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ABSTRACT 

Edge-finding and energetic reasoning are well known filtering rules used in constraint based disjunctive and cumulative 
scheduling during the propagation of the resource constraint. In practice, however, edge-finding is most used (because it 

has a low running time complexity) than the energetic reasoning which needs  2n  time-intervals to be considered 

(where n is the number of tasks). In order to reduce the number of time-intervals in the energetic reasoning, the maxi- 
mum density and the minimum slack notions are used as criteria to select the time-intervals. The paper proposes a new 

filtering algorithm for cumulative resource constraint, titled energetic extended edge finder of complexity  3n . The 

new algorithm is a hybridization of extended edge-finding and energetic reasoning: more powerful than the extended 
edge-finding and faster than the energetic reasoning. It is proven that the new algorithm subsumes the extended 
edge-finding algorithm. Results on Resource Constrained Project Scheduling Problems (RCPSP) from BL set and 
PSPLib librairies are reported. These results show that in practice the new algorithm is a good trade-off between the 
filtering power and the running time on instances where the number of tasks is less than 30. 
 
Keywords: Constraint-Based Scheduling; Global Constraint; Cumulative Resource; Energetic Reasoning; 

Edge-Finding; Extended Edge-Finding; Maximum Density; Minimum Slack 

1. Introduction 

Scheduling is the process of assigning resources to tasks 
or activities over the time. There exist many types of 
scheduling problems following the tasks properties (pre- 
emptive or non-preemptive), the type of resources (dis- 
junctive or cumulative) and the objective function (make- 
span, time late...). When a unique cumulative resource 
with non-preemptive tasks is considered, the problem is 
called cumulative scheduling problem (CuSP). 

In a CuSP, a set of tasks T  has to be executed on a 
resource of fixed capacity C. Each task i  requires a 
fixed and constant amount of resource ic , and has to be 
executed during a fixed amount of time ip  without in- 
terruption between an earliest start time est i  (release 
date) and a latest completion time lct i  (deadline). A 
solution of a CuSP instance is an assignment of valid 
start time is  to each task i  in such a way that resource 
constraints are satisfied i.e., 

: est lcti i i i ii T s s p               (1) 

,

:
i i i

i
i T s s p

c C



   

               (2) 

The inequalities in (1) ensure that each task is assigned 
a feasible start and end time, while (2) enforces the re- 
source constraint. An example of CuSP is given in 
Figure 1. 

The energy of a task i , is defined as i i ie c p  , its 
earliest completion time as ect esti i ip   and its latest 
start time as lst lcti i ip  . The energy notation along 
with that of earliest start and latest completion time may 
be extended to non-empty sets of tasks as follows: 

, est min est , lct max lctj j j
j jj

e e   

       (3) 

where   is a non-empty set of tasks. By convention, if 
  is the empty set, est   , lct   , and 

0e  . Throughout the paper, it is assumed that for any      
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Figure 1. A scheduling problem of 5 tasks sharing a resource of capacity C = 3. 
 
task i T , est lcti i ip   and ic C , otherwise the 
problem has no solution. 

The CuSP is a NP-complete problem [1]. Therefore, 
only relaxation of the problem, for which it is possible to 
implement a polynomial time algorithm exists. In [2], the 
cumulative resource constraint is modelized by the global 
constraint CUMULATIVE in a constraint programming 
approach. The global constraint CUMULATIVE embeds 
many filtering algorithms. Among these algorithms, en- 
ergetic reasoning, edge-finding and timetabling are the 
most used. 

1.1. Related Works 

To our knowledge, the word “energetic edge-finder” was 
firstly used in [3] where the author incorporates the en- 
ergy-based deduction rule to edge-finder algorithm for 
disjunctive (unary) resource. The idea of hybridization of 
the edge-finding rule and the energetic reasoning for 
cumulative resource was suggested in [4]. Indeed, in [4], 
Mercier and Van Hentenryck propose a two phase 
edge-finding algorithm where in the first phase, the po- 
tential adjustment values are computed. They found that 
many of these potential update values are unused and can 
be used inside an energetic-based second phase. After 
this suggestion, many filtering algorithms, hybridization 
of edge-finding rule and energetic reasoning have been 
proposed [5,6]. In [6], the authors use in the first phase, 
the edge-finding algorithm of [7,8] to compute the poten- 
tial update values and identify the corresponding time 
bounds of task intervals which provide the maximum 
update values. To each task, the time bounds used in the 
second phase is either the task intervals of maximum 
density or the task intervals of minimum slack. The re- 
sulting algorithm runs in  2n  since both phases have 
this complexity. This algorithm was later improved in [5] 
by choosing for each task, the time bounds of task inter- 
vals of both maximum density and minimum slack which 
provide the maximum update values. Experimental re- 
sults on RCPSP of the PSPLib [9] library and BL set [10] 

show that this variant is a good trade-off between the 
filtering power and the complexity but it does not domi- 
nate the edge-finding algorithm. 

Energetic reasoning is one of the most powerful filter- 
ing algorithm in cumulative scheduling problems [1,10] 
since it dominates all the other rules (edge-finding [4,7, 
8,21], extended edge-finding [4,11], timetable [1], time- 
table edge-finding [12], timetable extended edge-finding 
[13]) except the not-first/not-last rule [14,15]. However, 
it is not commonly used because it has a high running 
time (  3n  time complexity), needs a high number of 
time-intervals to be considered and its success highly 
depends on the tightness of the variable bounds (highly 
cumulative problems). Recently, in [16], the authors pro- 
posed an approximative criterion for the potential of the 
energetic reasoning which allows the decrease of the 
running time with more nodes to explore in the search 
tree. The combination of a solver of the CP and SAT 
techniques for conflict analysis played recently an im- 
portant role to solve cumulative scheduling problems effi- 
ciently [17,18]. 

In this paper, it is extended the energetic edge finder of 
[5] by adding the guarantee that the final algorithm de- 
duces more than edge-finding and extended edge-finding. 
The main idea of our energetic extended edge finder is 
the combination of the best properties of (extended) 
edge-finding rule (interesting time bounds and good run-
ning time) and energetic reasoning (powerful filtering 
rule). The paper starts with the hypothesis that, the time 
bounds of task intervals used in the (extended) edge- 
finding algorithm can be interesting in an energetic rea- 
soning. Based on this hypothesis, the number of time 
intervals to be considered in an energetic reasoning is 
reduced to those of (extended) edge-finding. 

1.2. Contribution 

This paper uses the time-bounds of task intervals consid- 
ered in the computation of the edge-finding algorithm 
[7,8] and the extended edge-finding algorithm [11] in an 
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energetic reasoning. Indeed, in [7,8], a complete edge- 
finding algorithm is proposed based on maximum density 
and minimum slack. The minimum slack is used in [11] 
to perform the extended edge-finding algorithm. The 
algorithm presented in this paper is an energetic version 
of the edge-finding and the extended edge-finding algo- 
rithms of [7,8,11] respectively. The complexity of the 
corresponding algorithm is  3n  where n  is the 
number of tasks since each of the algorithm of [7,8] and 
[11] are quadratic. 

It is obvious that the new algorithm subsumes the 
edge-finding and the extended edge-finding algorithms. 
The filtering power of this algorithm is less than the one 
of the energetic reasoning, but in practice, it is a good 
trade-off between the filtering power and the running 
time. Empirical evaluation of the algorithm on the 
RCPSP instances of well known library prove that, the 
new algorithm performs in most of the cases better in 
term of reduction of number of nodes of the search tree 
than the quadratic extended edge-finding [11], but needs 
more time to do so, for instances of more than 30 tasks. 

The rest of the paper is organized as follows: Section 2 
is devoted to the specification of the edge-finding rule 
and the energetic reasoning. In Section 3, the new ener- 
getic extended edge-finder is described and some of its 
properties are deduced. Experimental results are provided 
in the last Section. 

2. Edge-Finding Rule and Energetic 
Reasoning Rule 

In this section, it is specified the (extended) edge-finding 
rule as well as the energetic reasoning. 

2.1. Edge-Finding and Extended Edge-Finding 
Rules 

Let T  be the set of tasks of a CuSP. If the energy e  
of a set of tasks T   is larger than the available en- 
ergy  lct estC   , then the problem has no feasible 
solution. Overload checking algorithms typically enforce 
the following relaxation of this feasibility condition, 
which may be computed in  logn n  time [19,20]. 

Definition 1 (E-Feasibility) ([4]) A CuSP problem is 
E-feasible if: 

 , , lct est .T C e               (4) 

For a given CuSP, an edge-finding rule identifies a set 
of tasks T   and a task i  such that, in any so- 
lution, all tasks of   end before the end of i . More 
precisely, if the scheduling of task i  as early as possi- 
ble (i.e., starting at est i ) induces an overload in the in- 
terval  est , lct   then, all the tasks in   end before 
the end of i  noted here i  as in [21]. When all 
tasks of a set   end before the end of a task i , then 

the release date of task i  is updated to: 

 1
est est rest ,i i

i

i c
c

 
     

 
        (5) 

for all     such that  rest , 0ic  , 

    lct est if
rest ,

0 otherwise
i

i

e C c
c           


  (6) 

Proposition 1 provides conditions under which all tasks of 
a set   of a CuSP end before the end of a task .i  

Proposition 1 [4,7,8,11,21] Let T   be a set of 
tasks of a CuSP of capacity C  and i T   be a 
task. 

    lct est ;i ie C i                   (EF) 

ect lct ;i i                          (EF1) 

   
est est ect

.
ect est lct est

i i

i i

i
e c C



   

 
     

  (EEF) 

And if i  then the earliest start time of task i  is 
updated to 

 

 
rest , 0

1
est max est , max est rest ,

i

i i i
ic

c
c

 

         
 (Upd) 

with 

     if
rest ,

0 otherwise
i

i

e C c lct est
c           


 (7) 

Rules (EF) and (EF1) are known as edge-finding de-
tection rules while (EEF) is the extended edge-finding 
detection rule. It is proved in [4] that a complete 
edge-finding algorithm that only considers sets T   
and    , which are task intervals can be imple- 
mented. The definition of the task intervals is given in 
Definition 2. 

Definition 2 (Task Intervals) (After [22]) Let ,j k T . 
The task intervals ,j k  is the set of tasks 

 , est est lct lct .j k j s s ks T           (8) 

In [7,8], the authors propose a quadratic edge-finding 
algorithm based on maximum density and minimum 
slack notions. 

Definition 3 [7,8] Let   be a task set of an E- 
feasible CuSP. The slack of the task set  , denoted 
SL , is given by: 

 lct est .SL C e       

Definition 4 [7,8] Let i  and k  be two tasks of an 
E-feasible CuSP.  ,k i  is a task depending on the 
tasks k  and i , where  ,est est ik i   and that defines 
the task intervals with the minimum slack: for all j T  
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such that est estj i , 

      
,, ,,lct est lct est .

j kk i kk k jk iC e C e
         (9) 

The detection of the classic edge-finding rule (EF) is 
done with the task intervals of minimum slack. For ad- 
justment, as it is proved in [7,8], the task intervals of 
minimum slack and the one of maximum density are 
considered. 

Definition 5 [7,8] Let   be a task set of an E- 
feasible CuSP. The density of the task set  , denoted 
Dens , is given by: 

.
lct est

e
Dens 


 




 

Definition 6 [7,8] Let i , k  be two tasks of an 
E-feasible CuSP.  ,k i  is a task depending on the 
tasks k  and i , where  ,est esti k i  and that defines 
the task intervals with the maximum density: for all tasks 
j T  such that est esti j , 

 

 

, ,,

,

.
lct est lct est

k i kj k

k j k k i

ee







 
         (10) 

The main idea of the edge-finding algorithm of [7,8] is 
that once the relation i  is discovered, then it is not 
necessary to iterate over all subsets   of  . It is 
enough to consider only (1) subset with minimum slack 
and est est i   and (2) subset with maximum density 
and est est i  . Using those two subsets, if est i  can be 
improved, then it will be updated, although not necessar- 
ily immediately to the best value. More iterations of the 
algorithm may be needed for that. 

The extended edge-finding rule (EEF) detects addi- 
tional updates missing by the edge-finding rule. In [11], 
the authors propose a quadratic extended edge-finding 
algorithm based on minimum slack notion. This algo- 
rithm supposes that the fix point of the edge-finding is 
reached and looks for the upper bound of the task inter- 
vals of minimal slack instead of the lower bound as it is 
the case for the edge-finding algorithm. 

Definition 7 [11] Let i  and j  be two tasks of an 
E-feasible CuSP with est esti j .  ,j i  is a task de- 
pending on the tasks j  and i , where  ,lct lct ij i   
and that defines the largest task intervals with the mini- 
mum slack: for all k T  such that lct lctk i  

      
,, ,,lct est lct est .

j kj j ij k jj iC e C e
         (11) 

2.2. Energetic Reasoning 

In the edge-finding rule, the energy required by a non- 
empty set of tasks   only considers tasks which are 
completely processed within the time window  est , lct   
while, the partial contribution of each task is taken into 

account in the energetic reasoning. There exists many 
varieties of energy consumption required by a task de- 
pending on the type of tasks, Fully Elastic energy and 
Partial Elastic energy for preemptive tasks and Left- 
shift/Right-shift energy for non-preemptive tasks [10]. 

Let i  be a task and  ,a b  be a time interval with 
a b . The left-shift/right-shift energy consumption re- 
quired by i  over  ,a b  noted  , ,W a b i  is the non- 
negative minimum of 1) the volume in the interval 
 ,a b , 2) the energy of task i , 3) the left shifted en- 
ergy, and 4) the right shifted energy i.e., 

 
  

, ,

max 0, min , ,ect , lsti i i i

W a b i

c b a p a b    
   (12) 

The overall energy consumption required by all tasks 
noted  ,W a b  over an interval  ,a b  is defined as 

   , , , .
i T

W a b W a b i


              (13) 

For a given CuSP, it is obvious that if there exists a 
time interval  ,a b  with a b  such that its overall 
required energy consumption is more than available en- 
ergy, then the problem is infeasible. This necessary con- 
dition is provided in the following proposition. 

Proposition 2 [1] Let  ,a b  be a time interval with 
a b . If 

   ,C b a W a b             (14) 

then the problem is infeasible. 
In [1,10], the authors give a precise characterization of 

time bounds for which the necessary condition of the 
existence of a feasible scheduling should be guaranteed. 
This necessary condition is more powerful than the 
E-feasible one defined earlier. There exist  2n  rele- 
vant intervals to be considered to detect infeasibility. 
These intervals correspond to start and completion times 
of tasks. If 

 

 

   

1

2

: est , ect , lst ,

: lct , ect , lst

and : est lct

i i i
i T

i i i
i T

i i
i T

O

O

O t t











  






 

then the relevant intervals are given by   1 2,a b O O  , 
for a fixed 1a O :    1,a b O O a  , and for a fixed 

2b O :     2,a b O b O  , with a b . The authors 
propose a quadratic algorithm for testing this necessary 
condition in [1,10]. 

The left-shift energy required of a task i  over a time 
interval  ,a b  defined by 

 
    

, ,

min , ,min ect , max est ,

l

i i i i

W a b i

c b a p b a   
  (15) 
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is ic  times the number of time units during which i  
executes after time a  if i  is left-shifted, i.e., sche- 
duled as soon as possible. If scheduling task i  as early 
as possible (i.e., starting at est i ) induces an overload in 
the interval  ,a b  then task i  ends after b  and est i  
can be updated according to Proposition 3. 

Proposition 3 [1] Let  ,a b  be an interval with 
a b  and i  be a task such that  

   , est , ecti ia b   . 

If 

       , , , , ,lW a b W a b i W a b i C b a      (ER) 

holds, then the earliest start time of task i  is updated to: 

        

est max est ,

1
, , , .

i i

i
i

a

W a b W a b i C c b a
c






 
          

(ERupd) 

No specific characterization of relevant intervals for 
the adjustment was proposed so far. With the  2n  
relevant intervals used for infeasibility test, it is derived a 
 3n  algorithm for adjustment in [1,10]. In practice, 

the energetic reasoning adjustment is too time-consum- 
ing for producing any useful result [1]. The paper tries to 
determine a better trade off between the filtering power 
and running time by reducing the number of intervals to 
examine. It is used the time bounds of task intervals of 
edge-finding and extended edge-finding algorithm in an 
energetic reasoning. The corresponding algorithm runs in 
 3n  as pure energetic reasoning adjustment. 

3. The Energetic Extended Edge-Finder 

3.1. The Rule 

The energetic extended edge-finding rule is obtained by 
substituting e  by  est , lctW    in the edge-finding 
detection rule (EF) and the extended edge-finding detec- 
tion rule (EEF). It can be observed that the energetic 
reasoning rule (ER) is a generalization of rules (EF) and 
(EEF) with more strong energy consumption required by 
tasks over interval  est , lct .   The energetic extended 
edge-finding combines the techniques of edge-finding, 
extended edge-finding and partially the energetic rea- 
soning. The new adjustment rule is obtained by substi- 
tuting the energy e  by  est , lctW    in the (ex- 
tended) edge-finding adjustment rule. 

3.2. Algorithm 

The algorithm proposed in this Section is an energetic 
version of the edge-finding and the extended edge-find- 
ing algorithm of [7,8,11] respectively. The time bounds 

of task intervals used in the edge-finding (resp. the ex- 
tended edge-finding) for detection and adjustment are 
used in an energetic reasoning. The new algorithm runs 
in  3n  since each of the edge-finding and extended 
edge-finding algorithms are quadratic [7,8,11]. 

The algorithm is broken into two parts to make it more 
digest. The first part is an energetic variant of the edge- 
finding algorithm of [7,8] while the second part is the 
one of the extended edge-finding algorithm of [11] (ad- 
justments missing by the edge-finding and detect with 
the extended edge-finding). 

3.2.1. First Part 
This part consists only in adding an inner loop in the 
edge-finding algorithm of [7,8] after detection of time 
bounds, to recompute the energy of each task intervals 
  plus the partial contribution of the rest of tasks 

.T   It is presented in Algorithm 1 where: 
1) The first outer loop (line 3) selects, in the order of 

non-decreasing deadlines, the tasks k T  which form 
the possible upper bounds of the task intervals. 

2) The first inner loop (line 5) selects the tasks i T  
that includes the possible lower bounds for the task in- 
tervals, in non-increasing order by release date. If 
lct lcti k , then the energy and density of ,i k  are cal- 
culated; if the new density is higher than  , ,k i k  where 
the task  ,k i  is specified in Definition 6, then 
 ,k i  becomes i (line 9). If lct lcti k , then if the 

current  ,k i  sat isf ies  ,est lctkk i   and ect i  

 ,est k i  (line 12), then the energy required by interval  

  ,est , lctkk i

  is computed in the inner loop of line 13.  

The condition of line 15 checks if the interval 

  ,est , lctkk i

  is overloaded (see inequality (12)) and if 
the condition of line 17 is fulfilled, then the potential 
update iDupd  of the release date of i  is calculated 
(line 18), based on the current interval   ,est , lctkk i


 . 

This potential update is stored only if it is greater than 
the previous potential update value calculated for this 
task using the maximum density time bounds. The re- 
lease date of task i  is updated at line 20 when the en- 
ergetic reasoning condition of line 19 is fulfilled (see 
inequality (ER)). 

3) The second inner loop (line 23) selects i  in 
non-decreasing order by release date. The energies stored 
in the previous loop (line 21) are used to compute the 
slack of the current interval ,i k . If the slack is lower 
than that of  , ,k i k  where  ,k i  is specified in  
Definition 4, then  ,k i  becomes i  (see line 25). For  

any task i  with a deadline greater than lctk , if the  
current  ,k i  satisfies  ,est lctkk i   (line 28), then  

the energy required by interval   ,est , lctkk i

  is com- 

puted in the inner loop of line 29. The condition of line  
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  Require: T  is an array of tasks 

  Ensure: A lower bound iest  is computed for the release date of each task

1  for i T  do 

2    := , := , :=i i i iest est Dupd SLupd    

3  for k T  by non-decreasing deadline do 

4    : 0, max : 0, :Energy Energy est     

5    for i T  by non-increasing release dates do 

6        if i klct lct  then 

7           := iEnergy Energy e  

8           if 
max

k i k

Energy Energy

lct est lct est

 
    

 then 

9              max : , : iEnergy Energy est est   

10       else 

11           := , := , , := 0ka est b lct W a b  

12          if  > ib a ect a   then 

13              for j T  do 

14                      , := , , ,W a b W a b W a b j  

15             if     < ,C b a W a b  then 

16                  fail (No solution exists) 

17             if         , , , > 0iW a b W a b i C c b a      then 

18               
       , , ,

:=max , i

i i

i

W a b W a b i C c b a
Dupd Dupd a

c

      
     

19             if         , , , , , >lW a b W a b i W a b i C b a    then 

20                 := max ,i i iest est Dupd   

21      :=iE Energy  

22   min :SL   , := kest lct  

23   for i T  by non-decreasing release date do 

24       if   mink i iC lct est E SL    then 

25         : , min : ( )i k iest est SL C lct est E      

26      if  >i klct lct  then 

27          : , : , , : 0ka est b lct W a b    

28         if  >b a  then 

29            for j T do 

30                    , : , , ,W a b W a b W a b j   

31            if     < ,C b a W a b  then 

32               fail (No solution exists) 

33            if         , , , > 0iW a b W a b i C c b a      then 

34             
       , , ,

: max , i

i i

i

W a b W a b i C c b a
SLupd SLupd a

c

      
      

35            if         , , , , , >lW a b W a b i W a b i C b a    then 

36               : max , ,i i i iest est SLupd Dupd    

Algorithm 1. Energetic extended edge finding algorithm in 
3( )n  time. 

 
31 checks if the interval   ,est , lctkk i


  is overloaded 

(see inequality (12)). If the condition of line 33 is ful- 
filled, then the potential update iSLupd  of the release 
date of i  is calculated (line 34), based on the current 
interval   ,est , lctkk i


 . This potential update is stored 

only if it is greater than the previous potential update 
value calculated for this task using the minimum slack 
time bounds. If the energetic reasoning condition is ful- 
filled at line 35 (see inequality (ER)), then the release 
date of task i  is updated at line 36. 

4) At the next iteration of this first outer loop,  ,k i  
and  ,k i  are re-initialized. 

This first algorithm (Algorithm 1) corresponds to the 
energetic edge-finding algorithm. 

3.2.2. Second Part 
This part is the energetic version of the extended edge- 
finding algorithm of [11]. It consist in adding an inner 
loop in the extended edge-finding algorithm of [11] after 
detection of time bounds, to recompute the energy of 
each task intervals   plus the partial contribution of 
the rest of tasks .T   The corresponding algorithm is 
presented in Algorithm 2 where: 

1) The outer loop (line 37) iterates through the tasks 
j T  forming the possible lower bounds of the task 

intervals. 
2) The inner loop (line 39) selects the tasks i T  that 

comprise the possible upper bounds for the task intervals, 
in non-decreasing order of deadlines. If est estj i , then 
the energy and the slack of ,j i  are calculated. The 
slack is then compared to the slack of  , ,j j i  (see line 
42) where  ,j i  is specified in Definition 7. If the 
new slack is higher,  ,j i  becomes i  (line 43). If 
est estj i  (line 44), then if the current  ,j i  satisfies 
 

37  for j T  do 

38     : 0,max : 0, : jEnergy Energy lct est    

39     for i T  ( T  sorted by non-decreasing deadlines) do 

40         if  j iest est  then 

41           : iEnergy Energy e   

42           if     maxi j jC lct est Energy C lct est Energy    

then 
43             max : , : iEnergy Energy lct lct    

44         else 

45            : , : , , : 0ja est b lct W a b    

46           if  > ib a ect a   then 

47              for k T  do 

48                      , := , , ,W a b W a b W a b k  

49              if     < ,C b a W a b  then 

50                 fail (No solution exists) 

51              if         , , , , , >lW a b W a b i W a b i C b a    then

52              
       , , ,

:= max , i

i i

i

W a b W a b i C c b a
est est a

c

      
       

53  for i T  do 

54     :=i iest est  

Algorithm 2. Energetic extended edge finding algorithm in 
3( )n  time. 
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 ,lct est jj i   and ect esti j (line 46), then the energy 

required by interval   ,est , lctj j i

  is computed in the  

inner loop of line 47. The condition of line 49 checks if 
the interval   ,est , lctkk i


  is overloaded (see inequality 

(12)). If the energetic reasoning condition is fulfilled at 
line 51 (see inequality (ER)), then the release date of task 
i  is updated at line 52 based on the current potential  

update value determined by interval   ,est , lctj j i

 . 

3) At the next iteration of this outer loop,  ,j i  is 
re-initialized. 

Merging Algorithms 1 and 2, the corresponding algo- 
rithm title “EnEEF” is an energetic extended edge-find- 
ing algorithm. 

3.3. Some Properties of EnEEF 

The energetic extended edge-finding algorithm EnEEF is 
compared to the conjunction of the edge-finding and the 
extended edge-finding. It is proved that, this algorithm 
subsumes the conjunction of edge-finding and extended 
edge-finding algorithm. 

3.3.1. The Energetic Extended Edge-Finder EnEEF 
Performs Some Additional Adjustments 
Missing by (Extended) Edge-Finding 

Using the CuSP instance of Figure 1, it is found that the 
energetic extended edge-finder EnEEF performs addi- 
tional adjustments missing by (extended) edge-finding. 
Indeed, the application of the (extended) edge-finding 
algorithm on the CuSP instance of Figure 1 doesn’t 
produce any adjustment whereas the application of our 
energetic extended edge finder EnEEF permits to update 
the release date of task A from 1 to 5. When the task B  
(resp. C  or D ) is considered at the outer loop of line 3, 
the bounds of the task intervals of maximum density are 
[3,6)  and the condition of line 19 holds for 3a   and 

6.b   It follows that  

     
   

, , , , ,

8 2 10 9 3 6 3

lW a b W a b A W a b A

C b a

 

         
 

and 
       

  
, , ,

8 0 3 1 6 3 2.

AW a b W a b A C c b a   

     
 

Therefore, the release date est A  is updated to  

      , , ,
est

3 2 5.

A
A

A

W a b W a b A C c b a
a

c

    
   

 
  

 

The reader can check that no propagation is performed 
by the timetable edge-finding rule of [12] and the timeta- 
ble extended edge-finding rule of [13] on the CuSP in- 
stance of Figure 1. 

3.3.2. The Energetic Extended Edge-Finder EnEEF 
Subsumes the Edge-Finding Algorithm 

Theorem 1 The energetic extended edge-finder EnEEF 
subsumes the edge-finding algorithm of [7,8]. 

Proof. It is important to prove that the edge-finding 
algorithm can not propagate anything when the energetic 
extended edge-finder EnEEF reaches the fix point. 

By contradiction: assume that the energetic extended 
edge-finder EnEEF reaches the fix point, and that how- 
ever, the edge-finding algorithm can propagate i.e., there 
are i ,   and  ,     such that (EF) or (EF1) 
holds and (Upd) improves est i  using  . It will be 
prove (by contradiction) that the energetic extended 
edge-finding algorithm EnEEF can update the time 
bounds of task i . 

1) The rule (EF1) holds. In this case, two subcases are 
considered: 

(a) If est est i  , then the energy contribution of task 
i  in the time interval  est , lct   is  lct esti ic    
since ect lct .i   The inequality 

 1
est rest , esti i

i

c
c                 (16) 

holds since the release date of task i  is updated using 
the rule (Upd) and it is algebraically equivalent to 

   lct est lct est .i ie c C             (17) 

Let k T  be a task such that : .klct lct  According 
to [7,8],   is the task intervals of minimum slack 
(Definition 4) and it follows 

    
 
 

, ,,lct est lct est

lct est .

k i kk k i

i i

C e C e

c

    



    

 
  (18) 

When the task k  is considered in the outer loop of line 
3, in the second inner loop of line 23 the condition 

       , , , , ,lW a b W a b i W a b i C b a        (19) 

is detected at line 35 since    
 , ,

, , ,
k i k

W a b W a b i e


    

and    , , lct estl i iW a b i c    where  ,: est k ia   and 
: lctkb   and the adjustment follows. 
(b) If est esti  , then the energy contribution of task 

i  in the time interval  est , lct   is  lct estic    
since ect lct .i   The inequality 

 rest , 0ic                  (20) 

holds since the release date of task i  is updated using 
the set   and the rule (Upd) and it is algebraically 
equivalent to 

   lct est lct est .ie c C              (21) 

Let k T  be a task such that : .klct lct  According 
to [7,8],   is the task intervals of maximum density 
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(Definition 6) and it follows 

 

 

, ,

,

.
lct est lct est

k i k

i
k k i

e e
C c





 

 

  
 

          (22) 

Therefore, it appears that 

       , , , ,lct est lct est .
k i k i k kk i k ie c C

         (23) 

When the task k  is considered in the outer loop of line 
3, in the first inner loop of line 5 the condition 

       , , , , ,lW a b W a b i W a b i C b a        (24) 

is detected at line 19 since    
 , ,

, , ,
k i k

W a b W a b i e
    

and     ,, , lct estl i k k iW a b i c    where  ,: est k ia   
and : lctkb   and the adjustment follows. 

2) The rule (EF) holds: Let k T  be a task such that 
lct : lct .k   According to [7,8],   is the task intervals 
of minimum slack (Definition 4) and it follows 

    , ,,lct est .
k i kk ik iC e e

              (25) 

When the task k  is considered in the outer loop of line 
3, in the second inner loop of line 23 the condition 

       , , , , ,lW a b W a b i W a b i C b a         (26) 

is detected at line 35 since    
 , ,

, , ,
k i k

W a b W a b i e


    

and  , ,l iW a b i e  where  ,: est k ia   and : lctkb   
and the adjustment follows using the potential update 
values previously computed.■ 

According to this theorem, the first outer loop of line 3 
ensures us that the fix point of the edge-finding rule will 
always be reached. This result is used to demonstrate that 
our algorithm dominates the extended edge-finding rule. 
In the following theorem, it is proved that, at the fix point 
of the edge-finding rule, if the extended edge-finding rule 
detects the relation i  for a set of tasks   and a 
task i  then the set   can help to compute the poten- 
tial updated value of est i . 

3.3.3. The Energetic Extended Edge-Finder EnEEF 
Subsumes the Extended Edge-Finding 
Algorithm 

Theorem 2 [11] Let T   be a set of tasks and 
i T   be a task of an E-feasible CuSP. At the fix 
point of the edge-finding rule, if the extended edge- 
finding rule detects i  then 

   1
rest , 0 and est rest , est .i i i

i

c c
c

 
     

 
 

Using theorem 2, it is derived the following theorem: 
Theorem 3 The energetic extended edge-finder EnEEF 

subsumes the extended edge-finding algorithm of [11]. 
Proof. As in Theorem 1, it is prove that the extended 

edge-finding algorithm can not propagate anything when 
the energetic extended edge-finder EnEEF reaches the fix 
point. 

The contradiction is used: assume that the energetic 
extended edge-finder EnEEF reaches the fix point, and 
that however, the extended edge-finding algorithm can 
propagate i.e., there are i ,   and  ,     such 
that (EEF) holds and (Upd) improves est i  using  . It 
will be prove (by contradiction) that the energetic ex- 
tended edge-finding algorithm EnEEF can update the 
time bounds of task i . 

Let j T  be a task such that est : est .j   Accord- 
ing to [11],   is the task intervals of minimum slack 
(Definition 7) and it follows 

    
 
 

, ,,lct est lct est

ect est .

j j ijj i

i i

C e C e

c

    



    

 
  (27) 

When the task j  is considered in the outer loop of line 
37, in the inner loop of line 39 the condition 

       , , , , ,lW a b W a b i W a b i C b a        (28) 

is detected at line 51 since    
 , ,

, , ,
j j i

W a b W a b i e
    

and    , , ect estl i iW a b i c    where : est ja   and  

 ,: j ib lct . According to Theorem 1, the fix point of  

the edge-finding rule is reached and the Theorem 3 
shows that the task intervals used for detection can also 
be used to perform the adjustment. Therefore, an adjust- 
ment is performed at line 52 since this adjustment is jus- 
tified by the condition of line 51.■ 

4. Experimental Results 

For our experiments, it is consided the resource-con- 
strained project scheduling problems (RCPSP). A RCPSP 
consists of a set of resources of finite capacities, a set of 
tasks of given processing times, an acyclic network of 
precedence constraints between tasks, and a horizon (a 
deadline for all tasks). Each task requires a fixed amount 
of each resource over its execution time. The problem is 
to find a start time assignment for every task satisfying 
the precedence and resource capacity constraints, with a 
makespan (i.e., the time at which all tasks are completed) 
at most equal to the horizon. The cumulative scheduling 
problem (CuSP) is a sub-problem of the RCPSP, where 
precedence constraints are relaxed and a single resource 
is considered at a time; both problems are NP-complete 
[10]. 

Tests were performed on the RCPSP single-mode J30, 
J60 and J90 test sets of the well-established benchmark 
library PSPLib [9] as well as on the library of [10] (BL). 
The data sets J30, J60 and J90 consist of 480 instances of 
30, 60 and 90 tasks respectively, while BL consists of 40 
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instances of 20 and 25 tasks respectively. Each instance 
from the PSPLib sets includes tasks to be scheduled over 
4 resources, while instances from the BL suite share 3 
resources. 

Starting with the provided horizon as an upper bound, 
each instance of problem is modeled as an instance of 
Constraint Satisfaction Problem (CSP); variables are start 
times of tasks and they are constrained by precedence 
graph (i.e., precedence relations between pairs of tasks 
were enforced with linear constraints) and resource limi- 
tation (i.e., each resource was modeled with a single CU- 
MULATIVE constraint [2]). 

Dynamic branching schemes are the most used branch- 
ing strategy in CP, as they typically result in smaller 
search trees. However, when comparing filtering algo- 
rithms of differing pruning strengths, dynamic branching 
can be misleading: in some cases the domain resulting 
from weaker pruning may result in a choice point yield- 
ing a smaller subtree, and hence a faster solution. In or- 
der to minimize the effect of differing pruning strength 
on the shape of the search trees, it is consided two 
branching models: 

1) For dynamic branching, variable selection was 
based on the minimum of domain size, divided by degree 
(i.e., the number of propagators depending on the vari- 
able). Ties were broken by selecting the task with the 
minimum latest start time; values were taken from the 
smallest range for domains with multiple ranges, or the 
lesser half of the domain when only one range existed [23]. 

2) For static branching, it is selected the first unas- 
signed variable, and the smallest value in the domain. 

Tests were performed on a Pentium(R) Dual-Core 
processor, CPU 2.70 ghz, 1.96 GB of RAM. The imple- 
mentation was done in c++ using the Gecode 3.7.3 [23] 
constraint solver. For each benchmark instance, it is used 
branch and bound search to minimize the makespan, 
stopping only when the optimum solution was found. 
Each test was run three times, with the best result re- 
ported; any search taking more than 300 seconds was 
counted as a failure. 

Two filtering algorithms for different configurations of  

the global constraint CUMULATIVE have been considered. 
1) The first CUMULATIVE propagator noted “EEF” 

for tasks of fixed duration is a sequence of three filters: 
the  2n  extended edge-finding algorithm from [11], 
the overload checking from [19] and timetabling algo- 
rithm from [1]. 

2) The second propagator noted “EnEEF” is a modi- 
fied version of “EEF” that substitutes the extended edge- 
finding algorithm from [11] for the  3n  energetic 
extended edge-finder of this paper (EnEEF). 

4.1. Dynamic Branching 

Table 1 reports the results for all instances from the test 
sets BL, J30, J60 and J90 that were solved by at least one 
propagator using dynamic branching. There were 40, 392, 
341 and 324 for BL, J30, J60 and J90 respectively. In 
this table, the line “solve” reports the number of in- 
stances in which each algorithm found the optimal solu- 
tion, did so in the fastest time “time”, and generated the 
smallest search tree “nodes”, using dynamic branching. 
Line “Av.time” reports the average CPU time (in second) 
used to reach the optimal solution while line “Av.node” 
denotes the average number of nodes reported on in- 
stances solved by both propagators. Both propagators 
solve the same number of instances in each test sets. As 
can be observed form Figure 2, using dynamic branching 
EnEEF performs the strongest among the two algorithms 
on instances less than 30 tasks. Unfortunately, the use of 
a dynamic branching scheme appears to hide the domina- 
tion of EnEEF on EEF. On instances with more than 30 
tasks, EnEEF requires more time for small reduction of 
tree search. 

Here, on BL set (reputed to be highly cumulative [10]), 
87.5% of instances were solved by EnEEF with better 
running time and 85% of instances were solved with 
smallest search tree. On J30, J60 and J90 instances (re- 
puted to be highly disjunctive [10]), the performance of 
the EnEEF is reduced. This result confirms that of Bap- 
tiste et al. [1] concerning the usage of the energetic rea- 
soning on tightness instances. 

 
Table 1. Number of instances in which each algorithm found the optimal solution (solve), did so in the fastest time (time), and 
generated the smallest search tree (nodes), using dynamic branching. Average runtime (Av.time) and nodes (Av.node) count 
on instances where both solvers can found the optimal solution are considered. 

 BL20 BL25 J30 J60 J90 

 EEF EnEEF EEF EnEEF EEF EnEEF EEF EnEEF EEF EnEEF

solve 20 20 20 20 392 392 341 341 324 324 

time 5 15 0 20 289 101 319 21 319 5 

node 0 14 0 20 5 59 3 21 4 10 

Av.time 4.04 3.44 35.60 15.00 5.64 6.59 1.93 2.10 1.08 2.94 

Av.node 27073 20410 166389 86930 19462 17302 3792 3161 2031 2050 



R. KAMEUGNE  ET  AL. 

Open Access                                                                                           AJOR 

598 

 
4.2. Static Branching 

In Table 2, lines “solve”, “time”, “node”, “Av.time” and 
“Av.node” have the same meaning as in Table 1. For 
static branching scheme, an instance of BL25 was solved 
only by the propagator EnEEF in the time available. Two 
other instances for J30 and J60 respectively was soled by 
EEF only in the time available. The tests show that the  

EEF propagator is faster in a large majority of test in- 
stances but the EnEEF remains the best on BL test set. 
As in Table 1, the average running time of EEF is more 
than two times the one of EnEEF on the BL25 test set. 
The same remark can be observed on the average of 
nodes count of the different propagators on BL25 for 
both static and dynamic branching scheme. Figure 3 
compares (left) the proportional runtime of EnEEF over 
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Figure 2. Comparison of (left) proportional runtimes of EnEEF over EEF and (right) proportional nodes count when using 
dynamic branching, sorted by number of tasks of instances. 
 
Table 2. Number of instances in which each algorithm found the optimal solution (solve), did so in the fastest time (time), and 
generated the smallest search tree (nodes), using static branching. Average runtime (Av.time) and nodes (Av.node) count on 
instances were both solvers can found the optimal solutions are considered. 

 BL20 BL25 J30 J60 J90 

 EEF EnEEF EEF EnEEF EEF EnEEF EEF EnEEF EEF EnEEF 

solve 18 18 17 18 359 358 326 325 325 325 

time 3 15 3 14 280 78 304 20 322 3 

node 0 17 0 17 0 52 0 24 0 11 

Av.time 3.69 2.50 28.86 14.11 4.31 5.56 1.37 1.56 0.43 1.36 

Av.node 28818 13291 149298 53120 12465 11150 2616 2313 195 190 
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Figure 3. Comparison of (left) proportional runtimes of EnEEF over EEF and (right) proportional nodes count when using 
static branching, sorted by number of tasks of instances.      
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EEF and (right) the proportional nodes count when using 
static branching, sorted by number of tasks of instances. 
It appears that the propagator EnEEF subsumes the EEF 
in almost all test instances. On tests set J30, J60 and J90, 
EnEEF need more time for a weak reduction of the tree 
search on instances solved by the propagators. 

5. Conclusion 

In this paper, it is presented a new filtering algorithm for 
cumulative resource, hybridization of the extended edge- 
finding rule and the energetic reasoning. The new algo- 
rithm is stronger than the extended edge-finding algo- 
rithm, but weaker than the energetic reasoning and runs 
in  3n  where n  is the number of tasks sharing the 
resource. In practice, it is a good trade-off between the 
filtering power and the running time. Experimental re- 
sults demonstrate that on a standard benchmark suite, our 
new algorithm reduces substantially more number of 
nodes—thus the tree search—than the extended edge- 
finding algorithm on instances where the number of tasks 
is less than 30. The time complexity of this algorithm 
remains too high. Our future work will focus on the re- 
duction of the complexity of this algorithm from  3n  
to  2 logn n  using a  -tree data structures. 
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