodes. Every chromosome is initialized as 
the route which contains the source location and the destination location at the 
start and end of the array, respectively. Each chromosome is a solution path.  

A crossover operator is a major process of producing offspring from the cur-
rent population. There are many methods for crossover operation according to 
different problems. In this paper, “Random Sequence Insertion-Based Crossov-
er” method is used, which is explained in the next section. 

The Vehicle Routing Problem with Time Windows is solved using the Genetic 
Algorithm (GA) with multi-chromosome representation. It is used for finding a 
(near) optimal solution to a variation of the TDVRPTW by setting up a GA to 
search for the shortest route (distance), taking into account additional con-
straints, and minimizing the number of vehicles used.  

3.3. Genetic Algorithm (SNRPGA2) 

The steps of the proposed genetic algorithm (SNRPGA2) for the time dependent 
vehicle routing problem with time windows are presented below. A schematic 
view of the crossover operation used in this algorithm is shown in Figure 4. 

The steps of the Random Sequence Insertion-based Crossover (RSIX) method 
are presented below. 

Step 1: Two chromosomes from the chromosome pool are randomly chosen 
as parents. 

Step 2: Generate two crossover points, which will lead to three chromosome 
segments in each chromosome as shown in Figure 4(a). 

Step 3: Next, swapping operation of the middle crossover genes segment takes 
place, as in Figure 4(b). 

Step 4: Next, taking into account the VRPTW constraints, with each customer 
(node) allowed to be visited only once, assuming that ( ),i j∀ , d0i < d0j + dji tri-
angle property and accommodating time window constraint with possible wait-
ing time, use the data from the Solomon (CVRPTW) and add the travel time 
matrices. For the travel times, random values between 0.5 and 1.0 have been 
generated. Then retain the gene segment that underwent crossover, and then 
remove the gene (node) with same value, in their parent chromosome, such as in 
Figure 4(c). 

Step 5: This results in obtaining two new offspring having gene segments that 
underwent crossover and they are added into the next generation as shown in 
Figure 4(d).  
• The new offspring are tested for fitness values. 
• The smaller the “fitness-value”, the stronger road chromosome is obtained. 
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Figure 4. Crossover operation. 

Mutation to Chromosomes 
After the crossover is carried out on each chromosome, mutation operation is 
carried out to improve the chromosome. During the mutation operation, two 
randomly chosen genes are selected and the mutation operator changes their 
value into other possible values. Mutation helps to prevent the genetic algorithm 
from converging to local optima. Other genetic algorithms parameters can also 
influence the GA efficiency. Crossover probability which is specified in the GA, 
determines the rate at which the crossover occurs. Mutation probability that is 
specified is used to find how often the mutation is applied on the offspring. If no 
mutation happens, the respective chromosome is replaced in the population 
without any change. The population size defines the number of individuals in 
the population. The results of application of the mutation operation on the 
offspring shown in the Figure 4(d) are shown in Figure 5. 

3.4. Evaluation of Fitness Function 

According to Sivasankaran and Sahabudeen [28], the fitness function of the 
chromosome is obtained by assigning the nodes serially from left to right from 
its ordered vector into customer IDs or nodes for a given travel route. This idea 
is used in this research to find the fitness function value of each chromosome/ 
offspring. Every road or route chromosome (offspring) has its own fitness value, 
which is obtained by adding the distances between the consecutive pairs of the 
nodes (genes) in it and the distance between the last node (gene) in it and the 
first node (gene) in it. 

This algorithm determines the minimized total distance travelled and the 
number of vehicles utilized to serve all the nodes during the tour as per each 
chromosome/offspring. The items that are considered while evaluating the fitness  
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Figure 5. (a) Mutation of offspring 1; (b) Mutation of offspring 2. 

 
function value are as listed below. 

1) Each vehicle starts at the depot or warehouse, travels to a set of customer 
nodes and ends at the depot. 

2) Except for the depot, each customer node is visited exactly once by the ve-
hicle. 

3) This algorithm uses a special, multiple-chromosome (parents) genetic re-
presentation to code solutions into individual offspring, which offer better 
routes and solutions. 

4) Special genetic operators like selection, crossover and mutation are used. 
5) The number of vehicles used is minimized using this algorithm. 
6) Additional constraints have to be satisfied. 
Minimum number of vehicles to cover all the nodes. 
Minimizing the maximum distance travelled by each vehicle. 
7) Time windows are defined for each customer node (e.g. unloading/loading 

times) and time-dependent travel times are introduced, by using a travel time 
matrix.  

8) The single route chromosome is then assigned to multiple sub chromo-
somes of smaller routes consisting of a set of customers from the original chro-
mosome. Each route is assigned a vehicle to visit each customer node on the 
route to meet the customer’s demand in the route. 

The variables used are the number of vehicles, the number of customers to be 
serviced by the vehicles, vehicle capacities, maximum distance travelled by each 
vehicle which is to be minimized. The objective is to minimize the number of 
vehicles used and the total distance travelled by the vehicles, in servicing the 
customers. The time of the day during which the vehicles are sent to the supplier 
sites for the pick-ups is also considered in this research. 

3.5. Genetic Algorithm (SNRPGA2) 

The steps of the proposed genetic algorithm (SNRPGA2) for the time dependent 
vehicle routing problem with time windows are presented below. 

Step 1: Input the following: 
  Number of customer nodes (n) 
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  Number of vehicles (k) 
  Capacity of the vehicles (a) 
  Set Generation Count (GC) = 1 
  Maximum number of generations to be carried out (MNG) = 1000 
Step 2: Generate a random initial population (L) of 100 (N) chromosomes 

(suitable solutions routes for the problem).  
Step 3: Evaluate the fitness function f(x) of each chromosome in the popula-

tion L. 
Step 4: Selection.  
Sort the population L by the objective function (fitness function) value in the 

ascending order, since the objective of the study is minimization of the total dis-
tance travelled. Copy a top 30% of the population to form a subpopulation S 
rounded to the whole number. Smaller fitness value is preferred here. 

Step 5: Randomly select any two unselected parent chromosomes from the 
subpopulation S. Let them be c1 and c2 using tournament selection. 

Step 5.1: Perform two-point random Cross-Over using the random sequence 
insertion-based crossover (RSIX) for the TDVRPTW described in the earlier 
section among the chromosomes c1 and c2 to obtain their offspring d1 and d2 by 
assuming a crossover probability of 0.7.  

Step 5.2: Perform mutation on each of the offspring using a mutation proba-
bility of 0.3. 

Step 5.3: Evaluate the fitness function with respect to the total distance tra-
velled and number of vehicles utilized value for each of the offspring d1 and d2.  

Step 5.4: Replace the parent chromosomes c1 and c2 in the population with the 
offspring d1 and d2, respectively, if the fitness function of the offspring is less 
than that of the parent chromosomes. 

Step 6: Increment the generation count (GC) by 1 
i.e., GC = GC + 1 
Step 7: If GC ≤ MNG, then go to step 4, else go to step 8. 
Step 8: The topmost chromosome in the last population serves as the solution 

for implementation. 
Print the tour along with the total distance travelled and number of vehicles 

used. 
Step 9: Stop. 

4. Results 

In this section a detailed presentation of the experimental results is given, for the 
time-dependent vehicle routing problem (TDVRP).  

4.1. Comparisons of Algorithms in Terms of Number of  
Vehicles Utilized 

In this section, a comparison is made among the proposed algorithm SNRPGA2 
and an existing algorithm TDVRPTW algorithm in terms of number of vehicles 
utilized using a complete factorial experiment. The existing algorithm was an 
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iterated local search algorithm proposed by Hashimoto et al. [26]. The number 
of factors in the experiment is 2, viz. Factor A (Problem Size) and Factor B (Al-
gorithm). The number of levels for the Factor A is 6, Random 1, Clustered 1, 
Random Clustered 1, Random 2, Clustered 2 and Random Clustered 2, and that 
for the Factor B is 2, viz. TDVRPTW and SNRPGA. The results in terms of the 
number of vehicles utilized as per this design are shown in Table 2.  

The model of ANOVA is given as below: 

ijk i j ij ijkY A B AB eµ= + + + +  

 
Table 2. Results of number of vehicles utilized. 

Problem Class (Factor A) Algorithm (Factor B) 

 Replication of Class TDVRP SNRPGA2 

1. Random 1 

1 9 9 

2 14 9 

3 13 10 

4 10 9 

2. Clustered 1 

1 10 8 

2 10 8 

3 10 8 

4 10 8 

3. Random Clustered 1 

1 10 10 

2 11 11 

3 11 11 

4 14 12 

4. Random 2 

1 4 3 

2 4 3 

3 3 3 

4 3 3 

5. Clustered 2 

1 3 3 

2 3 3 

3 3 3 

4 3 3 

6. Random Clustered 2 

1 4 3 

2 4 3 

3 3 4 

4 3 3 
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where, 
Yijk is the number of vehicles utilized w.r.t the kth replication under the ith 

treatment of factor A (Problem Size) and the jth treatment of factor B (Algo-
rithm). 

µ is the overall mean of the response variable. 
Ai is the effect of the ith treatment of factor A (Problem Size) on the response 

variable. 
Bj is the effect of the jth treatment of factor B (Algorithm) on the response va-

riable. 
ABij is the interaction effect of the ith Problem Size and jth Algorithm on the 

response variable.  
eijk is the random error associated with the kth replication under the ith Prob-

lem Size and the jth Algorithm. 
In this model, Factor A (Problem Size/Problem Class) is a random factor and 

the Factor B (algorithm) is a fixed factor. Since the factor A is a random factor, 
the interaction factor ABij is also a random factor. The replications are always 
random and the number of replications under each experimental combination is 
4. The derivation of the expected mean square (EMS) is given in Panneerselvam 
[29]. To test the effect of Ai as well as ABij, the respective F ratio is formed by di-
viding the mean sum of squares of the respective component (Ai or ABij), by the 
mean sum of squares of error. The F ratio of the component Bj is formed by di-
viding its mean sum of squares by the mean sum of squares of ABij 

The alternative hypotheses of the model are as given below. 
H1: There are significant differences between the different pairs of treatments 

of Factor A (Problem Size) in terms of the number of vehicles utilized 
H1: There are significant differences between the different pairs of treatments 

of Factor B (Algorithm) in terms of the number of vehicles utilized. 
H1: There are significant differences between the different pairs of interaction 

between Factor A and Factor B in terms of number of vehicles utilized. 
The results of ANOVA of the data given in the Table 2 are shown in Table 3.  
 

Table 3. Analysis of variance for number of vehicles utilized. 

Source of 
Variation 

Sum of 
Squares 

Degrees 
of  

freedom 

Mean 
sum of 
squares 

Calculated 
F ratio 

F ratio 
(α = 
0.05) 

Significant 
F 

Algorithm (B) 3.521 1 3.521 8.311 4.12 Significant 

Problem Size 
(A) 

551.604 5 110.321 260.430 2.47 Significant 

Problem Size 
× Algorithm 

(A × B) 
5.604 5 1.121 2.646 2.47 Significant 

Error 15.250 36 0.424    

Total 575.979 47     
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From the ANOVA results shown in Table 3, one can infer that the factors 
“Problem Size”, “Algorithm” and “Interaction of “Problem size” and “Algo-
rithm” have significant effects on the response variable “Number of Vehicles 
Utilized”. Since there are significant differences among the algorithms, the best 
algorithm is obtained using Duncan’s multiple range test by arranging the algo-
rithms in the descending order of their mean total vehicles utilized, from left to 
right. 

The standard error used in this test is computed as shown below using the 
mean sum of squares of the interaction terms (Problem Size × Algorithm) and 
the number of replications under each of the algorithms (24). 

( ) ( )0.5 0.5MSS 1.121 24 0.216ABSE n= ÷ = ÷ =  

The least significant ranges (LSR) are calculated from the significant ranges of 
Duncan’s multiple range tests table for α = 0.05 and 36 degrees of freedom as 
shown in Table 4. The results of Duncan’s multiple range test are shown in Fig-
ure 6 In this figure, the algorithms are arranged as per the descending order of 
their mean number of vehicles utilized from left to right. From this Figure 6, it 
is clear that there is a significant difference between the 2 algorithms in terms of 
the mean number of vehicles utilized and further the proposed algorithm 
SNRPGA2 utilizes the minimum mean number of vehicles compared to the oth-
er algorithm. 

4.2. Comparison of Algorithms in Terms of Total Distance  
Travelled 

The proposed GA-based meta-heuristic for the time-dependent vehicle routing  
 

Table 4. Duncan’s multiple range tests. 

No. of treatments-1 
(j) 

Significant 
Range 

Standard 
Error 

LSR = Significant Range × Standard 
Error 

2 2.872 0.216 0.6204 

 

 
Figure 6. Results of Duncan’s multiple range test. 
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problem with time windows (SNRPGA2) is compared with one other existing 
meta-heuristics, viz. the algorithm developed for the TDVRPTW by Demir [30] 
in terms of total distance travelled using a complete factorial experiment with 
two factors, viz. “Problem Size” and “Algorithm”. The number of levels for the 
problem size is 6, viz. C1, C2, R1, R2, RC1, RC2 from Solomon’s benchmark in-
stances. The number of levels for “Algorithm” is 3 as already stated above. The 
number of replication under each experimental combination is 4. The results of 
the factorial experiment in terms of the total distance travelled are shown in Ta-
ble 5. The application of ANOVA to the data given in Table 5 gives the results 
as shown in Table 6. 
 
Table 5. Results of the factorial experiment in terms of the total distance travelled. 

Problem Class (Factor A) Algorithm (Factor B) 

Class 
Replication of 

Class 
ALNS  

(Demir) 
TDVRPTW 
(SNRPGA2) 

Random 1 

1 R1 971 831 

2 R1 932 675 

3 R1 948 717 

4 R1 1048 664 

Clustered 1 

1 C1 822 593 

2 C1 826 567 

3 C1 827 585 

4 C1 827 580 

Random Clustered 1 

1 RC1 1207 867 

2 RC1 1114 771 

3 RC1 1258 847 

4 RC1 1457 811 

Random 2 

1 R2 740 525 

2 R2 701 688 

3 R2 731 590 

4 R2 794 506 

Clustered 2 

1 C2 585 422 

2 C2 585 430 

3 C2 586 432 

4 C2 586 430 

Random Clustered 2 

1 RC2 777 762 

2 RC2 783 573 

3 RC2 923 732 

4 RC2 962 606 
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Table 6. ANOVA for the total distance travelled. 

Source of 
Variation 

Sum of 
Squares 

Degrees 
of  

freedom 

Mean sum of 
squares 

Calculated 
F ratio 

F ratio 
(α = 
0.05) 

Significant 
F 

Algorithm 
(B) 

697,352.302 1 697,352.302 146.138 4.12 Significant 

Problem 
Size (A) 

1,313,751.984 5 262,750.397 55.062 2.47 Significant 

Problem 
Size × 

Algorithm 
(A × B) 

105,970.302 5 21,194.060 4.441 2.47 Significant 

Error 171,787.094 36 4771.864    

Total 2,288,861.682 47     

 
The model of ANOVA is given as below: 

ijk i j ij ijkY A B AB eµ= + + + +  

where,  
Yijk is the total distance travelled w.r.t the kth replication under the ith treat-

ment of factor A (Problem Size) and the jth treatment of factor B (Algorithm). 
µ is the overall mean of the response variable total distance travelled 

Ai is the effect of the ith treatment of factor A (Problem Size) on the response va-
riable. 

Bj is the effect of the jth treatment of factor B (Algorithm) on the response va-
riable. 

ABij is the interaction effect of the ith Problem Size and jth Algorithm on the 
response variable. 

eijk is the random error associated with the kth replication under the ith Prob-
lem Size and the jth Algorithm. 

In this model, the factor A is a random factor and the factor B is a fixed factor. 
Since the factor A is a random factor, the interaction factor is also a random 
factor. The replications are always random and the number of replications under 
each experimental combination is k. The derivation of the expected mean square 
(EMS) is given in Panneerselvam [29]. To test the effect of Ai as well as ABij the 
respective F ratio is formed by dividing the mean sum of squares of the respec-
tive component (Ai or ABij), by the mean sum of squares of error. The F ratio of 
the component Bj is formed by dividing its mean sum of squares by the mean 
sum of squares of ABij. 

The alternative hypothesis of the model is stated as below: 
H1: There are significant differences between the different pairs of treatments 

of Factor A (Problem Size) in terms of the total distance travelled. 
H1: There are significant differences between the different pairs of treatments 

of Factor B (Algorithm) in terms of the total distance travelled. 
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H1: There are significant differences between the different pairs of interaction 
between Factor A and Factor B in terms of total distance travelled. 

From the ANOVA results shown in Table 6, one can infer that the factors 
“Algorithm” and “Problem Size” have significant effects on the total distance 
travelled. Since, there is a significant difference among the 2 algorithms com-
pared in terms of the total distance travelled, Duncan’s multiple range test is 
next conducted to identify the best algorithm by arranging the algorithms in the 
descending order of their mean total distance travelled from to right. 

The standard error used in this test is computed as shown below using the 
mean sum of squares of the interaction terms (Problem Size × Algorithm) and 
the number of replications under each of the algorithms (24). The treatment 
means for the Factor B (Algorithm) in terms of the total distance travelled are 
arranged in the descending order from left to right. The standard error for the 
performance measure is calculated using the formula and found to be 22.92 One 
can notice the fact that the mean sum of squares of the interaction term AB is 
used in estimating the standard error (SE), because the F ratio for the factor 
“Algorithm” is obtained by dividing its mean sum of squares by the mean sum of 
squares of the interaction term ABij (Panneerselvam [29]). 

The least significant ranges (LSR) are calculated from the significant ranges of 
Duncan’s multiple range tests table for α = 0.05 and 5 degrees of freedom as 
shown in Table 7. 

( ) ( )0.5 0.5MSS 21194.060 24 29.72ABSE n= ÷ = ÷ =  

From the Duncan’s Multiple Range Test performed above as shown in Figure 
7, it is also clear that the TDVRPTW is superior in performance when compared  

 
Table 7. Duncan’s multiple range tests. 

No. of treatments-1 
(j) 

Significant 
Range 

Standard 
Error 

LSR = Significant Range × Standard 
Error 

2 2.872 29.72 85.356 

 

 
Figure 7. Results of Duncan’s multiple range test. 
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to the existing algorithm based on ALNS used in this study for comparison, in 
terms of total distance travelled. 

4.3. Comparison with the Mathematical Model 

In this section a comparison is done between the proposed algorithm SNRPGA2 
for the TDVRP and the mathematical model for the TDVRP for the two meas-
ures, distance travelled and the number of vehicles used, which was solved using 
LINGO 15.0 optimization software.  

A full factorial design is conducted for the comparison of the proposed GA- 
based algorithm, SNRPGA2 for the TDVRPTW with the mathematical model 
for the total distance travelled, whose data is given in Table 8. The experiment is 
conducted for small sized problems with six different levels of problem sizes 
starting from 10 nodes and then increasing the nodes in steps of 5 up to 35. The 
number of replications under each experimental combination is 2.  

The model of ANOVA is given as below: 

ijk i j ij ijkY A B AB eµ= + + + +  

where,  
Yijk is the total distance travelled w.r.t the kth replication under the ith treat-

ment of factor A (Problem Size) and the jth treatment of factor B (Algorithm). 
µ is the overall mean of the response variable total distance travelled. 
Ai is the effect of the ith treatment of factor A (Problem Size) on the response 

variable. 
Bj is the effect of the jth treatment of factor B (Algorithm) on the response va-

riable. 
 

Table 8. Comparison of the SNRPGA2 with the mathematical model for distance tra-
velled. 

Problem Size 
(Number of 

Nodes) 
Replication 

Problem  
instance 

Method 

SNRPGA2 
Mathematical 

Model 

10 
1 C102 35.754 35.754 

2 C103 35.754 35.754 

15 
1 C102 87.815 87.815 

2 C103 84.608 84.6079 

20 
1 C102 113.684 113.67 

2 C103 103.55 103.50 

25 
1 C102 132.181 132.179 

2 C103 124.45 124.44 

30 
1 C102 142.9 142.89 

2 C103 135.171 135.161 

35 
1 C102 207.848 207.82 

2 C103 188.99 188.41 
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ABij is the interaction effect of the ith Problem Size and jth Algorithm on the 
response variable. 

eijk is the random error associated with the kth replication under the ith Prob-
lem Size and the jth Algorithm. 

In this model, the factor A is a random factor and the factor B is a fixed factor. 
Since the factor A is a random factor, the interaction factor is also a random 
factor. The replications are always random and the number of replications. 

The alternative hypothesis of the model is stated as below: 
H1: There are significant differences between the different pairs of treatments 

of Factor A (Problem Size) in terms of the total distance travelled. 
H1: There are significant differences between the different pairs of treatments 

of Factor B (Algorithm) in terms of the total distance travelled. 
H1: There are significant differences between the different pairs of interaction 

between Factor A and Factor B in terms of total distance travelled. 
The ANOVA results are shown in the Table 9. 
From the ANOVA results in Table 9 it is clear that there is no significant dif-

ference between the proposed GA-based solution and the mathematical mod-
el-based solution in terms of the total distance travelled. 
Once again a full factorial design is conducted for the comparison of the pro-
posed GA-based algorithm, SNRPGA2 for the TDVRPTW with the mathemati-
cal model for the number of vehicles used, whose data is given in Table 10. The 
experiment is conducted for small sized problems with six different problem 
sizes starting from 10 nodes and then increasing the nodes in steps of 5 till 35 
nodes. The number of replications under each experimental combination is 2. 

From the Table 10, it is clear that the proposed algorithm (SNRPGA2) and 
the mathematical model give the same result in terms of number of vehicles used 
for the TDVRPTW problem for each replication under each of the problem sizes, 
which come under small/ medium size. Hence, there is no need of ANOVA for 
this comparison.  

 
Table 9. ANOVA for the total distance travelled. 

Source of  
Variation 

Sum of 
Squares 

Degrees of 
freedom 

Mean  
sum of 
squares 

Calculated  
F ratio 

F ratio 
(α = 
0.05) 

Sig. 

Problem  
Size (A) 

59,325.510 5 11,865.102 237.658 3.11 Significant 

Algorithm (B) 0.021 1 0.021 0.000 4.75 Insignificant 

Algorithm * Size 
(AB) 

0.073 5 0.015 0.000 3.11 Insignificant 

Error 599.102 12 49.925    

Total 59,924.71 23     
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Table 10. Comparison of the SNRPGA2 with the mathematical model for the number of 
vehicles used. 

Problem Size 
(Number of 

Nodes) 
Replication 

Problem  
instance 

Method 

SNRPGA2 
Mathematical 

Model 

10 
1 C102 1 1 

2 C103 1 1 

15 
1 C102 2 2 

2 C103 2 2 

20 
1 C102 2 2 

2 C103 2 2 

25 
1 C102 3 3 

2 C103 3 3 

30 
1 C102 3 3 

2 C103 3 3 

35 
1 C102 4 4 

2 C103 4 4 

5. Conclusions 

In this research, a GA based meta-heuristic is developed using Random Se-
quence-based Insertion Crossover (RSIX) method (SNRPGA) for solving the 
time dependent vehicle routing problem (TDVRP) with time windows. Next, 
through a full factorial experiment with two factors, viz. “Problem Size” and 
“Algorithm”, it is proved that there are significant differences among the algo-
rithms in terms of number of vehicles utilized (Kumar and Panneerselvam [29]). 
So, in the next stage using Duncan’s multiple range test, it is found that the pro-
posed algorithm “SNRPGA2” is better than one more existing algorithm in 
terms of minimizing the number of vehicles utilized. Next, through another fac-
torial experiment with two factors, viz. “Problem Size” and “Algorithm”, it is 
proved that there are significant differences among the algorithms in terms of 
the total distance travelled. So, in the next stage using Duncan’s multiple range 
test, it is found that the proposed algorithm “SNRPGA2” is better than the other 
existing algorithms in terms of minimizing the total distance travelled.  

The proposed genetic algorithm is compared with the mathematical model 
and it is found that there is no significant difference in the results obtained by 
using the proposed GA and the mathematical model, in terms of each of the 
performance measures, viz. the number of vehicles used and the total distance 
travelled. 

This study can be useful for planning the supplier site pickups by e-commerce 
companies, taking into consideration of traffic conditions during different pe-
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riods of the day with time window requirements of the suppliers. Future re-
searchers can implement the TDVRP using other meta-heuristics and compare 
the efficiencies of the various meta-heuristics. The Solomon’s benchmark in-
stances are got from SINTEF [31]. 
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