
American Journal of Operations Research, 2016, 6, 75-80
Published Online January 2016 in SciRes. http://www.scirp.org/journal/ajor
http://dx.doi.org/10.4236/ajor.2016.61010

How to cite this paper: Quaddoura, R. (2016) An O(n) Time Algorithm for Scheduling UET-UCT of Bipartite Digraphs of
Depth One on Two Processors. American Journal of Operations Research, 6, 75-80.
http://dx.doi.org/10.4236/ajor.2016.61010

An O(n) Time Algorithm for Scheduling
UET-UCT of Bipartite Digraphs of Depth
One on Two Processors
Ruzayn Quaddoura
Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa, Jordan

Received 17 November 2015; accepted 24 January 2016; published 28 Janaury 2016

Copyright © 2016 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Given n unit execution time (UET) tasks whose precedence constraints form a directed acyclic
graph, the arcs are associated with unit communication time (UCT) delays. The problem is to
schedule the tasks on two identical processors in order to minimize the makespan. Several poly-
nomial algorithms in the literature are proposed for special classes of digraphs, but the complexi-
ty of solving this problem in general case is still a challenging open question. We present in this
paper an O(n) time algorithm to compute an optimal schedule for the class of bipartite digraphs of
depth one.

Keywords
Scheduling, Makespan, Precedence Constraints, Bipartite Graph, Optimal Algorithm

1. Introduction
The problem of scheduling a set of tasks on a set of identical processors under a precedence relation has been
studied for a long time. A general description of the problem is the following. There are n tasks that have to be
executed by m identical processors subject to precedence constraints and (may be without) communication de-
lays. The objective is to schedule all the tasks on the processors such that the makespan is the minimum. Gener-
ally, this problem can be represented by a directed acyclic graph (),G V E= called a task graph. The set of
vertices V corresponds to the set of tasks and the set of edges E corresponds to the set of precedence constrains.
With every vertex i, a weight ip is associated that represents the execution time of the task i, and with every edge
(),i j , a weight ijc is associated that represents the communication time between the tasks i and j. If (),i j E∈
and the task i starts its execution at time t on a processor P, then either j starts its execution on P at time greater
than or equal to jt p+ , or j starts its execution on some other processor at time greater than or equal to

j ijt p c+ + .

http://www.scirp.org/journal/ajor
http://dx.doi.org/10.4236/ajor.2016.61010
http://dx.doi.org/10.4236/ajor.2016.61010
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

R. Quaddoura

76

According to the three field notation scheme introduced in [1] and extended in [2] for scheduling problems
with communication delays, this problem is denoted as max| , , |m i ijP prec p c C .

A large amount of work in the literature studies this problem with a restriction on its structure: the time of
execution of every task is one unit execution time (UET), the number of processors m is fixed, the communica-
tion delays are neglected, constant or one unit (UCT), or special classes of task graph are considered. We find In
this context, the problem 2 max| , 1 |iP prec p C= , is polynomial [3] [4], i.e. when the communication delays are
not taken into account. On the contrary, the problem 3 max| , 1 |iP prec p C= remains an open question [5].

The problem of two processors scheduling with communication delays is extensively studied [6] [7]. In par-
ticular, it is proven in [8] that the problem 2 max| binary tree, 1, |i ijP prec p c c C= = = is NP-hard where c is a
large integer, whereas this problem is polynomial when the task graph is a complete binary tree.

A challenging open problem is the two processors scheduling with UET-UCT, i.e. the problem
2 max| , 1, 1 |i ijP prec p c C= = for which the complexity is unknown. However, several polynomial algorithms

have been shown for special classes of task graphs, especially for trees [9] [10], interval orders [11] and a sub-
class of series parallel digraphs [12]. In this paper we present an ()O n time algorithm to compute an optimal
algorithm for the class of bipartite digraphs of depth one, that is the digraphs for which every vertex is either a
source (without predecessors) or a sink (without successors).

2. Scheduling UET-UCT for a Bipartite Digraph of Depth One on Two Processors
2.1. Preliminaries
A schedule UET-UCT on two processors for a general directed acyclic digraph (),G V E= is defined by a
function { }1 2: ,V P Pσ +→ × , () (), , 1, 2v iv t P iσ = = where vt is the time for which the task v is executed
and iP the processor on which the task v is scheduled. A schedule σ is feasible if:

a) ,u v V∀ ∈ , if u v≠ then () ()u vσ σ≠
b) If (),u v E∈ then 1u vt t+ ≤ if u and v are scheduled on the same processor, and 2u vt t+ ≤ if u and v

are scheduled on distinct processors.
A time t of a schedule σ is said to be idle if one of the processors is idle during this time. The makespan

maxC or the length of a schedule σ is the last non-idle time of σ , that is:

() (){ }max max : , , 1 or 2iC t v V v t P iσ= ∃ ∈ = =

A schedule σ is optimal if maxC is the minimum among all feasible schedules.
Let (),G B W E=  be a bipartite digraph of depth one. Since every vertex of G is either a source or a sink,

there exists always a feasible schedule such that the sources B are executed before executing the sinks W. Our
algorithm for solving the problem under consideration produces an optimal schedule satisfies this condition and
that we called a natural schedule defined as follows.

Definition 1 Let (),G B W E=  be a bipartite digraph of depth one. A natural schedule of G is obtained by
scheduling first the sources B then the sinks W starting from the processor 1P and alternating between 1P
and 2P such that the resulting schedule is optimal.

The definition of a natural schedule σ of a bipartite digraph of depth one (),G B W E=  implies the fol-
lowing properties:

1) The number of sources executed on 1P is 2B   and the number of sources executed on 2P is
2B   .

2) If B is even then:
a) σ contains at most 2 idle times, the first is at time 2 1B + , and the second is at time maxC .
b) If 2 1B + is an idle time then 2P is idle at this time (may be 1P also).

3) If B is odd then:
a) σ contains at most 3 idle times, the first is at time 2B   , the second is at time 2 1B  +  , and the

third is at time maxC .
b) If 2B   or 2 1B  +  is an idle time then 2P is idle at this time and 1P is non.

4) max2 2 1B W C B W  ≤ ≤   +     .
Without loss of generality, we can suppose that both idle times maxC and 2 1B W  +  , if exist, are dis-

tinct. In this supposition, max 2C B W=    if and only if σ has at most the idle time maxC otherwise.

R. Quaddoura

77

Figure 1. Bipartite digraphs of depth one and their corresponding natural schedules.

max 2 1C B W=   +  . Figure 1 illustrates some bipartite digraphs of depth one and their corresponding natu-

ral schedules.

2.2. Scheduling Algorithm
The idea of solving the problem 2 max| , 1, 1 |j ijP prec bipartite of depth one p c C= = = is to determine the ne-
cessary and sufficient conditions to exist idle times in a natural schedule of the task graph. In the following, we
consider (),G B W E=  is a bipartite digraph of depth one where B is the set of sources and W is the set of
sinks, and σ is a natural schedule for G. A vertex b B∈ (w W∈) is called universal if ()d b W=

()()d w B= . We distinguish two cases, B is even and B is odd.
Lemma 2 Assume that B is even.
1) The two processors 1P and 2P are idle at time 2 1B + if and only if G is a bipartite complete.
2) The processor 2P only is idle at time 2 1B + if and only if one of the following holds:

a) Every vertex of B is universal except exactly one.
b) Every vertex of W is universal except exactly one.

Proof. 1) If G is a bipartite complete then obviously 1P and 2P must be idle at time 2 1B + . The inverse,
let b and w be a source and a sink of G. If b is not adjacent to w, then we can schedule b on 2P at time 2B
and w on 1P at time 2 1B + , a contradiction. So b must be adjacent to w, therefore G is a bipartite complete.

2) Assume that 2P only is idle at time 2 1B + and the conditions a and b are not hold. Then, there exist
1 2,b b B∈ and 1 2,w w W∈ such that 1 2 1, ,b b w and 2w are all not universal. If { }1 2 1 2, , ,b b w w is a stable set,

i.e. no two vertices are adjacent, we can schedule 1 2,b b on 1 2,P P at time 2B and 1 2,w w on 1 2,P P at
time 2 1B + , a contradiction. If { }1 2 1 2, , ,b b w w is not a stable set then we can suppose that 1 1b w E∈ . Since

1b and 1w are not universal, there exist w W∈ and b B∈ such that 1b w E∉ and 1bw E∉ . But now, we
can schedule 1b , b on 1 2,P P respectively at time 2B , and 1w , w on 1 2,P P respectively at time 2 1B + ,
a contradiction.

The inverse, suppose that every vertex of B is universal except exactly one. Since B is even, there exist
1 2,b b B∈ scheduled on 1 2,P P at time 2B . By 1, the two processors can’t be idle at time 2 1B + . If 2P

is not idle at time 2 1B + , then both 1b and 2b are not universal, a contradiction. In a similar way we prove
the case b. 

Notice that if B (or W) contains exactly one non-universal vertex b then the vertex of W which is independent
of b is also non-universal but it is not necessary unique (see Figure 1). Algorithm Schedule_|B|_is_even (G)
constructs a natural schedule for (),G B W E=  if B is even, Lemma 2 proves its correctness.

b1 b2

G1

w1 w2 w3

b1 b2

G2

w1 w2 w3 w4

b3 b4 b1 b2

G3

w1 w2 w3

b3

b1 b2

G4

w1 w2 w3

b3 b1 b2

G5

w1 w2 w3 w4

b3 b4 b5

w5

P1 b1 w1 w3

P2 b2 w2

1 2 3 4

P1 b1 b3 w2 w3

P2 b2 w1

1 2 3 4

P1 b1 b3 w1 w2

P2 b2 w3

1 2 3 4

P1 b1 b4 b5 w2 w3 w5

P2 b2 b3 w1 w4

1 2 3 4 5 6

P1 b1 b3 w1 w2 w4

P2 b2 b4 w3

1 2 3 4 5

R. Quaddoura

78

Algorithm Schedule_|B|_is_even (G)
(){ }1 :B b B d b W= ∈ =
(){ }2 :B b B d b W= ∈ <
(){ }1 :W w W d w B= ∈ =
(){ }2 :W w W d w B= ∈ <

If 1B B= and 1W W= then
Schedule 1B alternately on 1P and 2P at times 1, 2, , 2B
Schedule 1W alternately on 1P and 2P at times 2 1, , 2 1B B W+   +  

Else if 2 1B = or 2 1W = then
Let 2b B∈ and 2w W∈ such that bw E∉
Schedule b on 2P at time 2B and w on 1P at time 2 1B +
Schedule { }B b− alternately on 1P and 2P at times 1, 2, , 2B
Schedule { }W w− alternately on 1P and 2P at times 2 1, , 2 1B B W+   +  

Else let 1 2 2,b b B∈ and 1 2 2,w w W∈ such that 1 1 2 2,b w E b w E∉ ∉
Schedule 1b on 1P and 2b on 2P at time 2B
Schedule 2w on 1P and 1w on 2P at time 2 1B +
Schedule { }1 2,B b b− alternately on 1P and 2P at times 1, 2, , 2 1B −
Schedule { }1 2,W w w− alternately on 1P and 2P at times 2 2, , 2B B W+    

Figure 1 shows the construction of natural schedules of the graphs 1G and 2G resulting from the algo-
rithm Schedule_|B|_is_even (G).

Lemma 3 Assume that B is odd.
1) The processor 2P is idle at times 2B   and 2 1B  +  if and only if G is a bipartite complete.
2) The processor 2P is idle at time 2B   and not idle at time 2 1B  +  if and only if

a) There is w W∈ such that () 1d w B= −
b) For every w W∈ , ()d w B= or 1B − .

3) The processor 2P is idle at time 2 1B  +  and not idle at time 2B   if and only if
a) There is w W∈ such that () 2d w B≤ −
b) For every w W∈ for which () 2d w B≤ − and for every ()b N w∈ , () 1d b W= − where ()N w

is the set of non-neighbors of w.
Proof. 1) If G is a bipartite complete then obviously 2P is idle at times 2B   and 2 1B  +  . The in-

verse, let b and w be a source and a sink of G. If b is not adjacent to w, then we can schedule b on 1P at time
2B  

and w on 2P at time 2B   or at time 2 1B  +  according to the adjacency relation between the
source scheduled on 1P at time 2 1B  −  and w, a contradiction. So b must be adjacent to w, therefore G is
a bipartite complete.

2) Assume that 2P is idle at time 2B   and not idle at time 2 1B  +  . The vertex w W∈ scheduled
on 2P at time 2 1B  +  is of degree less than or equal to 1B − , since it must be independent of the vertex
b B∈ scheduled on 1P at time 2B   . If there is a vertex w W∈ such that () 2d w B≤ − , then we can
schedule w on 2P at time 2B   and two vertices from B independent of w on 1P at times 2 1B  −  and

2B   , a contradiction.
The inverse, by 1, the processor 2P is not idle at time 2B   or at time 2 1B  +  . If 2P is not idle at

time 2B   then the vertex scheduled at this time would be of degree less than or equal to 2B − , a contra-
diction.

3) Assume that 2P is idle at time 2 1B  +  and not idle at time 2B   . The vertex w W∈ scheduled
on 2P at time 2B   is of degree less than or equal to 2B − , since it must be independent of the two ver-
tices 1 2,b b B∈ scheduled on 1P at times 2 1B  −  and 2B   . Let w W∈ such that () 2d w B≤ −
and let ()b N w∈ such that () 2d b W≤ − . Now, we can schedule 𝑤𝑤 on 2P at time 2B   , b and another
vertex b′ independent of w on 1P at time 2B   and 2 1B  −  respectively, and schedule a vertex w′
independent of b on 2P at time 2 1B  +  , a contradiction. The inverse, by 1 and 2, the processor 2P can’t
be idle at time 2B   and any vertex scheduled on 2P at time 2B   must be of degree less than or equal
to 2B − . The processor 2P is idle at time 2 1B  +  , otherwise the vertex scheduled on 1P at time

2B   is of degree less than or equal to 2W − , a contradiction. 
To construct a natural schedule for G when B is odd, we need to the Procedure Two_Vertices (G). This

procedure return 1 if the condition 3.b of Lemma 3 holds, and return two vertices w, b such that () 2d w B≤ − ,
()b N w∈ and () 2d b W≤ − if this condition is not hold.

R. Quaddoura

79

Procedure Two_Vertices (G)
(){ } { }33 1: 2 , , WW w W d w B w w= ∈ ≤ − = 

For 1i = to 3W
() { }1 2, , ,i i i

i kN w b b b= 
For 1j = to k
If () 2i

jd b W≤ − then Return (), i
i jw b

Return 1.
Algorithm Schedule_|B|_is_odd (G) constructs a natural schedule for (),G B W E=  if B is odd. Lemma

3 proves its correctness.
Algorithm Schedule_|B|_is_odd (G)

(){ }1 :B b B d b W= ∈ =
(){ }2 :B b B d b W= ∈ <
(){ }1 :W w W d w B= ∈ =
(){ }2 : 1W w W d w B= ∈ = −
(){ }3 : 2W w W d w B= ∈ ≤ −

If 1B B= and 1W W= then
Schedule a vertex b B∈ on 1P at time 2B  
Schedule a vertex w W∈ on 1P at time 2 1B  + 
Schedule { }B b− alternately on 1P and 2P at times 1, , 2 1B  − 
Schedule { }W w− alternately on 1P and 2P at times 2 2, , 2 1B B W  +   +    

Else if 3 0W = then
Let 2w W∈ and 2b B∈ such that bw E∉
Schedule b on 1P at time 2B  
Schedule w on 2P at time 2 1B  + 
Schedule { }B b− alternately on 1P and 2P at times 1, , 2 1B  − 
Schedule { }W w− alternately on 1P and 2P at times 2 1, , 2 1B B W  +   +    

Else If Two_Vertices (G) = 1 then
Let 3w W∈ and 1 2 2,b b B∈ such that 1 2,b w b w E∉
Schedule 1 2,b b on 1P at times 2 1B  −  and 2B  
Schedule w on 2P at time 2B  
Schedule { }1 2,B b b− alternately on 1P and 2P at times 1, , 2 1B  − 
Schedule a vertex { }w W w′∈ − on 1P at time 2 1B  + 
Schedule { },W w w′− alternately on 1P and 2P at times 2 2, , 2 1B B W  +   +    

Else let (),w b = Two_Vertices (G)
Let { }1 2b B b∈ − and { }1 2 3w W W w∈ −

 such that 1 1,b w bw E∉
Schedule 1,b b on 1P at times 2 1B  −  and 2B   respectively
Schedule 1,w w on 2P at times 2B   and 2 1B  +  respectively
Schedule { }1,B b b− alternately on 1P and 2P at times 1, , 2 1B  − 
Schedule { }1,W w w− alternately on 1P and 2P at times 2 1, , 2B B W  +      

Figure 1 shows the construction of natural schedules of the graphs 3 4,G G and 5G resulting from the algo-
rithm Schedule_|B|_is_odd (G).

2.3. Complexity
We assume that (),G B W E= 

 is represented by its adjacency lists, so the set of neighbors and the set of non
neighbors of every vertex of G are known already. In this supposition, we can check easily that any step (except
the step Two_Vertices (G)) of the two algorithms Schedule_|B|_is_even (G) and Schedule_|B|_is_ odd (G) can
be executed either within a constant time or within an ()O n time where B W n=

. Let’s prove that the
Procedure Two_Vertices (G) runs within ()O B time.

The worst case of this Procedure occurs when its result is 1. In this case, for any 1 2 3,w w W∈ ,
() ()1 2N w N w = ∅

, otherwise, a vertex b independent of 1w and 2w would be of degree less than or equal
to 2W − . So the number of comparisons of if statement in this procedure is equal to at most

() ()
31 WN w N w B+ + ≤ . Therefore, the procedure Two_Vertices (G) runs within ()O B time and the total

R. Quaddoura

80

time of our scheduling algorithm is ()O n .

3. Conclusion
We have presented an ()O n time algorithm for the optimal schedule of bipartite digraphs of depth one with
UET-UCT on two processors. The complexity of this problem for general directed acyclic graphs is still an open
question. We believe that our algorithm can be used to solve this problem in general as follow: Consider a topo-
logical sort of a directed acyclic graph G. The linear ordering defined by this topological sort decomposes G into
consecutives bipartite digraphs of depth one. The schedule obtained by the concatenation of the schedules of
these bipartite digraphs is a feasible schedule or may be modified to a feasible schedule of G. Now, if we can
determine the necessary and sufficient conditions to exist idle times in this feasible schedule then we can deter-
mine the complexity of this problem. This is a useful guide and foundation for future research.

Acknowledgements
This research is funded by the Deanship of Research and Graduate Studies in Zarqa University/Jordan. The au-
thor is grateful to anonymous referee’s suggestion and improvement of the presentation of this paper.

References
[1] Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. (1979) Optimization and Approximation in De-

terministic Scheduling: A Survey. Annals of Discrete Mathematics, 5, 287-326.
http://dx.doi.org/10.1016/S0167-5060(08)70356-X

[2] Veltman, B., Lageweg, B.J. and Lenstra, L.K. (1990) Multiprocessor Scheduling with Communication Delays. Parallel
Computing, 16, 173-182. http://dx.doi.org/10.1016/0167-8191(90)90056-F

[3] Coffman Jr., E.G. and Graham, R.L. (1972) Optimal Scheduling for Two-Processor Systems. Acta Informatica, 1, 200-
213. http://dx.doi.org/10.1007/BF00288685

[4] Fujii, M., Kasami, T. and Ninomiya, K. (1969) Optimal Sequencing of Two Equivalent Processors. SIAM Journal on
Applied Mathematics, 17, 784-789. http://dx.doi.org/10.1137/0117070

[5] Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman.

[6] Chrétienne, P. and Picouleau, C. (1995) Scheduling with Communication Delays: A Survey. In: Scheduling Theory and
Its Applications, John Wiley & Sons.

[7] Norman, M.G., Pelagatti, S. and Thanisch, P. (1995) On the Complexity of Scheduling with Communication Delay and
Contention. Parallel Processing Letters, 5, 331-341. http://dx.doi.org/10.1142/S012962649500031X

[8] Afrati, F., Bampis, E., Finta, L. and Mili, I. (2005) Scheduling Trees with Large Communication Delays on Two Iden-
tical Processors. Journal of Scheduling, 8, 179-190. http://dx.doi.org/10.1007/s10951-005-6366-3

[9] Varvarigou, T., Roychowdhury, V.P., Kailath, T. and Lawler, E. (1996) Scheduling in and out Forests in the Presence
of Communication Delays. IEEE Transactions on Parallel and Distributed Systems, 7, 1065-1074.
http://dx.doi.org/10.1109/71.539738

[10] Veldhorst, M. (1993) A Linear Time Algorithm to Schedule Trees with Communication Delays Optimally on Two
Machines. Technical Report COSOR 93-07, Department of Math, and Computer Science, Eindhoven University of
Technology, Eindhoven.

[11] Ali, H. and El-Rewini, H. (1993) The Time Complexity of Scheduling Interval Orders with Communication Is Poly-
nomial. Parallel Processing Letters, 3, 53-58. http://dx.doi.org/10.1142/S0129626493000083

[12] Finta, L., Liu, Z., Mills, I. and Bampis, E. (1996) Scheduling UET-UCT Series Parallel Graphs on Two Processors.
Theoretical Computer Science, 162, 323-340. http://dx.doi.org/10.1016/0304-3975(96)00035-7

http://dx.doi.org/10.1016/S0167-5060(08)70356-X
http://dx.doi.org/10.1016/0167-8191(90)90056-F
http://dx.doi.org/10.1007/BF00288685
http://dx.doi.org/10.1137/0117070
http://dx.doi.org/10.1142/S012962649500031X
http://dx.doi.org/10.1007/s10951-005-6366-3
http://dx.doi.org/10.1109/71.539738
http://dx.doi.org/10.1142/S0129626493000083
http://dx.doi.org/10.1016/0304-3975(96)00035-7

	An O(n) Time Algorithm for Scheduling UET-UCT of Bipartite Digraphs of Depth One on Two Processors
	Abstract
	Keywords
	1. Introduction
	2. Scheduling UET-UCT for a Bipartite Digraph of Depth One on Two Processors
	2.1. Preliminaries
	2.2. Scheduling Algorithm
	2.3. Complexity

	3. Conclusion
	Acknowledgements
	References

