
American Journal of Operations Research, 2015, 5, 47-68 
Published Online March 2015 in SciRes. http://www.scirp.org/journal/ajor 
http://dx.doi.org/10.4236/ajor.2015.52005 

How to cite this paper: Wang, H.Y. and Zhou, H. (2015) Computational Studies on Detecting a Diffusing Target in a Square 
Region by a Stationary or Moving Searcher. American Journal of Operations Research, 5, 47-68.  
http://dx.doi.org/10.4236/ajor.2015.52005  

 
 

Computational Studies on Detecting a 
Diffusing Target in a Square Region  
by a Stationary or Moving Searcher 
Hongyun Wang1, Hong Zhou2 
1Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California, 
Santa Cruz, USA 
2Department of Applied Mathematics, Naval Postgraduate School, Monterey, USA 
Email: hongwang@soe.ucsc.edu, hzhou@nps.edu 
 
Received 6 February 2015; accepted 24 February 2015; published 28 February 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In this paper, we compute the non-detection probability of a randomly moving target by a statio-
nary or moving searcher in a square search region. We find that when the searcher is stationary, 
the decay rate of the non-detection probability achieves the maximum value when the searcher is 
fixed at the center of the square search region; when both the searcher and the target diffuse with 
significant diffusion coefficients, the decay rate of the non-detection probability only depends on 
the sum of the diffusion coefficients of the target and searcher. When the searcher moves along 
prescribed deterministic tracks, our study shows that the fastest decay of the non-detection pro- 
bability is achieved when the searcher scans horizontally and vertically. 
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1. Introduction 
Search problems arise commonly in many diverse areas [1]. For instance, we look for a missing key or person, 
the police officers search for fugitives, and prospectors explore for mineral deposits. Systematic research on 
search problems is now commonly known as search theory, which traces its root to the need of detecting sur-
faced U-boats either visually from aircraft or with radar during World War II [2]-[7]. 

In search theory, the object sought is called the target. The problems can be loosely divided into three catego-
ries: a stationary target encountering a moving searcher, a moving target encountering a stationary searcher, and 
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a moving target encountering a moving searcher. Much of the literature prior to the 1970s focuses on stationary 
targets. A comprehensive survey on research literature on moving targets has been provided by Benkoski et al. 
[8]. 

In [9], Eagle considered the problem of a stationary searcher looking for a single moving target. He obtained 
an analytical expression for the non-detection probability of a randomly moving target encountering a stationary 
sensor when the search region was a disk and the cookie-cutter detector was fixed at the center of the search re-
gion. Mangel [10] [11] looked at the problem where a target was assumed to move in the plane and the searcher 
in space. Optimal search path problems have been addressed by Washburn [12] [13], Eagle and his co-workers 
[14]-[17]. The conflict between simplicity and optimality in searching for a 2-D stationary target was dealt with 
by Washburn [18]. A sequential approach to detect static targets with imperfect sensors such as tower-mounted 
cameras and satellites was presented by Wilson et al. [19]. Majumdar and Bray derived the survival probability 
of a tracer particle moving along a straight line in the presence of diffusing traps in the plane [20]. Fernando and 
Sritharan calculated the non-detection probability of infinitely many diffusing Brownian targets by a moving 
searcher which travels along a deterministic path with constant speed in the two-dimensional plane [21]. In this 
paper, we compute the non-detection probability of a diffusing Brownian target in the presence of a stationary or 
moving searcher in a square region. We study the effect of sweeping paths by considering five scenarios: the 
search may 1) diffuse randomly, 2) move along a circular or square loop, 3) move along a spiral, 4) move along 
a square spiral, and 5) scan horizontally and vertically. 

2. Problem Setup 
Consider a square region with half width AR , centered at the origin in the two-dimensional space. Mathemati-
cally, the square can be described as [ ] [ ], ,A A A AR R R R− × − . In our search problem, this square is the search re-
gion in which the target undergoes Brownian diffusion. 

Suppose the searcher is capable of detecting a target instantly when the target gets within distance R to the 
location of the searcher and there is no possiblity of detection when the target range is greater than R. That is, 
the searcher covers a disk of radius R centered at the location of the searcher. The expression “cookie-cutter de-
tection rule” is often used to describe this type of sensor modeling. One major criticisim of the cookie-cutter rule 
is based on the argument that fluctuations in the performance of detection equipment and human operators make 
it extremely rare to have a critical detection range R. Despite the limitations, the cookie-cutter model offers the 
simplest and most practical method to model sensors including radar, eyeball, infra-red, and low level TV. We 
illustrate the search problem in Figure 1. 
 

 
Figure 1. A schematic illustration of a diffusing target in a square search region 
of half width AR  in the presence of a searcher. The searcher may be fixed, may 
undergo Brownian diffusion, or may be moving with velocity sv  along a pre-
scribed path. The target is detected once it comes within distance R to the loca-
tion of the searcher. 
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We carry out Monte Carlo simulations to study the time evolution of the non-detection probability, respec-
tively, when the searcher is fixed at various locations, when the searcher undergoes Brownian diffusion with 
various values of diffusion coefficient, and when the searcher is moving along various prescribed deterministic 
paths. 

Let tD  denote the diffusion coefficient of the target, and sD  the diffusion coefficient of the searcher. In 
our simulations, we choose the parameters as follows: 

75
2

100

A

s t

R
R
D D

=
=
+ =

                                     (1) 

and consider five problems below. 

3. Problem 1: Diffusing Target and Diffusing Searcher 
We look at the situation where the target and the searcher are diffusing with various diffusion coefficients. The 
case of a stationary searcher is the special case with 0sD = . 

In our numerical discretization, 
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In Monte Carlo simulations, we advance the target and the searcher in time according to 
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where 1W , 2W , 3W , and 4W  are independent samples of standard normal distribution (mean 0, variance 1). 
To enforce the reflection condition at the boundary of the square search region, we calculate the new positions 
of target and searcher as 
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where function ( )Reflection x  is defined as 

( ) ( )Reflection 1 2 mod 1, 4 .x x≡ − − +  

It is straightforward to verify that 

( )
( )
( )

Reflection , 1 1

Reflection 2 , 1 3

Reflection 2 , 3 1.

x x x

x x x

x x x

= − ≤ ≤

= − < <

= − − − < < −

                            (4) 

The target is labeled as “detected” at jt  if the distance between the target and the searcher is less than the 
detection range R: 

( ) ( )( ) ( ) ( )( )2 2
.t s t sx j x j y j y j R− + − <                           (5) 
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Once the target is detected, that particular Monte Carlo run is terminated and another independent Monte 
Carlo run is started. To speed up the simulation, multiple Monte Carlo runs are carried out in parallel. 

Let ( )0 0,x y  be the initial location of the searcher. In Monte Carlo simulations, the initial location of the 
target is selected randomly and uniformly from the part of the square search region that is outside the disk of ra-
dius R centered at ( )0 0,x y  (i.e., outside the the searcher’s detection area at 0t = ). 

For each set of parameter values, we repeat the Monte Carlo run 100000N =  times. The non-detection pro- 
bability is calculated by averaging over 100,000 repeats. 

In Problem 1, we select the time step 1t∆  such that 

( ) 1
12 .
8s tD D t R+ ∆ =                                  (6) 

That is, the root-mean-square of the displacement between the target and the searcher in time period 1t∆  is 
no more than one eighth of the detection radius of the searcher. 

We first examine the accuracy of our Monte Carlo simulations in the case of 

( ) ( )0 0, 0,0 , 100, 0.t sx y D D= = =  

Figure 2 compares the non-detection probabilities obtained with two different time steps: 1t t∆ = ∆  as given 
in (6) and 1 4t t∆ = ∆ . Figure 2 demonstrates that the time step 1t∆  is small enough. In Problem 1, we use 

1t∆  as the time step unless specified otherwise. 
Figure 3 compares the non-detection probabilities obtained in 7 independent Monte Carlo simulations, each 

simulation consisting of 100000N =  repeats. The parameter set is the same as in Figure 2. From Figure 3, we 
can see that the number of repeats, 100000N = , is large enough. 

Next, we explore several cases that satisfy 100s tD D+ =  ranging from 0sD =  to 100=sD . When 0sD = , 
the searcher is fixed; when 100sD = , we have Dt = 0 and the target is fixed. The initial location of the searcher 
is ( ) ( )0 0, 0,0x y = . 

Figure 4 plots the non-detection probability for various values of sD  and 100t sD D= − . The fastest decay 
of the non-detection probability occurs when 0sD =  (i.e., when the searcher is fixed at ( )0,0 ). The decay of  
 

 
Figure 2. Comparison of numerical results obtained, respectively, with time step 1t t∆ = ∆  
and refined time step 1 4t t∆ = ∆ . 
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Figure 3. Comparison of results from 7 independent Monte Carlo simulations. Each simu- 
lation consists of 100000N =  repeats. 

 

 
Figure 4. Non-detection probability for various values of sD  and 100t sD D= − . 

 
the non-detection probability is slowed down when the searcher diffuses with 0sD > . This observation indi-
cates that the best location for the searcher is at the center ( )0,0 ; diffusion with 0sD >  randomizes the 
searcher location and decreases the decay rate of the non-detection probability. Notice that in Figure 4 when 

0sD > , the decay rate of the non-detection probability is no longer sensitive to changes in sD  as along as 
s tD D+  is fixed. In other words, when both the searcher and target are diffusing, the decay rate of the non-  
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detection probability is affected only by the relative diffusion ( )s tD D+  between the searcher and the target. 
Finally, in Figure 4, the slowest decay of the non-detection probability occurs when 0tD = . Recall that the ini-
tial location of the target is randomized and is most likely away from the center. 0tD =  fixes the target at its 
initial off-center location and makes it less likely for the diffusing searcher to encounter the target. In the case of 

0tD = , if we switch the roles of the target and the searcher, we see that when a searcher is fixed at an off-center 
location with no diffusion, the non-detection probability decays the slowest. Thus, for a given relative diffusion 
between the searcher and the target ( )s tD D+ , Figure 4 suggests the following observations: 

1) the decay rate of the non-detection probability is the largest when the searcher is fixed at the center; 
2) when both the searcher and the target are diffusing with significant diffusion coefficients, the decay rate of 

the non-detection probability is lower and is independent of sD  as long as s tD D+  is a fixed constant; 
3) when the searcher is fixed at a location significantly off center, the decay rate of the non-detection proba-

bility is even lower. 
To further test these observations, we compare the decay rates of the non-detection probability for 4 sets of 
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Based on the observations 1)-3) above, we expect that set 1 produces the fastest decay of the non-detection 
probability; sets 2 and 3 yield similar decay rates, lower than that of set 1; and set 4 gives the slowest decay rate 
of the non-detection probabilty. 

Figure 5 compares the results for these four parameter sets. The results in Figure 5 confirm what we pre-
dicted based on observations 1)-3). Hence, these results provide further support for observations 1)-3). Figure 5 
also indicates that when the searcher has significant diffusion, its inital location does not matter. 

Next we study the case of a fixed searcher ( )0sD = . We investigate how the searcher’s location affects the 
decay rate of the non-detection probability. Figure 6 shows that for a stationary searcher, the decay rate of the 
non-detection probability decreases as the distance between the searcher and the center is increased. 

In summary, for Problem 1, we conclude that a) when both the searcher and the target have significant diffu-
sion, the decay rate of non-detection probability is independent of the initial location and is independent of sD  
as long as s tD D+  is fixed; b) for a given value of s tD D+ , the fastest decay of non-detection probability oc-
curs when the searcher is fixed at the center ( )0,0 . 

Next, we study the case where the searcher moves with a constant velocity sv  along a prescribed determinis-
tic loop. 

4. Problem 2: Searcher Moving along a Loop 
We consider the situation where the target diffuses with diffusion coefficient 100tD =  and the searcher moves 
with velocity sv  along a loop (a circular or a square loop). We select velocity sv  as follows. 

Let 1τ  be the time scale of the target diffusing a root-mean-square distance of 2R along a given direction. 
Time scale 1τ  can be viewed as the time scale of the target probability distribution relaxing to erase the mark 
swept by the searcher. Time scale 1τ  is given by 

( )2
12 2 .tD Rτ =                                    (7) 

The distance traveled by the searcher with velocity sv  in time period 1τ  is 1sv τ . We consider the regime  
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Figure 5. Comparison of decay rates of non-detection probability for 4 sets of parameter 
values. 

 

 
Figure 6. The effect of the searcher location on the decay rate of non-detection probability 
when the searcher is fixed ( )0sD = . 

 
where the target velocity is neither too small nor too large. Specifically, we consider the case where the distance 
traveled by the searcher in time 1τ  is a small multiple of 2R: 

( )1 2 .sv Rτ α=                                     (8) 
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We pick 10α = . The corresponding velocity is found to be 

( )
( ) ( )2

2
500.

2 2
t

s
t

R D
v

RR D

α
α= = =                               (9) 

In all the simulations below, we use 500sv = . 
In Problem 2, for each set of parameter values, we repeat the Monte Carlo run 200000N =  times. We also 

use a smaller time step (see below). The increased time and ensemble resolution is made possible by the fact that 
when the searcher moves along a loop, the non-detection probability decays faster than in the optimal case of 
Problem 1 where the searcher is fixed at the center. With fast decay of the non-detection probability, detections 
occur early and consequently Monte Carlo runs on average end early in simulations. 

We select the time step 2t∆  such that 

2 2
12 .

12t sD t v t R∆ + ∆ ≤                                 (10) 

That is, the root-mean-square diffusion of the target toward the searcher in time 2t∆  plus the distance tra-
veled by the searcher in time 2t∆  does not exceed one twelfth of the detection radius of the searcher. 

We first examine the accuracy of our Monte Carlo simulations when the searcher moves along a circle of ra-
dius 60cr =  with velocity 500sv = , as illustrated in the left panel of Figure 7. 

Figure 8 compares the non-detection probabilities obtained with two time steps: 2t t∆ = ∆  given in (10) and 
2 4t t∆ = ∆ . Figure 8 tells us that the time step 2t∆  is small enough. In Problem 2, we use 2t∆  as the time 

step unless specified otherwise. 
Figure 9 compares the non-detection probabilities obtained from 7 independent Monte Carlo simulations, 

each consisting of 200000N =  repeats. Figure 9 demonstrates that 200000N =  is adequate for accurately 
capturing the decay of the non-detection probability. 

Figure 10 shows the effect of the circle radius cr  on the time evolutions of the non-detection probability. 
When the searcher moves along a small circle (small cr ), the non-detection probability decays moderately fast-
er than in the case of the searcher being fixed at the center ( )0cr = . When we expand the circle path from 

10cr =  to 20cr = , to 40, ,cr =   the decay rate of the non-detection probability increases. The optimal ra-
dius for the fastest decay of the non-detection probability is about ( )optimal 60cr = . When the circle path is ex-
panded beyond 60cr = , the decay rate of the non-detection probability is reduced slightly from the optimal 
value. When cr  is large and the circle path is close to the boundary of the square search region, it takes long 
time for a target initially near the center to diffuse the long distance to encounter the searcher. Likewise, when  
 

 
Figure 7. The searcher moves along a prescribed loop with velocity sv . (a) The prescribed 
loop is a circle of radius cr ; (b) The prescribed loop is a square of half width sr . (a) The 
searcher moves along a circle with velocity vs; (b) The searcher moves along a square with 
velocity vs. 
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Figure 8. Comparison of numerical results obtained, respectively, with time step 2t t∆ = ∆  
and refined time step 2 4t t∆ = ∆ , for the case of searcher moving along a circle of radius 

60cr =  with velocity 500sv = . Time step 2t∆  is described in the text. 
 

 
Figure 9. Comparison of results from 7 independent Monte Carlo simulations. Each simu- 
lation contains 200000N =  repeats. 
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Figure 10. Results for the case of the searcher moving along a circle of radius cr . Shown 
here are time evolutions of non-detection probability for various values of circle radius cr . 

 
cr  is small and the circle path covers just the area near the center, it takes long time for a target initially near the 

boundary to diffuse the long distance to encounter the searcher. Thus, the optimal circle path is the one that is 
the best compromise for taking care both the area around the center and the area near the boundary of the search 
region. Intuitively, one may conjecture that the optimal circle path is the one that divides the whole search re-
gion into 2 equal parts: 

area inside the optimal circle area outside the optimal circle.=  

The optimal circle radius based on the intuitive conjecture above is 

( ) ( )2
optimal 2 2

59.84.
π
A

c

R
r = =                                (11) 

The results of Monte Carlo simulations in Figure 10 strongly support this conjecture. 
Next we study the case of the searcher moving along a square path of half width sr  with velocity 500sv = , 

as illustrated in the right panel of Figure 7. 
Figure 11 shows the effect of half width sr  on the time evolutions of the non-detection probability. When 

the searcher moves along a small square path (small sr ), the non-detection probability decays moderately faster 
than in the case of the searcher being fixed at the center ( )0sr = . When we expand the square path from 

10sr =  to 20sr = , to 40, ,sr =   the decay rate of the non-detection probability increases. The optimal half 
width for fastest decay of the non-detection probability is about ( )optimal = 53sr . When the square path is expanded 
beyond 53sr = , the decay rate of the non-detection probability is reduced from the optimal value. When sr  is 
large and the square path is close to the boundary of the square search region, it takes long time for a target in-
itially near the center to diffuse the long distance to encounter the searcher. Likewise, when sr  is small and the 
square path covers only the area near the center, it takes long time for a target initially near the boundary to dif-
fuse the long distance to encounter the searcher. Intuitively, one may conjecture that the optimal square path is 
the one that divides the whole search region into two equal parts. Based on this intuitive conjecture, the optimal 
half width for the square path is given by 
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Figure 11. Results for the case of the searcher moving along a square of half width sr . 
Shown here are time evolutions of non-detection probability for various values of half width 

sr . 
 

( ) ( )2
optimal 2 2

53.03.
2
A

c

R
r = =                              (12) 

The results of Monte Carlo simulations in Figure 11 strongly support this conjecture. 
Before we end this section, we calculate and compare the decay rates of the non-detection probability for the 

three optimal cases we have considered so far. The decay rate of the non-detection probability, denoted by 
decayk , is calculated by fitting a straight line to data points of time vs log(non-detction probability). 
1) For the case of diffusing target and diffusing searcher with fixed total diffusion 100s tD D+ = , the optimal 

(the fastest) decay rate of the non-detection probability is achieved when the searcher is fixed at the center. The 
optimal decay rate is found to be 

( ) 2
decay searcher fixed at the center 0.895 10 .k −= ×  

2) For the case of the searcher moving along a circle of radius cr  with velocity 500sv = , the optimal (the 
fastest) decay rate of the non-detection probability is achieved when 60cr = . The optimal decay rate is 

( ) 2
decay sweeping circle of radius 60 9.21 10 .ck r −= = ×  

3) For the case of the searcher moving along a square of half width sr  with velocity 500sv = , the optimal 
(the fastest) decay rate of the non-detection probability is achieved when 53sr = . The optimal decay rate is 

( ) 2
decay sweeping square of half width 53 9.88 10 .sk r −= = ×  

Out of these 3 cases, square loop of half width 53sr =  yields the fastest decay of the non-detection probabil-
ity with decay rate 2

decay 9.88 10k −= × . 
In the next section, we study the case where the searcher moves along a spiral. 



H. Wang, H. Zhou 
 

 
58 

5. Problem 3: Searcher Moving along a Spiral 
We consider the situation where the target diffuses with diffusion coefficient 100tD =  and the searcher moves 
along a path consisting of rotated spiral loops, which we will describe in detail below. In all simulations of the 
searcher sweeping a prescribed path, we use velocity 500sv = . The selection of 500sv =  has been discussed 
in Problem 2. In Problem 3, we select numerical parameters as follows: each Monte Carlo simulation is repeated 

800000N =  times and the time step 3t∆  satisfies 

3 3
12 .

12t sD t v t R∆ + ∆ ≤                                (13) 

The increase in number of repeats from 200000N =  to 800000N =  is made possible by that the detection 
is faster in Problem 3, and as a result, the Monte Carlo simulations, on average, end earlier than in Problems 1 
and 2. 

A spiral path is a sequence of rotated spiral loops and is specified by the number of revolutions rvn  in each 
spiral. The construction of a spiral path with 3 8rvn =  is shown in Figure 12. Each spiral loop in the spiral  

 

 
Figure 12. A spiral path is a sequence of rotated spiral loops and is specified by the number of 
revolutions rvn  in each forward spiral. A spiral path is constructed in 4 steps. (a) A spiral of 

rvn  revolutions is used as the forward spiral in building the spiral loop; (b) The backward 
spiral is obtained by reflecting the forward spiral with respect to its ending angle. Together, the 
forward spiral and the backward spiral form the spiral loop; (c) The spiral loop is scaled to fit 
the square search region; (d) After finishing one spiral loop, we rotate the spiral loop by π 2  
to obtain a new spiral loop. The spiral path contains these sequentially rotated spiral loops. 
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path is formed by a forward spiral starting at the origin and a backward spiral back to the origin. We use the 
Archimedean spiral. The forward spiral of rvn  revolutions can be mathematically described as 

( ) ( )0 0Forward spiral : , 0 2π .rvr b nθ θ θ θ= ⋅ − ≤ − ≤  

We select the starting angle 0θ  such that the ending angle ( )0 2πrvnθ +  is at a diagonal, pointing to a cor-
ner of the square search region (Figure 12(a)). For 3 8rvn = , we select 0 0θ = ; for 1rvn = , we select 0 π 4θ = . 
The backward spiral is the mirror reflection image of the forward spiral with respect to the line of ending angle 
(Figure 12(b)). Mathematically the backward spiral is 

( ) ( )( ) ( ) ( )0 0Backward spiral : 2 2π , 2π 2 2π .rv rv rvr b n n nθ θ θ θ= ⋅ − − ≤ − ≤  

Recall that in our problem, the searcher moves along a path with a constant velocity. To use the spiral loop as 
the searcher’s sweeping path in simulations, we need to express ( ), rθ  as a function of arclength s. The ar-
clength along the forward spiral is given by 

( ) ( )0s b gθ θ θ= ⋅ −                                   (14) 

where function ( )g θ  is the arclength in the special case of 1b =  and 0 0θ = : 

( ) ( )( )2 21 1 log 1 .
2

g θ θ θ θ θ= + + + +                           (15) 

Let hs  be the arclength of the forward spiral (half the arclength of the spiral loop). Mathematically, it fol-
lows that 

( )( )2π .h rvs b g n= ⋅                                    (16) 

For the forward spiral, 0 hs s≤ ≤ . The polar coordinates ( ), rθ  of the forward spiral are expressed as func-
tions of arclength s using the inverse function of ( )g θ . 

( )

( )

1
0

1

, 0

, 0

h

h

ss g s s
b

sr s b g s s
b

θ θ −

−

 = + ≤ ≤ 
 

 = ⋅ ≤ ≤ 
 

                            (17) 

For the backward spiral, 2h hs s s≤ ≤ . The polar coordinates ( ), rθ  of the backward spiral are expressed as 
functions of arclength s as 

( ) ( )

( )

1
0

1

2
2 2π , 2

2
, 2 .

h
rv h h

h
h h

s s
s n g s s s

b
s s

r s b g s s s
b

θ θ −

−

− = + − ≤ ≤ 
 

− = ⋅ ≤ ≤ 
 

                     (18) 

In our numerical simulations, the inverse function ( )1g − ⋅  is evaluated by solving for θ in equation ( )g sθ =  
using Newton’s method. 

The Cartesian coordinates of the spiral loop as functions of arclength s are written out based on the polar 
coordinates: 

( ) ( ) ( )( )
( ) ( ) ( )( )

cos

sin .

x s r s s

y s r s s

θ

θ

=

=
                               (19) 

Next, we scale the spiral loop formed above to fit the square search region (Figure 12(c)). We scale the spiral 
loop by selecting the largest coefficient b that satisfies 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

0 2

0 2

0 2

0 2

max

min

max

min .

h

h

h

h

As s

As s

As s

As s

x s R R

x s R R

y s R R

y s R R

≤ ≤

≤ ≤

≤ ≤

≤ ≤

≤ −

≥ − −

≤ −

≥ − −

                                (20) 

When sweeping the spiral loop, the Cartesian coordinates of the searcher as functions of time t are given by 

( ) ( )( )
( ) ( )( )

cos

sin .
s s

s s

x r v t v t

y r v t v t

θ

θ

=

=
                                 (21) 

This is the formula we use to update the searcher location in simulations. 
After finishing sweeping one spiral loop, the searcher rotates the spiral loop by π 2  and starts sweeping 

along the rotated spiral loop (Figure 12(d)). This process is repeated until the target is detected. 
Figure 13 demonstrates four spiral loops, respectively, of 1 2rvn = , of 5 8rvn = , of 3 4rvn = , and of 

1rvn = . In each spiral loop, the forward spiral is shown in red and the backward spiral in blue. The correspond-
ing spiral sweeping path for the searcher contains a sequence of rotations of the spiral loop. 
 

 
Figure 13. Four spiral loops corresponding to 1 2rvn = , 5 8rvn = , 3 4rvn = , and 1rvn = . 
In each spiral loop, the forward spiral is shown in red; the backward spiral in blue. 
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Figure 14 depicts the time evolutions of the non-detection probability when the searcher sweeps various spir-
al paths. A spiral path is specified by rvn , the number of revolutions in the forward spiral. Figure 14 compares 
the results for 9 values of nrv, ranging from 1 8rvn =  to 20rvn = . The fastest decay of the non-detection proba-
bility occurs at ( )optimal 5 8rvn = . The decay rates are almost the same among 1 2rvn = , 5 8rvn = , and 3 4rvn = . 
The spiral loop of 5 8rvn =  is shown in Figure 13(b). The corresponding spiral sweeping path is a sequence of 
ratations of the spiral loop. The decay rate of the non-detection probability at 5 8rvn =  is 

( ) 2
decay sweeping spiral path of 5 8 12.21 10 .rvk n −= = ×  

We point out that the optimal decay rate given above for Problem 3 is faster (larger) than those of Problems 1 
and 2. 

6. Problem 4: Searcher Moving along a Square Spiral 
Now we consider the situation where the target diffuses with diffusion coefficient 100tD =  and the searcher 
moves along a path consisting of rotated square spiral loops, which we will describe in detail below. The 
searcher moves with velocity 500sv = , the same velocity as we used in Problems 2 and 3. 

In Problem 4, we use the same numerical parameters as in Problem 3: each Monte Carlo simulation is re-
peated 800000N =  times and the time step 4t∆  satisfies 

4 4
12 .

12t sD t v t R∆ + ∆ ≤                                 (22) 

A square spiral path is a sequence of rotated square spiral loops and is specified by the number of square lay-
ers sqn  in each forward square spiral. A square spiral loop is formed by a forward square spiral starting at the 
origin and a backward square spiral back to the origin. 

We first focus on square spirals with unit inter-layer distance. A forward square spiral of sqn  square layers is 
 

 
Figure 14. Results for the case of searcher moving along various spiral paths. A spiral path is 
a sequence of ratations of a spiral loop and is specified by rvn , the number of revolutions in 
each forward spiral. Shown here are time evolutions of non-detection probability for various 
values of rvn . 
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described as follows. We cycle through 4 directions: positive x, positive y, negative x, negative y. If we start at 
( )0,0  and sequentially go in each of 4 directions by a distance of 1, we obtain a unit square with its lower left 
corner at ( )0,0 . Mathematically, the construction of this unit square is concisely and conveniently denoted by 

{ }A unit square 1,1,1,1 .=  

With this simple notation, the forward square spiral of sqn  layers is described by 

( ) ( ){ }Forward square spiral of layers 1,1,2, 2,3,3, , 2 1 , 2 1 ,2 ,2 .sq sq sq sq sqn n n n n= − −  

In this unit forard square spiral, the inter-layer distance is 1. Next we scale the unit forward square spiral to fit 
it to the search region. Let d be the inter-layer distance after the scaling. We select the inter-layer distance d as 

1
4

A

sq

Rd
n

=
+

 

where AR  is the half width of the search region. All square spirals in Problem 4 are scaled using the inter-layer 
distance d given above. The forward square spiral of 2 layers ( )2sqn =  is shown in Figure 15(a). 

We could select the backward square spiral as the mirror image of the forward square spiral with respect to  
 

 
Figure 15. Forward square spirals and square spiral loops. (a) The forward square spiral of 

2sqn =  (2 layers); (b) The square spiral loop of 2sqn = , formed by concatenating the for-

ward and the backward square spirals; (c) The forward square spiral of 3sqn =  (3 layers); (d) 

The square spiral loop of 3sqn = . 
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the line of angle 
1 π
4

. If we do that, however, the backward square spiral will coincide with the forward square  

spiral in a substantial fraction of the path. Intuitively, that is not an efficient way of sweeping. We want the 
backward square spiral to cover the area between the layers of the forward square spiral so that together the 
forward and the backward square spirals have a better and more uniform coverage of the search region. We de-
sign the backward square spiral to go between the layers of the forward square spiral. Mathematically, the 
backward square spiral is described by 

( ) ( ) ( ) ( )

Backward square spiral of layers

1 1 1 12 ,2 , 2 1 , 2 1 , 2 2 , 2 2 , , 2, 2,1,1, , .
2 2 2 2

sq

sq sq sq sq sq sq

n

n n n n n n = − − − − − − 
 



 

As in the situation for the forward square spiral, the backward square spiral is also scaled by the inter-layer 
distance d given above to fit it to the search region. The backward square spiral of 2 layers ( )2sqn =  is shown 
in Figure 15(b) (blue line with filled circles). The square spiral loop is formed by combining the forward and 
the backward square spirals. The square spiral loop of 2sqn =  is shown in Figure 15(b). The square spiral 
loop starts at the origin and returns to the origin at the end. 

After finishing sweeping the square spiral loop, the searcher rotates the whole square spiral loop by π 2  and 
starts sweeping along the rotated square spiral loop. This process is repeated until the target is detected. 

Figure 16 plots the time evolutions of the non-detection probability when the searcher sweeps various square 
spiral paths. A square spiral path is specified by sqn , the number of square layers in the forward square spiral 
(see Figure 15). Figure 16 compares the results for 9 values of sqn , ranging from 1sqn =  (the lowest possible 
value for sqn ) to 22sqn = . The fastest decay of the non-detection probability occurs at ( )optimal 3sqn = . The decay 
rates are almost the same among 2sqn = , 3sqn = , and 4sqn = . The square spiral loop of 3sqn =  is shown in 
Figure 15(d). The corresponding square spiral path is a sequence of ratations of the square spiral loop. The decay 

 

 
Figure 16. Results for the case of the searcher moving along various square spiral paths. A 
square spiral path is a sequence of rotations of a square spiral loop and is specified by sqn , 
the number of square layers in each forward square spiral. Shown here are time evolutions of 
the non-detection probability for various values of sqn . 
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rate of the non-detection probability at 3sqn =  is 

( ) 2
decay sweeping square spiral path of 3 12.96 10 .sqk n −= = ×  

We point out that the optimal decay rate given above for Problem 4 is faster (larger) than those of Problems 1, 
2 and 3. 

7. Problem 5: Searcher Scanning Horizontally and Vertically 
Finally we consider the situation where the target diffuses with diffusion coefficient 100tD = , and the searcher 
scans horizontally and vertically back and forth. The detailed construction of the scan path will be described be-
low. The searcher moves with velocity 500sv = , the same velocity as we used in Problems 2, 3 and 4. 

In Problem 5, we use the same numerical parameters as in Problems 3 and 4: each Monte Carlo simulation is 
repeated 800000N =  times and the time step 5t∆  satisfies 

5 5
12 .

12t sD t v t R∆ + ∆ ≤                                  (23) 

The scan path consists of forward horizontal scan, backward horizontal scan, forward vertical scan and back-
ward vertical scan. A forward horizontal scan is shown in Figure 17. 

A forward horizontal scan is specified by 3 parameters: b the length of each horizontal scan line, d the inter 
scan line distance, and scn  the number of horizontal scan lines. Parameters b and d are shown in Figure 17. 
The distance from the first horizontal scan line to the last horizontal scan line is ( )1scn d− . Since the searcher 
is scanning a square region, we set 

( )1 .scb n d= −  

For each forward horizontal scan, there is an associated backward horizontal scan. The backward scan travels 
between the horizontal scan lines of the forward scan. The forward horizontal scan is mathematically described 
by 

( ) ( )
( ) ( )
( ) ( )( )1

Forward scan line 1: , ,0

Forward scan line : , 0, ,

, 1 ,0 , 2, , .j
sc

x y b

j x y d

x y b j n−

∆ ∆ =

∆ ∆ =

∆ ∆ = − = 

 

The associated backward horizontal scan is mathematically described by 
 

 
Figure 17. A forward horizontal scan and associated parameters. b 
is the length of each horizontal scan line; d is the vertical distance 
between adjacent scan lines. 
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( ) ( )
( ) ( )( )

Backward scan line 1: , 0, 2 ,

, 1 ,0scn

x y d

x y b

∆ ∆ = −

∆ ∆ = −
 

( ) ( )
( ) ( )( )1

Backward scan line : , 0, ,

, 1 ,0 , 2, , 1scn j
sc

j x y d

x y b j n− +

∆ ∆ = −

∆ ∆ = − = −

 

( ) ( )
( ) ( )

Backward scan line : , 0, 2 ,

, ,0 .
scn x y d

x y b

∆ ∆ = −

∆ ∆ = −
 

The forward horizontal scan and the associated backward horizontal scan for 5scn =  are shown in Figure 
18(a), Figure 18(b). 

The vertical scans are exactly the same as the horizontal scans except that the roles of x and y are swapped. 
The forward vertical scan is 

( ) ( )
( ) ( )
( ) ( )( )1

Forward scan line 1: , 0,

Forward scan line : , ,0 ,

, 0, 1 , 2, , .j
sc

x y b

j x y d

x y b j n−

∆ ∆ =

∆ ∆ =

∆ ∆ = − = 

 

The associated backward vertical scan is 
 

 
Figure 18. Horizontal and vertical scan paths. (a) Forward horizontal scan; (b) Backward ho-
rizontal scan (blue line with filled circles); (c) Forward vertical scan; (d) Backward vertical 
scan (blue line with filled circles). 
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( ) ( )
( ) ( )( )

Backward scan line 1: , 2,0 ,

, 0, 1 scn

x y d

x y b

∆ ∆ = −

∆ ∆ = −
 

( ) ( )
( ) ( )( )1

Backward scan line : , ,0 ,

, 0, 1 , 2, , 1scn j
sc

j x y d

x y b j n− +

∆ ∆ = −

∆ ∆ = − = −

 

( ) ( )
( ) ( )

Backward scan line : , 2,0 ,

, 0, .
scn x y d

x y b

∆ ∆ = −

∆ ∆ = −
 

The forward vertical scan and the associated backward vertical scan for 5scn =  are shown in Figure 18(c), 
Figure 18(d). 

To scan the square search region of half width AR , we set 

( )2
, 1 .

1 2
A

sc
sc

Rd b n d
n

= = −
−

 

Thus, for a square of given half width AR , a scan path is completely specified by scn , the number of scan 
lines in each scan. 

The searcher sequentially cycles through forward horizontal scan, backward horizontal scan, forward vertical 
scan and backward vertical scan. This process is repeated until the target is detected. 

Figure 19 shows the time evolutions of the non-detection probability when the searcher scans horizontally 
and vertically. A scan path is specified by scn , the number of scan lines in each forward scan. Figure 19 com-
pares the results for 9 values of scn , ranging from 2scn =  (the lowest possible value for scn ) to 30scn = . 
The fastest decay of the non-detection probability occurs at ( )optimal 11scn = . The decay rates are almost the same 
among 10scn = , 11scn = , and 12scn = . The decay rate of the non-detection probability at 11scn =  is 

 

 
Figure 19. Results for the case of searcher scanning horizontally and vertically. The horizon-
tal and vertical scan paths are shown in Figure 18. A scan path is specified by scn , the 
number of scan lines in each forward scan. Shown here are time evolutions of non-detection 
probability for various values of scn . 
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( ) 2
decay sweeping scan path of 11 13.58 10 .sck n −= = ×  

We point out that the optimal decay rate given above for Problem 5 is faster (larger) than those of Problems 1, 
2, 3 and 4. 

8. Summary 
This paper calculated the non-detection probability of a diffusing target in the presence of a stationary or moving 
searcher. It is found that when the searcher is fixed, the decay rate of the non-detection probability attains the 
maximum value when the search is fixed at the center of the square search region. When both the searcher and 
the target diffuse with significant diffusion coefficients, the decay rate of the non-detection probability only de-
pends on the sum of the diffusion coefficients of the target and searcher. When the searcher moves along various 
deterministic trajectories, the fastest decay of the non-detection probability is obtained when the searcher scans 
horizontally and vertically. 
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