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Abstract 
The paper presents a technique for solving the binary linear programming model in polynomial 
time. The general binary linear programming problem is transformed into a convex quadratic 
programming problem. The convex quadratic programming problem is then solved by interior 
point algorithms. This settles one of the open problems of whether P = NP or not. The worst case 
complexity of interior point algorithms for the convex quadratic problem is polynomial. It can also 
be shown that every liner integer problem can be converted into binary linear problem. 
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1. Introduction 
The binary linear programming (BLP) model is NP-complete and up to now we have not been aware of any po-
lynomial algorithm for this model. See for example Fortnow [1] [2] for more on complexity. In this paper we 
present a technique for transforming the BLP model into a convex quadratic programming (QP) problem. The 
optimal solution of the resultant convex QP is also the optimal solution of the original problem BLP. This solves 
one of the famous open problems of whether P = NP or not. 

2. The BLP Model 
Let any BLP model be represented by  

http://www.scirp.org/journal/ajor
http://dx.doi.org/10.4236/ajor.2016.61001
http://dx.doi.org/10.4236/ajor.2016.61001
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


E. Munapo 
 

 
2 

( )

( ) ( ) ( )

T

11 1
T T T T T

1

1 2 1 2 1 2

Maximize ,

, , 0, where 1 1 1 , ,

, , , , , .

n

m mn

m n n

CX
a a

AX B X I X I A
a a

B b b b C c c c X x x x

 
 ≤ ≤ ≥ = =  
 
 

= = =



   



  

          (1) 

Any minimization BLP can be converted into maximization form and vice versa. There are several strategies 
for solving mixed 0 - 1 integer problems that are presented in Adams and Sherali [3]. 

3. Convex Quadratic Programming Model 
Let a quadratic programming problem be represented by (2). 
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We assume that:  
1) matrix Q is symmetric and positive definite, 
2) function ( )f X  is strictly convex, 
3) since constraints are linear then the solution space is convex, 
4) any maximization quadratic problem can be changed into a minimization and vice versa. 
When the function ( )f X  is strictly convex for all points in the convex region then the quadratic problem 

has a unique local minimum which is also the global minimum [4]-[6]. 

4. Transforming BLP into a Convex/Concave Quadratic Programming Problem 
Our problem is to transform problem (1) into (2) and once that is done then (2) can be solved in polynomial time 
implying P = NP. Interior point algorithms can solve the convex/concave QP problem in polynomial time. 

4.1. Rules with Binary Variables 
Binary variables have certain special features that we can capitalize on when solving. 

4.1.1. Rule 1 
Given any binary variable jx  then slack variable js  is also binary in the optimal solution. 
Proof 

1.j jx s+ =                                        (3) 

Case 1: When 1jx =  then 0.js =  
Case 2: When 0jx =  then 1.js =  

4.1.2. Rule 2 
For any binary variable jx  and slack variable js  the following must hold at optimality for BLPs.  

2 2 1.j jx s+ =                                        (4) 

The proof is the same as the one given in 4.1.1. Note that it is only binary variables that can satisfy (4). Even 
though none binary values such as 0.9jx =  then 0.1js =  can satisfy (3) the same values cannot satisfy (4), 
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i.e., 2 20.9 0.1 0.82 1.+ = ≠  The binary variable slack relationship given in (4) is the backbone of this paper. 

4.2. Forcing Variables to Assume Binary Variables 
The main weakness of the objective function given in (1) is that it does not force variables to assume binary 
values. In this paper we alleviate this challenge by adding a nonlinear extension to the objective function as 
given in (5). 

T TMaximize CX XX+                                   (5) 

where ( )1 2 1 2 .n nX x x x s s s=    and   is a very large constant. The constant   is very large 
in terms of its size compared to any of the coefficients in the objective function. This large value can be ap-
proximated as: 

( )1 21000 nc c c= + + +                                 (6) 

Proof  

( )T 2 2 2 2 2 2
1 2 1 2 ,n nXX x x x s s s= + + + + + + +                           (7) 

( ) ( ) ( )( )T 2 2 2 2 2 2
1 1 2 2 .n nXX x s x s x s= + + + + + +                          (8) 

Since from Rule 2, 2 2 1,j jx s+ =  then T TCX XX+   is minimized when  

( ) ( ) ( )2 2 2 2 2 2
1 1 2 21 , 1 , , 1 .n nx s x s x s+ = + = + =                         (9) 

In other words T TCX XX+   is maximized when variable jx  and slack variable js  are integers. In this 
paper the nonlinear extension TXX  is called an enforcer. An enforcer is a function, a set of constraint(s) or 
combination of both added to a problem to force an optimal solution with desired features such integrality. 

4.3. Convexity of T TCX XX+   
A function ( ) ( )1 2 1 2, , , , , , ,n nf X f x x x s s s=    is convex if and only if it has second-order partial derivatives 
for each point ( )1 2 1 2, , , , , , ,n nX x x x s s s S= ∈   and for each X S′∈  all principal minors of the Hessian 
matrix are none negative. 
Proof 

In this case  
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This has continuous second order partial derivatives and the 2n by 2n Hessian matrix is given by 

( )1 2 1 2
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Since all principal minors of ( )1 2 1 2, , , , , , ,n nH x x x s s s   are nonnegative then  
( )1 2 1 2, , , , , , ,n nf x x x s s s   is convex. See Winston [7] for more on convex functions.  

4.4. Convex Quadratic Programming Form  
The function T TCX XX+   can be expressed in the convex quadratic programming form 

( )T T T1 12
2 2

CX XX CX XQX+ = + 

                          (12) 
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where matrix Q  is of dimension 2n by 2n, symmetric and positive definite as given in (13). 
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Thus matrix Q  is symmetric and positive definite. Note that T T0, 0.XQX X≥ ∀ ≥  

4.5. Complexity of Convex Quadratic Programming 
The main reason for converting a BLP into a convex quadratic programming model is to take advantage of the 
availability of interior point algorithms which can solve convex QPs in polynomial time [8]. If any BLP can be 
converted into a convex quadratic problem, then any BLP can be solved in polynomial time.  

4.6. Proof of Optimality 
The proof is easily shown by reducing the convex quadratic objective function to the original linear form given 
in (1). The proposed objective function of the convex QP is reduced as follows:  

( )
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Since 2 2 1,j jx s j+ = ∀  then,  

                      ( ) ( ) ( )( )1 1 2 2Maximize 1 1 1n nc x c x c x+ + + + + + +                     (14) 

1 1 2 2Maximize .n nc x c x c x n= + + + +                          (15) 

In other words ( )2 2 2 2 2 3
1 2 1 2n nx x x s s s+ + + + + + +    is a constant and the objective function is the same as:  

1 1 2 2Maximize .n nc x c x c x+ + +  

where jx  is binary for 1, 2, ,j n=   this is the original form given in (1).  

4.7. Infeasible Binary Integer Solution Space 
In this case the solution of the convex OP will not be integer. The objective,  

( )2 2 2 2 2 3
1 1 2 2 1 2 1 2Maximize .n n n nc x c x c x x x x s s s+ + + + + + + + + + +     

forces variables to binary or integral values if an integer point exists in the solution space. If an integer point 
does not exists in the solution space the large constant   in the objective forces variables to assume values 
whose sum of squares are near one and not necessarily one. In other words the variables will assume values jx′  
and js′  such that  

( ) ( )2 2
1,j jx s′ ′+ <                                  (16) 

( ) ( )2 2
1.j jx s′ ′+ ≈                                  (17) 

4.8. Mixed BLP Models 
In some BLP problems that occur in real life, a fraction of some of the variables may not be restricted to integer 
values. In this case the enforcer TXX  is composed of only those variables that are supposed be binary and in-
teger. 

4.9. Interior Point Algorithm for Convex QP 
Any maximization BLP problem can be converted into a minimization BLP and vice versa. This can be done by 
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the substitution given in (18). 
1 .j jx x= −                                       (18) 

where jx  is also a binary variable. 
Suppose the primal-dual pair of the convex QP is given by (19) and (20). 
Primal: 
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where Y  is free, 0µ ≥  and µ  is a diagonal matrix. 
The first order optimality conditions for (19) and (20) are given by (21) 
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where e is a vector of ones. The primal-dual central path method can be used to solve the convex QP. Detailed 
information on this interior point algorithm and other variants can be obtained in Gondzio [8]. 

5. BLP and Convex QP Relationship 

1 1 2 2

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

Maximize

NP-Complete form

1, 1, 2, ,

integer

n n

n n

n

m m mn n m

j

j

c x c x c x
a x a x a x b
a x a x a x b

a x a x a x b
x j n

x

+ + +


+ + + ≤ 
+ + + ≤ 

+ + + ≤ 
≤ =


= 













 

( )

( )

2 2 2 2 2 3
1 1 2 2 1 2 1 2

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

1 2

Maximize ,

P form

1, 1, 2, ,

1000 and 0.

n n n n

n n

n

m m mn n m

j j

n j

c x c x c x x x x s s s

a x a x a x b
a x a x a x b

a x a x a x b
x s j n

c c c x

+ + + + + + + + + + +

+ + + ≤
+ + + ≤ 


+ + + ≤ 
+ = =


= + + + ≥ 

   











 

 

From the two versions of the same problem 
NP P=                                       (22) 
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6. Numerical Illustration  
The following numerical illustration shows how a BLP problem is transformed into convex quadratic program-
ming model and then solved. 

6.1. Pure Binary Linear Programming  

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Maximize 3 14 3 8 4 ,
Such that 10 12 4 6 13 20,

17 22 35 8 18 25,
10 8 23 11 6 18.

x x x x x
x x x x x
x x x x x

x x x x x

+ + + +

+ + + + ≤

− + + + ≤

− + + + − ≥

                     (23)  

where 1 2 3 4 5, , , , 0x x x x x ≥  are binary variables. 
Transforming into a convex quadratic programming problem becomes (24) 

( )2 2 2 2 1 2 2 2 2 2
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 1 2 2 3 3 4 4 5 5

Maximize 3 14 3 8 4 32000 ;

Such that 10 12 4 6 13 20,
17 22 35 8 18 25,

10 8 23 11 6 18,
1, 1, 1, 1,

x x x x x x x x x x s s s s s

x x x x x
x x x x x

x x x x x
x s x s x s x s x s

+ + + + + + + + + + + + + +

+ + + + ≤

− + + + ≤

− + + + − ≥

+ = + = + = + = + =1.

     (24) 

where 1 2 3 4 5, , , , 0s s s s s ≥  are also binary variables. 
The solution to the convex quadratic problem is given in (25). 

2 4 1 3 5 1x x s s s= = = = =  and 1 3 5 2 4 0.x x x s s= = = = =                   (25) 

6.2. Mixed Binary Linear Programming Problem 
In the case of a mixed binary linear programming problem, only the binary integer variables occupy the enforcer. 
In other words, if only the r binary variables 1 2, , , rx x x  are integer then use 

( ) ( ) ( )( )2 2 2 2 2 2
1 1 2 2 1 1 2 2Maximize n n r rc x c x c x x s x s x s+ + + + + + + + + +              (26) 

Suppose in 5.1, the variables 1x  and 2x  are not restricted to integer but both variables are less than 1. 
The transformation becomes as shown in (27). 

2 2 2 2 2 2
1 2 3 4 5 3 4 5 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

3 3 4 4 5 5 1 2

Maximize 3 14 3 8 4 32000( ),
Such that 10 12 4 6 13 20,

17 22 35 8 18 25,
10 8 23 11 6 18,

1, 1, 1, 1, 1.

x x x x x x x x s s s
x x x x x
x x x x x

x x x x x
x s x s x s x x

+ + + + + + + + + +

+ + + + ≤

− + + + ≤

− + + + − ≥

+ = + = + = ≤ ≤

           (27) 

The solution to the convex quadratic problem is: 

2 3 4 50.833, 1x x x s= = = =  and 1 5 3 4 0.x x s s= = = =                    (28) 

7. From Mixed Integer Problem to BLP 
The problems that occur in real life do not have binary variables only. These practical problems occur as general 
mixed integer problem (MIP) where variables assume integer values greater than 1. There are methods that can 
be used to solve these problems but we are not aware of any method that can solve these mixed integer problems 
in polynomial time up now. The obvious strategy is to expand the general mixed integer variable into binary ones.  

7.1. Converting MIP into BLP 
Any MIP variable ( )g

jx  can be expanded into binary variables as given in (29). 
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1 2
0 1 22 2 2 .g j j j k j

j kx x x x x= + + + +                             (29) 

where j
ix  is a binary variable for 0,1, 2, , .i k=   This procedure is explained in Owen and Mehrotra [9]. 

7.2. Numerical Illustration 
Convert the following MIP into a BLP. 

1 2 3 4

1 2 3 4

Maximize 6 10 14 5 ,
Such that 8 12 7 15 52.

x x x x
x x x x
+ + +

+ + + ≤
                         (30) 

where 1 2 3 4, , , 0x x x x ≥  are integers. 
The following substitutions change the problem into a BLP. 

1 1 1
1 0 1 2

2 2 2
2 0 1 2

3 3 3
3 0 1 2

4 4
4 0 1

2 4 ,

2 4 ,

2 4 ,

2 .

x x x x

x x x x

x x x x

x x x

= + +

= + +

= + +

= +

                                 (31) 

where j
ix  is a binary variable for 0,1, 2i =  and 1,2,3.4.j =  

8. Conclusion 
The general BLP problem has been given so much attention by researchers all over the world for over half a 
century without a breakthrough. A difficult category of BLP models includes the traveling salesman, generalized 
assignment, quadratic assignment and set covering problems. The paper presented a technique to solve BLP 
problems by first transforming them into convex QPs and then applying interior point algorithms to solve them 
in polynomial time. We also showed that the proposed technique worked for both pure and mixed BLPs and also 
for the general linear integer model where variables were expanded into BLPs. We hope the proposed approach 
will give more clues to researchers in the hunt for efficient solutions to the general difficult integer programming 
problem. 
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