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Abstract 
Given n unit execution time (UET) tasks whose precedence constraints form a directed acyclic 
graph, the arcs are associated with unit communication time (UCT) delays. The problem is to 
schedule the tasks on two identical processors in order to minimize the makespan. Several poly-
nomial algorithms in the literature are proposed for special classes of digraphs, but the complexi-
ty of solving this problem in general case is still a challenging open question. We present in this 
paper an O(n) time algorithm to compute an optimal schedule for the class of bipartite digraphs of 
depth one. 
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1. Introduction 
The problem of scheduling a set of tasks on a set of identical processors under a precedence relation has been 
studied for a long time. A general description of the problem is the following. There are n tasks that have to be 
executed by m identical processors subject to precedence constraints and (may be without) communication de-
lays. The objective is to schedule all the tasks on the processors such that the makespan is the minimum. Gener-
ally, this problem can be represented by a directed acyclic graph ( ),G V E=  called a task graph. The set of 
vertices V corresponds to the set of tasks and the set of edges E corresponds to the set of precedence constrains. 
With every vertex i, a weight ip  is associated that represents the execution time of the task i, and with every edge 
( ),i j , a weight ijc  is associated that represents the communication time between the tasks i and j. If ( ),i j E∈  
and the task i starts its execution at time t on a processor P, then either j starts its execution on P at time greater 
than or equal to jt p+ , or j starts its execution on some other processor at time greater than or equal to 

j ijt p c+ + . 
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According to the three field notation scheme introduced in [1] and extended in [2] for scheduling problems 
with communication delays, this problem is denoted as max| , , |m i ijP prec p c C . 

A large amount of work in the literature studies this problem with a restriction on its structure: the time of 
execution of every task is one unit execution time (UET), the number of processors m is fixed, the communica-
tion delays are neglected, constant or one unit (UCT), or special classes of task graph are considered. We find In 
this context, the problem 2 max| , 1 |iP prec p C= , is polynomial [3] [4], i.e. when the communication delays are 
not taken into account. On the contrary, the problem 3 max| , 1 |iP prec p C=  remains an open question [5].  

The problem of two processors scheduling with communication delays is extensively studied [6] [7]. In par-
ticular, it is proven in [8] that the problem 2 max| binary tree, 1, |i ijP prec p c c C= = =  is NP-hard where c is a 
large integer, whereas this problem is polynomial when the task graph is a complete binary tree. 

A challenging open problem is the two processors scheduling with UET-UCT, i.e. the problem 
2 max| , 1, 1 |i ijP prec p c C= =  for which the complexity is unknown. However, several polynomial algorithms 

have been shown for special classes of task graphs, especially for trees [9] [10], interval orders [11] and a sub- 
class of series parallel digraphs [12]. In this paper we present an ( )O n  time algorithm to compute an optimal 
algorithm for the class of bipartite digraphs of depth one, that is the digraphs for which every vertex is either a 
source (without predecessors) or a sink (without successors). 

2. Scheduling UET-UCT for a Bipartite Digraph of Depth One on Two Processors 
2.1. Preliminaries 
A schedule UET-UCT on two processors for a general directed acyclic digraph ( ),G V E=  is defined by a 
function { }1 2: ,V P Pσ +→ × , ( ) ( ), , 1, 2v iv t P iσ = =  where vt  is the time for which the task v is executed 
and iP  the processor on which the task v is scheduled. A schedule σ  is feasible if: 

a) ,u v V∀ ∈ , if u v≠  then ( ) ( )u vσ σ≠  
b) If ( ),u v E∈  then 1u vt t+ ≤  if u and v are scheduled on the same processor, and 2u vt t+ ≤  if u and v 

are scheduled on distinct processors. 
A time t of a schedule σ  is said to be idle if one of the processors is idle during this time. The makespan 

maxC  or the length of a schedule σ  is the last non-idle time of σ , that is: 

( ) ( ){ }max max :  , , 1 or 2iC t v V v t P iσ= ∃ ∈ = =  

A schedule σ  is optimal if maxC  is the minimum among all feasible schedules. 
Let ( ),G B W E=   be a bipartite digraph of depth one. Since every vertex of G is either a source or a sink, 

there exists always a feasible schedule such that the sources B are executed before executing the sinks W. Our 
algorithm for solving the problem under consideration produces an optimal schedule satisfies this condition and 
that we called a natural schedule defined as follows. 

Definition 1 Let ( ),G B W E=   be a bipartite digraph of depth one. A natural schedule of G is obtained by 
scheduling first the sources B then the sinks W starting from the processor 1P  and alternating between 1P  
and 2P  such that the resulting schedule is optimal. 

The definition of a natural schedule σ  of a bipartite digraph of depth one ( ),G B W E=   implies the fol-
lowing properties: 

1) The number of sources executed on 1P  is 2B    and the number of sources executed on 2P  is 
2B   . 

2) If B  is even then:  
a) σ  contains at most 2 idle times, the first is at time 2 1B + , and the second is at time maxC . 
b) If 2 1B +  is an idle time then 2P  is idle at this time (may be 1P  also). 

3) If B  is odd then:  
a) σ  contains at most 3 idle times, the first is at time 2B   , the second is at time 2 1B  +  , and the 

third is at time maxC . 
b) If 2B    or 2 1B  +   is an idle time then 2P  is idle at this time and 1P  is non. 

4) max2 2 1B W C B W  ≤ ≤   +     .  
Without loss of generality, we can suppose that both idle times maxC  and 2 1B W  +  , if exist, are dis-

tinct. In this supposition, max 2C B W=     if and only if σ  has at most the idle time maxC  otherwise.  
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Figure 1. Bipartite digraphs of depth one and their corresponding natural schedules. 

 
max 2 1C B W=   +  . Figure 1 illustrates some bipartite digraphs of depth one and their corresponding natu-

ral schedules. 

2.2. Scheduling Algorithm 
The idea of solving the problem 2 max|    , 1, 1 |j ijP prec bipartite of depth one p c C= = =  is to determine the ne-
cessary and sufficient conditions to exist idle times in a natural schedule of the task graph. In the following, we 
consider ( ),G B W E=   is a bipartite digraph of depth one where B is the set of sources and W is the set of 
sinks, and σ  is a natural schedule for G. A vertex b B∈  ( w W∈ ) is called universal if ( )d b W=  

( )( )d w B= . We distinguish two cases, B  is even and B  is odd. 
Lemma 2 Assume that B  is even. 
1) The two processors 1P  and 2P  are idle at time 2 1B +  if and only if G is a bipartite complete.  
2) The processor 2P  only is idle at time 2 1B +  if and only if one of the following holds: 

a) Every vertex of B is universal except exactly one. 
b) Every vertex of W is universal except exactly one. 

Proof. 1) If G is a bipartite complete then obviously 1P  and 2P  must be idle at time 2 1B + . The inverse, 
let b and w be a source and a sink of G. If b is not adjacent to w, then we can schedule b on 2P  at time 2B  
and w on 1P  at time 2 1B + , a contradiction. So b must be adjacent to w, therefore G is a bipartite complete.  

2) Assume that 2P  only is idle at time 2 1B +  and the conditions a and b are not hold. Then, there exist 
1 2,b b B∈  and 1 2,w w W∈  such that 1 2 1, ,b b w  and 2w  are all not universal. If { }1 2 1 2, , ,b b w w  is a stable set, 

i.e. no two vertices are adjacent, we can schedule 1 2,b b  on 1 2,P P  at time 2B  and 1 2,w w  on 1 2,P P  at 
time 2 1B + , a contradiction. If { }1 2 1 2, , ,b b w w  is not a stable set then we can suppose that 1 1b w E∈ . Since 

1b  and 1w  are not universal, there exist w W∈  and b B∈  such that 1b w E∉  and 1bw E∉ . But now, we 
can schedule 1b , b on 1 2,P P  respectively at time 2B , and 1w , w on 1 2,P P  respectively at time 2 1B + , 
a contradiction. 

The inverse, suppose that every vertex of B is universal except exactly one. Since B  is even, there exist 
1 2,b b B∈  scheduled on 1 2,P P  at time 2B . By 1, the two processors can’t be idle at time 2 1B + . If 2P  

is not idle at time 2 1B + , then both 1b  and 2b  are not universal, a contradiction. In a similar way we prove 
the case b.                                                                                 

Notice that if B (or W) contains exactly one non-universal vertex b then the vertex of W which is independent 
of b is also non-universal but it is not necessary unique (see Figure 1). Algorithm Schedule_|B|_is_even (G) 
constructs a natural schedule for ( ),G B W E=   if B  is even, Lemma 2 proves its correctness.  

b1 b2

G1

w1 w2 w3

b1 b2

G2

w1 w2 w3 w4

b3 b4 b1 b2

G3

w1 w2 w3

b3

b1 b2

G4

w1 w2 w3

b3 b1 b2

G5

w1 w2 w3 w4

b3 b4 b5

w5

P1 b1 w1 w3

P2 b2 w2

1 2 3 4

P1 b1 b3 w2 w3

P2 b2 w1

1 2 3 4

P1 b1 b3 w1 w2

P2 b2 w3

1 2 3 4

P1 b1 b4 b5 w2 w3 w5

P2 b2 b3 w1 w4

1 2 3 4 5 6

P1 b1 b3 w1 w2 w4

P2 b2 b4 w3

1 2 3 4 5



R. Quaddoura 
 

 
78 

Algorithm Schedule_|B|_is_even (G) 
( ){ }1 :B b B d b W= ∈ =  
( ){ }2 :B b B d b W= ∈ <  
( ){ }1 :W w W d w B= ∈ =  
( ){ }2 :W w W d w B= ∈ <  

If 1B B=  and 1W W=  then  
Schedule 1B  alternately on 1P  and 2P  at times 1, 2, , 2B  
Schedule 1W  alternately on 1P  and 2P  at times 2 1, , 2 1B B W+   +    

Else if 2 1B =  or 2 1W =  then 
Let 2b B∈  and 2w W∈  such that bw E∉  
Schedule b on 2P  at time 2B  and w on 1P  at time 2 1B +  
Schedule { }B b−  alternately on 1P  and 2P  at times 1, 2, , 2B  
Schedule { }W w−  alternately on 1P  and 2P  at times 2 1, , 2 1B B W+   +    

Else let 1 2 2,b b B∈  and 1 2 2,w w W∈  such that 1 1 2 2,b w E b w E∉ ∉  
Schedule 1b  on 1P  and 2b  on 2P  at time 2B  
Schedule 2w  on 1P  and 1w  on 2P  at time 2 1B +  
Schedule { }1 2,B b b−  alternately on 1P  and 2P  at times 1, 2, , 2 1B −  
Schedule { }1 2,W w w−  alternately on 1P  and 2P  at times 2 2, , 2B B W+      

Figure 1 shows the construction of natural schedules of the graphs 1G  and 2G  resulting from the algo-
rithm Schedule_|B|_is_even (G). 

Lemma 3 Assume that B  is odd.  
1) The processor 2P  is idle at times 2B    and 2 1B  +   if and only if G is a bipartite complete. 
2) The processor 2P  is idle at time 2B    and not idle at time 2 1B  +   if and only if  

a) There is w W∈  such that ( ) 1d w B= −  
b) For every w W∈ , ( )d w B=  or 1B − . 

3) The processor 2P  is idle at time 2 1B  +   and not idle at time 2B    if and only if  
a) There is w W∈  such that ( ) 2d w B≤ −  
b) For every w W∈  for which ( ) 2d w B≤ −  and for every ( )b N w∈ , ( ) 1d b W= −  where ( )N w  

is the set of non-neighbors of w. 
Proof. 1) If G is a bipartite complete then obviously 2P  is idle at times 2B    and 2 1B  +  . The in-

verse, let b and w be a source and a sink of G. If b is not adjacent to w, then we can schedule b on 1P  at time 
2B    

and w on 2P  at time 2B    or at time 2 1B  +   according to the adjacency relation between the 
source scheduled on 1P  at time 2 1B  −   and w, a contradiction. So b must be adjacent to w, therefore G is 
a bipartite complete. 

2) Assume that 2P  is idle at time 2B    and not idle at time 2 1B  +  . The vertex w W∈  scheduled 
on 2P  at time 2 1B  +   is of degree less than or equal to 1B − , since it must be independent of the vertex 
b B∈  scheduled on 1P  at time 2B   . If there is a vertex w W∈  such that ( ) 2d w B≤ − , then we can 
schedule w on 2P  at time 2B    and two vertices from B independent of w on 1P  at times 2 1B  −   and 

2B   , a contradiction.  
The inverse, by 1, the processor 2P  is not idle at time 2B    or at time 2 1B  +  . If 2P  is not idle at 

time 2B    then the vertex scheduled at this time would be of degree less than or equal to 2B − , a contra-
diction. 

3) Assume that 2P  is idle at time 2 1B  +   and not idle at time 2B   . The vertex w W∈  scheduled 
on 2P  at time 2B    is of degree less than or equal to 2B − , since it must be independent of the two ver-
tices 1 2,b b B∈  scheduled on 1P  at times 2 1B  −   and 2B   . Let w W∈  such that ( ) 2d w B≤ −  
and let ( )b N w∈  such that ( ) 2d b W≤ − . Now, we can schedule 𝑤𝑤 on 2P  at time 2B   , b and another 
vertex b′  independent of w on 1P  at time 2B    and 2 1B  −   respectively, and schedule a vertex w′  
independent of b on 2P  at time 2 1B  +  , a contradiction. The inverse, by 1 and 2, the processor 2P  can’t 
be idle at time 2B    and any vertex scheduled on 2P  at time 2B    must be of degree less than or equal 
to 2B − . The processor 2P  is idle at time 2 1B  +  , otherwise the vertex scheduled on 1P  at time 

2B    is of degree less than or equal to 2W − , a contradiction.                                    
To construct a natural schedule for G when B  is odd, we need to the Procedure Two_Vertices (G). This 

procedure return 1 if the condition 3.b of Lemma 3 holds, and return two vertices w, b such that ( ) 2d w B≤ − , 
( )b N w∈  and ( ) 2d b W≤ −  if this condition is not hold. 
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Procedure Two_Vertices (G) 
( ){ } { }33 1: 2 , , WW w W d w B w w= ∈ ≤ − =   

For 1i =  to 3W  
( ) { }1 2, , ,i i i

i kN w b b b=   
For 1j =  to k 
If ( ) 2i

jd b W≤ −  then Return ( ), i
i jw b  

Return 1. 
Algorithm Schedule_|B|_is_odd (G) constructs a natural schedule for ( ),G B W E=   if B  is odd. Lemma 

3 proves its correctness.  
Algorithm Schedule_|B|_is_odd (G) 

( ){ }1 :B b B d b W= ∈ =  
( ){ }2 :B b B d b W= ∈ <  
( ){ }1 :W w W d w B= ∈ =  
( ){ }2 : 1W w W d w B= ∈ = −  
( ){ }3 : 2W w W d w B= ∈ ≤ −  

If 1B B=  and 1W W=  then 
Schedule a vertex b B∈  on 1P  at time 2B    
Schedule a vertex w W∈  on 1P  at time 2 1B  +   
Schedule { }B b−  alternately on 1P  and 2P  at times 1, , 2 1B  −   
Schedule { }W w−  alternately on 1P  and 2P  at times 2 2, , 2 1B B W  +   +      

Else if 3 0W =  then  
Let 2w W∈  and 2b B∈  such that bw E∉  
Schedule b on 1P  at time 2B    
Schedule w on 2P  at time 2 1B  +   
Schedule { }B b−  alternately on 1P  and 2P  at times 1, , 2 1B  −   
Schedule { }W w−  alternately on 1P  and 2P  at times 2 1, , 2 1B B W  +   +      

Else If Two_Vertices (G) = 1 then 
Let 3w W∈  and 1 2 2,b b B∈  such that 1 2,b w b w E∉  
Schedule 1 2,b b  on 1P  at times 2 1B  −   and 2B    
Schedule w on 2P  at time 2B    
Schedule { }1 2,B b b−  alternately on 1P  and 2P  at times 1, , 2 1B  −   
Schedule a vertex { }w W w′∈ −  on 1P  at time 2 1B  +   
Schedule { },W w w′−  alternately on 1P  and 2P  at times 2 2, , 2 1B B W  +   +      

Else let ( ),w b  = Two_Vertices (G) 
Let { }1 2b B b∈ −  and { }1 2 3w W W w∈ −

 such that 1 1,b w bw E∉  
Schedule 1,b b  on 1P  at times 2 1B  −   and 2B    respectively 
Schedule 1,w w  on 2P  at times 2B    and 2 1B  +   respectively 
Schedule { }1,B b b−  alternately on 1P  and 2P  at times 1, , 2 1B  −   
Schedule { }1,W w w−  alternately on 1P  and 2P  at times 2 1, , 2B B W  +        

Figure 1 shows the construction of natural schedules of the graphs 3 4,G G  and 5G  resulting from the algo-
rithm Schedule_|B|_is_odd (G). 

2.3. Complexity 
We assume that ( ),G B W E= 

 is represented by its adjacency lists, so the set of neighbors and the set of non 
neighbors of every vertex of G are known already. In this supposition, we can check easily that any step (except 
the step Two_Vertices (G)) of the two algorithms Schedule_|B|_is_even (G) and Schedule_|B|_is_ odd (G) can 
be executed either within a constant time or within an ( )O n  time where B W n=

. Let’s prove that the 
Procedure Two_Vertices (G) runs within ( )O B  time. 

The worst case of this Procedure occurs when its result is 1. In this case, for any 1 2 3,w w W∈ , 
( ) ( )1 2N w N w = ∅

, otherwise, a vertex b independent of 1w  and 2w  would be of degree less than or equal 
to 2W − . So the number of comparisons of if statement in this procedure is equal to at most

( ) ( )
31 WN w N w B+ + ≤ . Therefore, the procedure Two_Vertices (G) runs within ( )O B  time and the total 
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time of our scheduling algorithm is ( )O n . 

3. Conclusion 
We have presented an ( )O n  time algorithm for the optimal schedule of bipartite digraphs of depth one with 
UET-UCT on two processors. The complexity of this problem for general directed acyclic graphs is still an open 
question. We believe that our algorithm can be used to solve this problem in general as follow: Consider a topo-
logical sort of a directed acyclic graph G. The linear ordering defined by this topological sort decomposes G into 
consecutives bipartite digraphs of depth one. The schedule obtained by the concatenation of the schedules of 
these bipartite digraphs is a feasible schedule or may be modified to a feasible schedule of G. Now, if we can 
determine the necessary and sufficient conditions to exist idle times in this feasible schedule then we can deter-
mine the complexity of this problem. This is a useful guide and foundation for future research. 
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