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Abstract 
In the past ten years, community detection in complex networks has attracted more and more at-
tention of researchers. Communities often correspond to functional subunits in the complex sys-
tems. In complex network, a node community can be defined as a subgraph induced by a set of 
nodes, while a link community is a subgraph induced by a set of links. Although most researches 
pay more attention to identifying node communities in both unipartite and bipartite networks, 
some researchers have investigated the link community detection problem in unipartite networks. 
But current research pays little attention to the link community detection problem in bipartite 
networks. In this paper, we investigate the link community detection problem in bipartite net-
works, and formulate it into an integer programming model. We proposed a genetic algorithm for 
partition the bipartite network into overlapping link communities. Simulations are done on both 
artificial networks and real-world networks. The results show that the bipartite network can be 
efficiently partitioned into overlapping link communities by the genetic algorithm. 
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1. Introduction 
Many interesting systems can be represented as networks [1]-[4]. The networks are composed of nodes and links, 
each node represents a unit and each link represents a relation between two nodes. Since some nodes or links 
may have the same function in complex system. One of the most important topics in the area of networks is the 
community detection, which is a universal problem in many disciplines such as sociology, computer science and 
biology [5]-[7]. 
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The communities are dense subgraphs induced by a set of nodes or links. If the community is induced by a set 
of nodes, we call it node community. If a community is induced by a set of links, we call it link community. 
When we partition a network into node communities, each node must belong to one or more community, some 
links might belong to no community. When a network is partition into link communities, each link must belong 
to one community, and each node might belong to one or more communities. By partition the network into link 
communities, we can find overlapping node or link. 

Although most research paid more attention to node community detection, some researchers have investigated 
link communities and cliques [8]-[12]. In some real-world networks, a link is more likely to have a unique iden-
tity while a node often has multiple functions, so the link communities might be more intuitive and informative 
than the node communities [13] [14]. 

Given a unipartite network with M links and N nodes, let { }1, , KP P P=   be a partition of the links into K  
subsets. c cm P=  be the number of links in subset cP , { },

ij cc e P
n i j

∈
=


 be the number of nodes in sub-

graph  
induced by cP . Ahn [8] defined the partition density D as follows 

( )
( )( )

12 .
2 1

c c
c

c c c

m n
D m

M n n
− −

=
− −∑  

In [12], the authors proposed another partition density H as follows: 

( )
22

1
c

c c c

m
H

M n n
=

−∑  

Obviously, 0 1H≤ ≤ . 
Given the number of communities, we can partition the unipartite network into link communities by maxim-

ize D or H. 
Besides unipartite networks, there is another special category of network, where nodes are partitioned into 

two disjoint subsets, there is no link within the same subset. This type of network is called bipartite network. 
Some real-world relations are more suitable to be represented as bipartite networks [15], such as plant-animal 
network, scientific publication network, artistic collaboration network, order-item network, paper-author net-
works, event-attendee networks and so on. 

Some research has paid attention to the node community detection problem of bipartite networks [15] [16]. In 
[15], the authors proposed a projection-based algorithm for node communities detection in bipartite network. In 
[17], the authors develop a modified adaptive genetic algorithm (MAGA) to detect the node communities in bi-
partite network. In [18], the authors propose another bipartite modularity detection method which can detect 
node overlap community. In [19], the authors proposed a hierarchical divisive heuristic for approximate mod-
ularity maximization in bipartite graphs. In [20], the authors proposed an algorithm Bitector to mine overlapping 
communities in large scale sparse bipartite networks. In [21], the authors proposed an approach for detecting 
overlap node communities in a bipartite network based on dual optimization of modularity. In [22] [23], the au-
thors proposed weighted binary matrix factorization framework to detect overlapping communities in bipartite 
networks. Although the algorithms above can find node communities in bipartite network, current research ac-
tivity has paid no attention to the link community detection problem in bipartite networks. 

In this paper, we will investigate link communities in bipartite network, define the partition density of link 
communities in bipartite network, and formulate the link community partition problem of bipartite network into 
an integer programming model. Then we design a genetic algorithm for detecting link communities in bipartite 
network and conduct validations on some artificial and real-world bipartite networks. By the model and algo-
rithm, the communities including two sets of nodes in bipartite network can be identified simultaneously. 

2. Methods 
2.1. Link Community Partition Density of Bipartite Networks 
Given a bipartite network ( ), ,G U V L=  with M L=  links and two node sets U and V, where U V = ∅ , 

{ }1, , KP P P=   is a partition of the links into K subsets. The number of links in subset cP  is c cm P= . The 

induced node set from link subset cP  is { },
ij sl P

i j
∈

 (where ijl  represents the link connecting node iu  and 
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jv ), the number of induced nodes in node set U is { }( ),
ij sc l P

s i j U
∈

= 


, the number of induced nodes in 

node set V is { }( ),
ij sc l P

t i j V
∈

= 


. The link density cH  of community c in bipartite network is defined as 

follows: 

( ).c c c cH m s t=  

The partition density H is the average of cH : 
21 1 .c

c c
c c c c

m
H m H

M M s t
= ⋅ =∑ ∑  

We can see that the maximum of H is 1 and the minimum value of H is 0. 1H =  when each community is a 
complete bipartite network and 0H =  when each community is an empty bipartite graph. Given the number of 
communities, we can find the optimal link community partition of bipartite network by maximizing the value of 
H. 

2.2. Integer Programming Model for Link Community Detection of Bipartite Network 
Given a bipartite network ( ), ,G U V L=  with M links and p q U V+ =   nodes (where ,p U q V= = ), we 
assume that the number of link communities is K and find the optimal link community partition by maximizing 
the partition density H. This problem can be formulated into an integer programming model. 

Let { }1 2, , , pU u u u=  , { }1 2, , , qV v v v=   be two disjoint nodes sets of bipartite network G. ( )i j p q
A a × ×
=  

is the adjacent matrix of the bipartite network, where 1ija =  when node iu  and jv  is connected by link 

ijl , while 0ija =  otherwise. 
We also define binary variables ijkx , iky  and jkz  to represent the membership of link ijl , node iu  and 

node jv  for link community k: 

1 if  community 
0 otherwise
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0 otherwise
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0 otherwise
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The link community detection problem of bipartite network can be formulated into the following integer pro-
gramming model—Model 1. 
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The objective function (1) is to maximize the link partition density H. Constraint (2) means that every link 
belongs to one community. If there is no link between node iu  and jv , then variables 0ijkx =  for any 
community k. Constraints (3) and (4) indicate that if link ijl  belong to community k, then its adjacent nodes 

iu  and jv  must belong to the same community k. Constraint (5) and (6) mean that if a node iu  (or jv ) 
belongs to community k, then there is at least one link adjacent to node iu  (or jv ) belonging to community k. 
Constraints (7) (8) (9) indicate that the variables are binary. 

Since there are a great many of variables in Model 1, it may have large memory overhead when solving the 
model directly. To decrease the number of variables used, Model 1 can be expressed by using relationship ma-
trix. 

Suppose that { }1 2, , , pU u u u=  , { }1 2, , , qV v v v=   are two disjoint nodes sets, and { }1 2, , , ML l l l=   is 
the link set of bipartite network. Define two incidence matrix RS  and RT  as follows: 
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0 otherwise
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Define the binary variables as follows: 

1 if  community 
0 otherwise
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Based on the incidence matrix and the above variables, the link community detection problem of bipartite 
network can be reformulated into the following integer nonlinear programming model, Model 2. 
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Where N is the number of nodes in the network, N p q= + . The objective function (10) is to maximize the link 
partition density. Constraint (11) means that every link belongs to one community. Constraint (12) (13) mean 
that, if there is some adjacent links of node iu  ( jv ) belonging to community k, then node iu  ( jv ) must 
belong to the same community k. Constraints (14) (15) mean that if node iu  ( jv ) belongs to community k, 
then at least one link adjacent to this node must belong to community k. Constraints (16) (17) (18) indicate that 
the variables are binary. 

In Model 1 and Model 2, since every link can belong to one and only one community, we might obtain the 
result that a pair of nodes belongs to two communities, but the link between this pair of nodes belongs to only 
one community. To reduce this drawback, we can revise Model 2 into the following model—Model 3. 

2

1

1

1 1 1 1

1max

M

mkK
m

K M p q
k

mk ik jk
k m i j

x
H

x y z

=

=

= = = =

 
 
 =

  
  

  

∑
∑

∑∑ ∑ ∑
                             (10') 

{ }

1

1

1

1

1

1 1,2, , (11 )

1,2, , ; 1, 2, , (12 )

1,2, , ; 1, 2, , (13 )

. . 1, 2, , , 1, 2, (14 )

1,2, , , 1, 2, (15 )

0,1 ; 1,2, ,

K

mk
k
M

im mk ik
m
M

jm mk jk
m

M

ik im mk
m
M

jk jm mk
m

mk

x m M

s x Ny i p k K

t x Nz j q k K

s t y s x i p k K

z t x j q k K

x m

=

=

=

=

=

′≥ =

′≤ = =

′≤ = =

′≤ = =

′≤ = =

∈ =

∑

∑

∑

∑

∑



 

 

 

 



{ }
{ }

; 1, 2, , (16 )
0,1 ; 1,2, , , 1, 2, , (17 )
0,1 ; 1,2, , , 1, 2, , (18 )

ik

jk

M k K
y i p k K
z j q k K















 ′=


′∈ = =
 ′∈ = =



 

 

 

In model 3, the constraint (11') means that every link must belong to at least one community. 
Using model 3, we can partition the network in Figure 1 into two communities, and link (3, 10) belongs to 

two communities. Each community is a complete bipartite subnetwork, and the optimal objective function value 
is 1. 
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Figure 1. The bipartite network consists of two overlapping communities, each community is a complete bipartite network, 
they are overlapped by nodes 3,10 and link (3,10). This bipartite network can be partitioned into two communities by model 
3, and the objective function value is 1.                                                                         

2.3. Genetic Algorithm for Link Community Detection of Bipartite Network 
Although we can solve Model 2 or Model 3 to partition a bipartite network into link communities for small size 
of bipartite network. It is difficult to solve the integer programming model for large bipartite networks which 
might be a NP-hard problem. In addition, most of the algorithms for community detection need some priori 
knowledge about the community structure like the number of communities which is impossible to know in 
real-life networks. In [12], the authors propose a link community detection algorithm based on the ideas of ge-
netic algorithm and self-organize map (SOM) algorithm, which aims to find the best link community structure 
by maximizing the network partition density. The algorithm does not need any priori knowledge about the 
number of communities, which makes the algorithm useful in real-life networks. The algorithm outputs the final 
link community structure and its corresponding overlapping nodes as the result and does not impose further 
processing on the output. In the following, we will design another genetic algorithm for link community detec-
tion of bipartite network. 

First of all, we need to design a chromosome representation suitable for the link community detection prob-
lem. In our implementation, the chromosome is represented by a matrix ( ),m cB b= , where 1,2, ,m M=  , and 

1, 2, ,c K=  . Each element ,m cb  is the strength with which a link ml  belongs to a community c. Note that 
,m cb  ranges in the interval [0.0, 1.0]. Each link of the bipartite network is subject to the following constraint: 

,
1

1.
K

m c
c

b
=

=∑                                    (19) 

Equation (19) represents normalization to 1.0 of link factors of belonging to the communities. 
For each chromosome, we design a partition matrix ( ),m cD d= , where 1,2, ,m M=  , and 1,2, ,c K=  . 

Each element ,m cd  is either 0 or 1. Where , 1m cd =  if the link ml  is assigned to community c, otherwise, 
link ml  is not assigned to community c. Matrix D can be calculated from matrix B according to the following 
equation: 

, ,1
,

1 if  max .

0 otherwise
m c m ss K

m c

b b
d ≤ ≤

== 


                          (20) 

The bipartite network is represented by two incidence matrixes RS  and RT , two weighted incidence ma-
trixes ZS  and ZT , link adjacent matrix A and weighted link adjacent matrix Q. 
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where 
iud  and 

jvd  represent the nodes’ degree of nodes iu  and jv , which is the number of links incident 
to nodes iu  and jv  respectively. 

The link adjacent matrix A and the weighted link adjacent matrix Q can be calculated by the following equa-
tions: 

( ) ( ) ( ) ( )T TA RS RS RT RT= +  

( ) ( ) ( ) ( )T TQ ZS ZS ZT ZT= +  

The weighted link adjacent matrix Q means the probability for a random walker go from one link to one of its 
adjacent links across their common node. And this can be regarded as the possibility of two adjacent links be-
longing to the same community. 

2.3.1. The Genetic Algorithm Main Functions 
• Input 

Input the number of nodes p for node set U  and q for node set V  respectively, and the number of links 
M of the link set E  in bipartite network, the maximum number of communities K, parameters , ,α β θ , where  

( ) ( )0,1 , 0,1α β∈ ∈ . 
Input the incident matrixes RS, RT. Calculate the weighted incident matrixes ZS and ZT, the link adjacent ma-

trix A, and the weighted link adjacent matrix Q. Given the number of individuals N, the maximum epochs 
maxepoch , mutation probability mutationprob . 

• Output 
Output the link partition matrix *D  and its fitness value *H , two nodes set partition matrixes 1F , 2F . 

Partition the network into communities according to 1F , 2F . 
• Initialization: t = 0.  
Randomly generate initial population ( ) ( ) ( )1 2, , , NB t B t B t , and give random initial values of *D  and its 

fitness *H . 
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• Step 1. Population Fitness 
For every individual ( ) ( ) ( )1 2, , , NB t B t B t , calculate the partition matrix ( ) ( ) ( )1 2, , , ND t D t D t , and 

their fitness value (partition link density value) ( ) ( ) ( )1 2, , , NH t H t H t . 
• Step 2. Population Sorting 
Sort ( ) ( ) ( )1 2, , , NB t B t B t  according to their fitness values in decreasing order. Suppose the sorted chro-

mosomes are ( ) ( ) ( )1 2, , , NB t B t B t , where ( ) ( ) ( )1 2 NH t H t H t≥ ≥ ≥ . 

If ( ) *
1H t H> , then, ( )*

1D D t= , ( )*
1H H t= . 

If maxt epoch= , stop, output *D  and *H , and calculate the two corresponding node sets partition matrix 
1F , 2F . Otherwise, go to Step 3. 
• Step 3. Population Crossover 

For 1, ,
2
Ni  =   

 , let ( )iB t  and ( )
2
N i

B t +  

 cross over to produce two temporary individuals ( matrixes) 

( )iW t  and ( )
2
N i

W t +  

. If N is an odd number, let ( ) ( )N NW t B t= . 

• Step 4. Population Mutation 
Random select mutationprob N  temporary individuals (temporary matrices), do mutation operation on each 

temporary individual. 
• Step 5. Population Self Organize Mapping 
For each temporary individual, do self organize mapping operation on it. 
• Step 6. Population Normalization 
For each temporary individual, do normalization on it. Denote the normalized individuals by 
( ) ( ) ( )1 21 , 1 , , 1NB t B t B t+ + + . Let 1t t= + , go to step 1. 

2.3.2. Partition Matrix and Fitness Evaluation 
For every individual iB , calculate the partition matrix iD  according to the Formula (20). 

For each community s, 1 s K≤ ≤ , let ( ):,iD s  be the s-th column of matrix iD . 
Then ( ) ( )1 :,i iE s RS D s= ⋅  is a column vector whose element is a non-negative integer. A non-zero element 

in ( )1iE s  represents that the corresponding node of the node set U  belongs to community s. 
( ) ( )2 :,i iE s RT D s= ⋅  is a column vector whose element is a non-negative integer. A non-zero element in 
( )2iE s  represents that the corresponding node of the node set V  belongs to community s. 

Let ( )1iF s  and ( )2iF s  be 0-1 vectors, ( )1 , 1if j s =  (or ( )2 , 1if j s = ) whenever ( )1 , 1ie j s ≥  (or 

( )2 , 1ie j s ≥ ). ( )1 , 1if j s =  (or ( )2 , 1if j s = ) means that node ju  (or jv ) belongs to community s. The fit-
ness value of individual iB  is defined by the link partition density of matrix iD , which can be calculated by 
the following equation: 

( )

( )

( ) ( )

2

1

1
1 2

1 1 1 1

,
1

, , ,

M

iK j
i K M p q

s
i i i

s j j j

D j s
H

D j s F j s F j s

=

=

= = = =

 
 
 =

  
  
  

∑
∑

∑∑ ∑ ∑
 

2.3.3. Population Sorting 
Sort ( ) ( ) ( )1 2, , , NB t B t B t  according to their fitness values in decreasing order. Suppose the sorted chromo-
somes are ( ) ( ) ( )1 2, , , NB t B t B t , where ( ) ( ) ( )1 2 NH t H t H t≥ ≥ ≥ . 

If ( ) *
1H t H> , then, ( )*

1D D t= , ( )*
1H H t= . 

2.3.4. Population Crossover 

For 1,2, ,
2
Ni  =   

 , do crossover operation on ( )iB t  and ( )
2
N i

B t +  

 by the following rules: Randomly se-
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lect a column s, revise the s-th column of ( )
2
N i

B t +  

 by the s-th column of ( )iB t , and obtain two new temporal 

individuals ( )iW t  and ( )
2
N i

W t +  

, where ( ) ( )i iW t B t= . 

In this paper, we revised the s-th column of ( )
2
N i

B t +  

 by adding a fraction of the s-th column of ( )iD t   

(where ( )iD t  is the partition matrix corresponding to ( )iB t ), that is, 

( )( )
( ) ( )

( )
2

2
2

:, 0.1 :, if  .

:,
:, if  .

iN i

N i
N i

B s D s c s

W t c
B c c s

 +  
 +     +  

+ ⋅ =


= 
≠



 

2.3.5. Population Mutation 
According to the mutation probability mutationprob , randomly select mutationprob N⋅  temporal individuals, do 
mutation operation on each selected individual. 

For each selected temporal individual ( )iW t , randomly select two parameters 1 2,j j , 1 21 ,j j M≤ ≤ . There 
are three mutation rules can be used in this genetic algorithm, i.e. exchange the j1-th row and the j2-th row in 

( )iW t , or replace the j1-th row by the j2-th row in ( )iW t , or replace the elements of the j1-th row with a ran-
domly selected number in [0.0,1.0]. Three rules lead to no significant difference in this genetic algorithm. In the 
following simulation, we replace the j1-th row with the j2-th row in ( )iW t . The other elements in ( )iW t  remain 
unchanged. 

2.3.6. Population Self Organizing Map 
For every link, find the community it belongs to and calculate its community ID variance. If the community ID 
variance of a link is larger than a threshold, then increase the weights of this link to its community and the 
weights of its neighbor links to the same community. If the community ID variance of a link is smaller than the 
threshold value, then decrease the weights of the link to its community and the weights of its neighbor links to 
the same community. This process can improve the quality of the partition by eliminating wrongly placed links. 

For 1, ,i N=  , do Self Organizing Map (SOM) operations on individual (chromosome) iW  as follows: 
• According to temporal matrix iW , calculate its partition matrix iD′ ; 
• For 1, ,j M=  , do the following operation on link jl . 
• Find the community ID that link jl  belongs to. The community ID corresponds to the maximum element in 

the j-th row of iD′  (the maximum element must be 1). Suppose the maximum element in the j-th row of iD′  
is in the s-th column, which is ( ),iD j s′ . This means that link jl  belongs to community sP . 

• Calculate the total number ( )jTN l  of adjacent links of jl  (including link jl ), and the number of its adja-

cent links in ( )jTN l  belonging to community sP  (denoted by ( )jIN l ). ( )jTN l  is equal to the sum of ele-

ments in the j-th row of matrix A, which can be expressed by ( ) ( ),:jTN l A j I= ⋅ , where ( )T1,1, ,1I =  , and 

( )jTN l  can be calculated by the equation ( ) ( ) ( ),: :,j iIN l A j D s′= ⋅ . 

• Calculate the community ID variance ( )jCV l  of link jl  by the following equation. 

( ) ( )
( )

j
j

j

IN l
CV l

TN l
=  

• If ( )jCV l θ≥ , then 

( ) ( ) ( ) ( )( ):, :, :, :,i iW s W s Q j I A jα β= + ⋅ − − ⋅  

Else, 
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( ) ( ) ( ):, :, :,i iW s W s Q j β= − ⋅  

where α and β are adjustable parameters which can decrease with the step t. In this paper, we let  

( ) ( )
max max

0.1 , 0.05t t
epoch epoch

α α α β β β= − − = − −  

In the above equation, if an element is negative, then we set it to be 0.01 

2.3.7. Normalization 
For 1,2,i N=  , do normalization on each row of temporal matrix iW  so that the sum of row elements in 
temporal matrix is 1. Let the normalized matrix be 1iB + . 

3. Numerical Experiments 
In this section, we apply the genetic algorithm to both artificial bipartite networks and several well studied 
real-world bipartite networks, and analyze the results in terms of classification accuracy and ability of detecting 
meaningful communities. The algorithm is implemented by Matlab version 7.1. 

3.1. Chain of Complete Bipartite Network 
We test our algorithm on a type of exemplar networks, that is, chains of complete bipartite network. This net-
work consists of many heterogeneous complete bipartite networks, connected through single nodes (Figure 2). 
Each complete bipartite network ( ), ,i i i iC U V L=  ( )1,2, ,i K= 

 is a bipartite network, where there is a link 
between any pair of nodes ( ), , ,i iu v u U v V∈ ∈ . Assume that iC  has i is t+  nodes and i i iL s t= ∗  links, then 

the network has a total of ( )1 1K
i iiN s t K

=
= + − +∑  nodes and 1

K
iiM L

=
= ∑  links. The network has a clear link 

bipartite modular structure where each community corresponds to a single bipartite complete network, thus the 
optimal partition density is 1. Using the genetic algorithm above, we can easily detect the optimal partition and 
identify the overlapping nodes. In this paper, we use a network consists of two (3,4)- complete bipartite net-
works, one (4,5)- complete bipartite network, one (4,6)- complete bipartite network, and one (5,5) complete bi-
partite network, the optimal partition results are obtained and described in Figure 2. 

3.2. Real-World Networks 
In this subsection, we validate our algorithm on some real-world networks. 

The Southern Women Network During the 1930s, ethnographers Davis, Stubbs Davis, St. Clair Drake, 
Gardner, and Gardner collected data on social stratification in the town of Natchez, Mississippi. One of their 
work is collecting data on women's attendance to social events in the town [24]. They constructed the famous 
women-event bipartite network and analyze it. Since then the women-event bipartite network has become a de 
facto standard for discussing bipartite networks in the social science [12] [15] [20] [21] [24]-[27]. 
 

 
Figure 2. The chain of heterogeneous complete bipartite network. Each community is a complete bipartite 
network, and two adjacent communities are overlapped by one node.                                      
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Guimerà [15] has analyze the modules of both women and events by three methods: unweighted projection, 
weighted projection, and bipartite approach. The first method did not capture the true modular structure of the 
network. The second and third methods capture the two-module structure except one woman being partitioned 
wrong. 

We applied the proposed method to the women-event network, using the parameters K = 2, N = 200, 0.2p = , 
0.3θ = , 0.7α = , 0.2β = , 800T = . The result is illustrated in Figure 3. In this result, 18 women and 14 

events are partitioned into two communities, where 4 events are overlapped. The average link density is 0.5610. 
In the women-event bipartite network, four event nodes B6, B7, B8, B9 colored by yellow are overlapped and 
belong to two communities. Comparing with the results obtained by Guimerà [15], the overlapped communities 
obtained by our method are more reasonable. When we partition the women-event network into four link com-
munities using the parameters 4K = , 200N = , 0.2p = , 0.3θ = , 0.7α = , 0.2β = , 800T = , we can 
obtain the maximum average link density 0.683, The result is illustrated in Figure 4. Six yellow nodes are over-
lapped, where 5 11,B B  belong to two communities, 6 7 8,B B B  belong to three communities and 9B  belong to 
four communities. 

3.3. The Scotland Corporate Interlock Network 
The Scotland corporate interlock network describe the corporate interlocks in Scotland in the beginning of the 
twentieth century (1904-1905). The network consists of 244 nodes and 356 edges. The 244 nodes are divided 
into two parts, where 136 nodes indicate the board members who held multiple directorships, and 108 nodes in-
dicate the firms). The edges exist between each firm and its board members. The largest component of the Scot-
land corporate interlock network contains 131 directors and 86 firms, forming many communities. 

We applied the proposed method to the largest component of Scotland corporate interlock network, using the 
parameters 20K = , 400N = , 0.2p = , 0.3θ = , 0.8α = , 0.2β = , 2000T = . In the experiment, we di-
vides the network into 20 communities, and the link community density is 0.24777. With the number of com-
munities K increasing, the link community density obtained by our algorithm increase. When we use the para- 
 

 
Figure 3. Result of the women-event networks partition into two link communities, where four yellow nodes 
B6; B7; B8; B9 belong to two communities.                                                        



Z. P. Li et al. 
 

 
432 

 
Figure 4. Result of the women-event networks partition into 4 link communities. Six yellow nodes are over-
lapped, where B5; B11 belong to two communities, B6; B7; B8 belong to three communities and B9 belong to 
four communities.                                                                           

 
meters 36K = , 100N = , 0.2p = , 0.3θ = , 0.8α = , 0.2β = , 2000T = . We can obtained the maximum 
link community density 0.3553. If we increasing parameter K from 36 to 40, we can also partitioned the network 
into 36 link communities, the maximum link community density is also 0.3553. Since the real number of com-
munities is 36 [25], Our results mean that we can find the optimal community solution by our algorithm. 

4. Conclusion and Discussion 
Bipartite network community structure is one of the main characteristics of bipartite networks and very helpful 
for understanding the functions of these networks. In this paper, we investigate the link community detection 
problem of bipartite network and propose a quantity function for link community detection of bipartite network. 
We formulate the link community identification problem of bipartite network into an integer programming 
model by maximizing the quantity function. Furthermore, we design a genetic algorithm for solving the link 
community detection problem and conduct validation experiments on some simulated and real-world networks. 
The extensive computational results demonstrate that our model and algorithm can detect overlapping commun-
ities. Using our model and algorithm, we can not only find the node overlapping communities but also the link 
overlapping communities in bipartite networks. Although we only investigate the unweighted bipartite networks, 
the model and algorithm can also be extended to deal with weighted bipartite networks. 
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