
American Journal of Operations Research, 2013, 3, 589-600
Published Online November 2013 (http://www.scirp.org/journal/ajor)
http://dx.doi.org/10.4236/ajor.2013.36056

Open Access AJOR

Energetic Extended Edge Finding Filtering Algorithm for
Cumulative Resource Constraints

Roger Kameugne1,2, Sévérine Betmbe Fetgo3, Laure Pauline Fotso3
1Department of Mathematics, Higher Teachers’ Training College, University of Maroua, Maroua, Cameroon

2Department of Mathematics, Faculty of Sciences, University of Yaounde I, Yaoundé, Cameroon
3Department of Computer Sciences, Faculty of Sciences, University of Yaounde I, Yaoundé, Cameroon

Email: rkameugne@yahoo.fr, rkameugne@gmail.com, betmbe2000@yahoo.fr, lpfotso@ballstate.bsu.edu

Received September 28, 2013; revised October 28, 2013; accepted November 5, 2013

Copyright © 2013 Roger Kameugne et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Edge-finding and energetic reasoning are well known filtering rules used in constraint based disjunctive and cumulative
scheduling during the propagation of the resource constraint. In practice, however, edge-finding is most used (because it

has a low running time complexity) than the energetic reasoning which needs  2n time-intervals to be considered

(where n is the number of tasks). In order to reduce the number of time-intervals in the energetic reasoning, the maxi-
mum density and the minimum slack notions are used as criteria to select the time-intervals. The paper proposes a new

filtering algorithm for cumulative resource constraint, titled energetic extended edge finder of complexity  3n . The

new algorithm is a hybridization of extended edge-finding and energetic reasoning: more powerful than the extended
edge-finding and faster than the energetic reasoning. It is proven that the new algorithm subsumes the extended
edge-finding algorithm. Results on Resource Constrained Project Scheduling Problems (RCPSP) from BL set and
PSPLib librairies are reported. These results show that in practice the new algorithm is a good trade-off between the
filtering power and the running time on instances where the number of tasks is less than 30.

Keywords: Constraint-Based Scheduling; Global Constraint; Cumulative Resource; Energetic Reasoning;

Edge-Finding; Extended Edge-Finding; Maximum Density; Minimum Slack

1. Introduction

Scheduling is the process of assigning resources to tasks
or activities over the time. There exist many types of
scheduling problems following the tasks properties (pre-
emptive or non-preemptive), the type of resources (dis-
junctive or cumulative) and the objective function (make-
span, time late...). When a unique cumulative resource
with non-preemptive tasks is considered, the problem is
called cumulative scheduling problem (CuSP).

In a CuSP, a set of tasks T has to be executed on a
resource of fixed capacity C. Each task i requires a
fixed and constant amount of resource ic , and has to be
executed during a fixed amount of time ip without in-
terruption between an earliest start time est i (release
date) and a latest completion time lct i (deadline). A
solution of a CuSP instance is an assignment of valid
start time is to each task i in such a way that resource
constraints are satisfied i.e.,

: est lcti i i i ii T s s p      (1)

,

:
i i i

i
i T s s p

c C



   

  (2)

The inequalities in (1) ensure that each task is assigned
a feasible start and end time, while (2) enforces the re-
source constraint. An example of CuSP is given in
Figure 1.

The energy of a task i , is defined as i i ie c p  , its
earliest completion time as ect esti i ip  and its latest
start time as lst lcti i ip  . The energy notation along
with that of earliest start and latest completion time may
be extended to non-empty sets of tasks as follows:

, est min est , lct max lctj j j
j jj

e e   

   (3)

where  is a non-empty set of tasks. By convention, if
 is the empty set, est   , lct   , and

0e  . Throughout the paper, it is assumed that for any

R. KAMEUGNE ET AL.

Open Access AJOR

590

Figure 1. A scheduling problem of 5 tasks sharing a resource of capacity C = 3.

task i T , est lcti i ip  and ic C , otherwise the
problem has no solution.

The CuSP is a NP-complete problem [1]. Therefore,
only relaxation of the problem, for which it is possible to
implement a polynomial time algorithm exists. In [2], the
cumulative resource constraint is modelized by the global
constraint CUMULATIVE in a constraint programming
approach. The global constraint CUMULATIVE embeds
many filtering algorithms. Among these algorithms, en-
ergetic reasoning, edge-finding and timetabling are the
most used.

1.1. Related Works

To our knowledge, the word “energetic edge-finder” was
firstly used in [3] where the author incorporates the en-
ergy-based deduction rule to edge-finder algorithm for
disjunctive (unary) resource. The idea of hybridization of
the edge-finding rule and the energetic reasoning for
cumulative resource was suggested in [4]. Indeed, in [4],
Mercier and Van Hentenryck propose a two phase
edge-finding algorithm where in the first phase, the po-
tential adjustment values are computed. They found that
many of these potential update values are unused and can
be used inside an energetic-based second phase. After
this suggestion, many filtering algorithms, hybridization
of edge-finding rule and energetic reasoning have been
proposed [5,6]. In [6], the authors use in the first phase,
the edge-finding algorithm of [7,8] to compute the poten-
tial update values and identify the corresponding time
bounds of task intervals which provide the maximum
update values. To each task, the time bounds used in the
second phase is either the task intervals of maximum
density or the task intervals of minimum slack. The re-
sulting algorithm runs in  2n since both phases have
this complexity. This algorithm was later improved in [5]
by choosing for each task, the time bounds of task inter-
vals of both maximum density and minimum slack which
provide the maximum update values. Experimental re-
sults on RCPSP of the PSPLib [9] library and BL set [10]

show that this variant is a good trade-off between the
filtering power and the complexity but it does not domi-
nate the edge-finding algorithm.

Energetic reasoning is one of the most powerful filter-
ing algorithm in cumulative scheduling problems [1,10]
since it dominates all the other rules (edge-finding [4,7,
8,21], extended edge-finding [4,11], timetable [1], time-
table edge-finding [12], timetable extended edge-finding
[13]) except the not-first/not-last rule [14,15]. However,
it is not commonly used because it has a high running
time ( 3n time complexity), needs a high number of
time-intervals to be considered and its success highly
depends on the tightness of the variable bounds (highly
cumulative problems). Recently, in [16], the authors pro-
posed an approximative criterion for the potential of the
energetic reasoning which allows the decrease of the
running time with more nodes to explore in the search
tree. The combination of a solver of the CP and SAT
techniques for conflict analysis played recently an im-
portant role to solve cumulative scheduling problems effi-
ciently [17,18].

In this paper, it is extended the energetic edge finder of
[5] by adding the guarantee that the final algorithm de-
duces more than edge-finding and extended edge-finding.
The main idea of our energetic extended edge finder is
the combination of the best properties of (extended)
edge-finding rule (interesting time bounds and good run-
ning time) and energetic reasoning (powerful filtering
rule). The paper starts with the hypothesis that, the time
bounds of task intervals used in the (extended) edge-
finding algorithm can be interesting in an energetic rea-
soning. Based on this hypothesis, the number of time
intervals to be considered in an energetic reasoning is
reduced to those of (extended) edge-finding.

1.2. Contribution

This paper uses the time-bounds of task intervals consid-
ered in the computation of the edge-finding algorithm
[7,8] and the extended edge-finding algorithm [11] in an

R. KAMEUGNE ET AL.

Open Access AJOR

591

energetic reasoning. Indeed, in [7,8], a complete edge-
finding algorithm is proposed based on maximum density
and minimum slack. The minimum slack is used in [11]
to perform the extended edge-finding algorithm. The
algorithm presented in this paper is an energetic version
of the edge-finding and the extended edge-finding algo-
rithms of [7,8,11] respectively. The complexity of the
corresponding algorithm is  3n where n is the
number of tasks since each of the algorithm of [7,8] and
[11] are quadratic.

It is obvious that the new algorithm subsumes the
edge-finding and the extended edge-finding algorithms.
The filtering power of this algorithm is less than the one
of the energetic reasoning, but in practice, it is a good
trade-off between the filtering power and the running
time. Empirical evaluation of the algorithm on the
RCPSP instances of well known library prove that, the
new algorithm performs in most of the cases better in
term of reduction of number of nodes of the search tree
than the quadratic extended edge-finding [11], but needs
more time to do so, for instances of more than 30 tasks.

The rest of the paper is organized as follows: Section 2
is devoted to the specification of the edge-finding rule
and the energetic reasoning. In Section 3, the new ener-
getic extended edge-finder is described and some of its
properties are deduced. Experimental results are provided
in the last Section.

2. Edge-Finding Rule and Energetic
Reasoning Rule

In this section, it is specified the (extended) edge-finding
rule as well as the energetic reasoning.

2.1. Edge-Finding and Extended Edge-Finding
Rules

Let T be the set of tasks of a CuSP. If the energy e
of a set of tasks T  is larger than the available en-
ergy  lct estC   , then the problem has no feasible
solution. Overload checking algorithms typically enforce
the following relaxation of this feasibility condition,
which may be computed in  logn n time [19,20].

Definition 1 (E-Feasibility) ([4]) A CuSP problem is
E-feasible if:

 , , lct est .T C e         (4)

For a given CuSP, an edge-finding rule identifies a set
of tasks T  and a task i such that, in any so-
lution, all tasks of  end before the end of i . More
precisely, if the scheduling of task i as early as possi-
ble (i.e., starting at est i) induces an overload in the in-
terval  est , lct  then, all the tasks in  end before
the end of i noted here i as in [21]. When all
tasks of a set  end before the end of a task i , then

the release date of task i is updated to:

 1
est est rest ,i i

i

i c
c

 
     

 
 (5)

for all    such that  rest , 0ic  ,

    lct est if
rest ,

0 otherwise
i

i

e C c
c           


 (6)

Proposition 1 provides conditions under which all tasks of
a set  of a CuSP end before the end of a task .i

Proposition 1 [4,7,8,11,21] Let T  be a set of
tasks of a CuSP of capacity C and i T  be a
task.

    lct est ;i ie C i       (EF)

ect lct ;i i   (EF1)

   
est est ect

.
ect est lct est

i i

i i

i
e c C



   

 
     

 (EEF)

And if i then the earliest start time of task i is
updated to

 

 
rest , 0

1
est max est , max est rest ,

i

i i i
ic

c
c

 

         
 (Upd)

with

     if
rest ,

0 otherwise
i

i

e C c lct est
c           


 (7)

Rules (EF) and (EF1) are known as edge-finding de-
tection rules while (EEF) is the extended edge-finding
detection rule. It is proved in [4] that a complete
edge-finding algorithm that only considers sets T 
and    , which are task intervals can be imple-
mented. The definition of the task intervals is given in
Definition 2.

Definition 2 (Task Intervals) (After [22]) Let ,j k T .
The task intervals ,j k is the set of tasks

 , est est lct lct .j k j s s ks T      (8)

In [7,8], the authors propose a quadratic edge-finding
algorithm based on maximum density and minimum
slack notions.

Definition 3 [7,8] Let  be a task set of an E-
feasible CuSP. The slack of the task set  , denoted
SL , is given by:

 lct est .SL C e     

Definition 4 [7,8] Let i and k be two tasks of an
E-feasible CuSP.  ,k i is a task depending on the
tasks k and i , where  ,est est ik i  and that defines
the task intervals with the minimum slack: for all j T

R. KAMEUGNE ET AL.

Open Access AJOR

592

such that est estj i ,

      
,, ,,lct est lct est .

j kk i kk k jk iC e C e
       (9)

The detection of the classic edge-finding rule (EF) is
done with the task intervals of minimum slack. For ad-
justment, as it is proved in [7,8], the task intervals of
minimum slack and the one of maximum density are
considered.

Definition 5 [7,8] Let  be a task set of an E-
feasible CuSP. The density of the task set  , denoted
Dens , is given by:

.
lct est

e
Dens 


 




Definition 6 [7,8] Let i , k be two tasks of an
E-feasible CuSP.  ,k i is a task depending on the
tasks k and i , where  ,est esti k i and that defines
the task intervals with the maximum density: for all tasks
j T such that est esti j ,

 

 

, ,,

,

.
lct est lct est

k i kj k

k j k k i

ee







 
 (10)

The main idea of the edge-finding algorithm of [7,8] is
that once the relation i is discovered, then it is not
necessary to iterate over all subsets  of  . It is
enough to consider only (1) subset with minimum slack
and est est i  and (2) subset with maximum density
and est est i  . Using those two subsets, if est i can be
improved, then it will be updated, although not necessar-
ily immediately to the best value. More iterations of the
algorithm may be needed for that.

The extended edge-finding rule (EEF) detects addi-
tional updates missing by the edge-finding rule. In [11],
the authors propose a quadratic extended edge-finding
algorithm based on minimum slack notion. This algo-
rithm supposes that the fix point of the edge-finding is
reached and looks for the upper bound of the task inter-
vals of minimal slack instead of the lower bound as it is
the case for the edge-finding algorithm.

Definition 7 [11] Let i and j be two tasks of an
E-feasible CuSP with est esti j .  ,j i is a task de-
pending on the tasks j and i , where  ,lct lct ij i 
and that defines the largest task intervals with the mini-
mum slack: for all k T such that lct lctk i

      
,, ,,lct est lct est .

j kj j ij k jj iC e C e
       (11)

2.2. Energetic Reasoning

In the edge-finding rule, the energy required by a non-
empty set of tasks  only considers tasks which are
completely processed within the time window  est , lct 
while, the partial contribution of each task is taken into

account in the energetic reasoning. There exists many
varieties of energy consumption required by a task de-
pending on the type of tasks, Fully Elastic energy and
Partial Elastic energy for preemptive tasks and Left-
shift/Right-shift energy for non-preemptive tasks [10].

Let i be a task and  ,a b be a time interval with
a b . The left-shift/right-shift energy consumption re-
quired by i over  ,a b noted  , ,W a b i is the non-
negative minimum of 1) the volume in the interval
 ,a b , 2) the energy of task i , 3) the left shifted en-
ergy, and 4) the right shifted energy i.e.,

 
  

, ,

max 0, min , ,ect , lsti i i i

W a b i

c b a p a b    
 (12)

The overall energy consumption required by all tasks
noted  ,W a b over an interval  ,a b is defined as

   , , , .
i T

W a b W a b i


  (13)

For a given CuSP, it is obvious that if there exists a
time interval  ,a b with a b such that its overall
required energy consumption is more than available en-
ergy, then the problem is infeasible. This necessary con-
dition is provided in the following proposition.

Proposition 2 [1] Let  ,a b be a time interval with
a b . If

   ,C b a W a b  (14)

then the problem is infeasible.
In [1,10], the authors give a precise characterization of

time bounds for which the necessary condition of the
existence of a feasible scheduling should be guaranteed.
This necessary condition is more powerful than the
E-feasible one defined earlier. There exist  2n rele-
vant intervals to be considered to detect infeasibility.
These intervals correspond to start and completion times
of tasks. If

 

 

   

1

2

: est , ect , lst ,

: lct , ect , lst

and : est lct

i i i
i T

i i i
i T

i i
i T

O

O

O t t











  






then the relevant intervals are given by   1 2,a b O O  ,
for a fixed 1a O :    1,a b O O a  , and for a fixed

2b O :     2,a b O b O  , with a b . The authors
propose a quadratic algorithm for testing this necessary
condition in [1,10].

The left-shift energy required of a task i over a time
interval  ,a b defined by

 
    

, ,

min , ,min ect , max est ,

l

i i i i

W a b i

c b a p b a   
 (15)

R. KAMEUGNE ET AL.

Open Access AJOR

593

is ic times the number of time units during which i
executes after time a if i is left-shifted, i.e., sche-
duled as soon as possible. If scheduling task i as early
as possible (i.e., starting at est i) induces an overload in
the interval  ,a b then task i ends after b and est i
can be updated according to Proposition 3.

Proposition 3 [1] Let  ,a b be an interval with
a b and i be a task such that

   , est , ecti ia b   .

If

       , , , , ,lW a b W a b i W a b i C b a     (ER)

holds, then the earliest start time of task i is updated to:

        

est max est ,

1
, , , .

i i

i
i

a

W a b W a b i C c b a
c






 
          

(ERupd)

No specific characterization of relevant intervals for
the adjustment was proposed so far. With the  2n
relevant intervals used for infeasibility test, it is derived a
 3n algorithm for adjustment in [1,10]. In practice,

the energetic reasoning adjustment is too time-consum-
ing for producing any useful result [1]. The paper tries to
determine a better trade off between the filtering power
and running time by reducing the number of intervals to
examine. It is used the time bounds of task intervals of
edge-finding and extended edge-finding algorithm in an
energetic reasoning. The corresponding algorithm runs in
 3n as pure energetic reasoning adjustment.

3. The Energetic Extended Edge-Finder

3.1. The Rule

The energetic extended edge-finding rule is obtained by
substituting e by  est , lctW   in the edge-finding
detection rule (EF) and the extended edge-finding detec-
tion rule (EEF). It can be observed that the energetic
reasoning rule (ER) is a generalization of rules (EF) and
(EEF) with more strong energy consumption required by
tasks over interval  est , lct .  The energetic extended
edge-finding combines the techniques of edge-finding,
extended edge-finding and partially the energetic rea-
soning. The new adjustment rule is obtained by substi-
tuting the energy e by  est , lctW   in the (ex-
tended) edge-finding adjustment rule.

3.2. Algorithm

The algorithm proposed in this Section is an energetic
version of the edge-finding and the extended edge-find-
ing algorithm of [7,8,11] respectively. The time bounds

of task intervals used in the edge-finding (resp. the ex-
tended edge-finding) for detection and adjustment are
used in an energetic reasoning. The new algorithm runs
in  3n since each of the edge-finding and extended
edge-finding algorithms are quadratic [7,8,11].

The algorithm is broken into two parts to make it more
digest. The first part is an energetic variant of the edge-
finding algorithm of [7,8] while the second part is the
one of the extended edge-finding algorithm of [11] (ad-
justments missing by the edge-finding and detect with
the extended edge-finding).

3.2.1. First Part
This part consists only in adding an inner loop in the
edge-finding algorithm of [7,8] after detection of time
bounds, to recompute the energy of each task intervals
 plus the partial contribution of the rest of tasks

.T  It is presented in Algorithm 1 where:
1) The first outer loop (line 3) selects, in the order of

non-decreasing deadlines, the tasks k T which form
the possible upper bounds of the task intervals.

2) The first inner loop (line 5) selects the tasks i T
that includes the possible lower bounds for the task in-
tervals, in non-increasing order by release date. If
lct lcti k , then the energy and density of ,i k are cal-
culated; if the new density is higher than  , ,k i k where
the task  ,k i is specified in Definition 6, then
 ,k i becomes i (line 9). If lct lcti k , then if the

current  ,k i sat isf ies  ,est lctkk i  and ect i

 ,est k i (line 12), then the energy required by interval

  ,est , lctkk i

 is computed in the inner loop of line 13.

The condition of line 15 checks if the interval

  ,est , lctkk i

 is overloaded (see inequality (12)) and if
the condition of line 17 is fulfilled, then the potential
update iDupd of the release date of i is calculated
(line 18), based on the current interval   ,est , lctkk i


 .

This potential update is stored only if it is greater than
the previous potential update value calculated for this
task using the maximum density time bounds. The re-
lease date of task i is updated at line 20 when the en-
ergetic reasoning condition of line 19 is fulfilled (see
inequality (ER)).

3) The second inner loop (line 23) selects i in
non-decreasing order by release date. The energies stored
in the previous loop (line 21) are used to compute the
slack of the current interval ,i k . If the slack is lower
than that of  , ,k i k where  ,k i is specified in
Definition 4, then  ,k i becomes i (see line 25). For

any task i with a deadline greater than lctk , if the
current  ,k i satisfies  ,est lctkk i  (line 28), then

the energy required by interval   ,est , lctkk i

 is com-

puted in the inner loop of line 29. The condition of line

R. KAMEUGNE ET AL.

Open Access AJOR

594

 Require: T is an array of tasks

 Ensure: A lower bound iest is computed for the release date of each task

1 for i T do

2 := , := , :=i i i iest est Dupd SLupd  

3 for k T by non-decreasing deadline do

4 : 0, max : 0, :Energy Energy est   

5 for i T by non-increasing release dates do

6 if i klct lct then

7 := iEnergy Energy e

8 if
max

k i k

Energy Energy

lct est lct est

 
    

 then

9 max : , : iEnergy Energy est est 

10 else

11  := , := , , := 0ka est b lct W a b

12 if  > ib a ect a  then

13 for j T do

14      , := , , ,W a b W a b W a b j

15 if     < ,C b a W a b then

16 fail (No solution exists)

17 if         , , , > 0iW a b W a b i C c b a     then

18
       , , ,

:=max , i

i i

i

W a b W a b i C c b a
Dupd Dupd a

c

      
     

19 if         , , , , , >lW a b W a b i W a b i C b a   then

20  := max ,i i iest est Dupd 

21 :=iE Energy

22 min :SL   , := kest lct

23 for i T by non-decreasing release date do

24 if   mink i iC lct est E SL   then

25 : , min : ()i k iest est SL C lct est E    

26 if  >i klct lct then

27  : , : , , : 0ka est b lct W a b  

28 if  >b a then

29 for j T do

30      , : , , ,W a b W a b W a b j 

31 if     < ,C b a W a b then

32 fail (No solution exists)

33 if         , , , > 0iW a b W a b i C c b a     then

34
       , , ,

: max , i

i i

i

W a b W a b i C c b a
SLupd SLupd a

c

      
      

35 if         , , , , , >lW a b W a b i W a b i C b a   then

36  : max , ,i i i iest est SLupd Dupd 

Algorithm 1. Energetic extended edge finding algorithm in
3()n time.

31 checks if the interval   ,est , lctkk i


 is overloaded

(see inequality (12)). If the condition of line 33 is ful-
filled, then the potential update iSLupd of the release
date of i is calculated (line 34), based on the current
interval   ,est , lctkk i


 . This potential update is stored

only if it is greater than the previous potential update
value calculated for this task using the minimum slack
time bounds. If the energetic reasoning condition is ful-
filled at line 35 (see inequality (ER)), then the release
date of task i is updated at line 36.

4) At the next iteration of this first outer loop,  ,k i
and  ,k i are re-initialized.

This first algorithm (Algorithm 1) corresponds to the
energetic edge-finding algorithm.

3.2.2. Second Part
This part is the energetic version of the extended edge-
finding algorithm of [11]. It consist in adding an inner
loop in the extended edge-finding algorithm of [11] after
detection of time bounds, to recompute the energy of
each task intervals  plus the partial contribution of
the rest of tasks .T  The corresponding algorithm is
presented in Algorithm 2 where:

1) The outer loop (line 37) iterates through the tasks
j T forming the possible lower bounds of the task

intervals.
2) The inner loop (line 39) selects the tasks i T that

comprise the possible upper bounds for the task intervals,
in non-decreasing order of deadlines. If est estj i , then
the energy and the slack of ,j i are calculated. The
slack is then compared to the slack of  , ,j j i (see line
42) where  ,j i is specified in Definition 7. If the
new slack is higher,  ,j i becomes i (line 43). If
est estj i (line 44), then if the current  ,j i satisfies

37 for j T do

38 : 0,max : 0, : jEnergy Energy lct est  

39 for i T (T sorted by non-decreasing deadlines) do

40 if  j iest est then

41 : iEnergy Energy e 

42 if     maxi j jC lct est Energy C lct est Energy    

then
43 max : , : iEnergy Energy lct lct 

44 else

45  : , : , , : 0ja est b lct W a b  

46 if  > ib a ect a  then

47 for k T do

48      , := , , ,W a b W a b W a b k

49 if     < ,C b a W a b then

50 fail (No solution exists)

51 if         , , , , , >lW a b W a b i W a b i C b a   then

52
       , , ,

:= max , i

i i

i

W a b W a b i C c b a
est est a

c

      
       

53 for i T do

54 :=i iest est

Algorithm 2. Energetic extended edge finding algorithm in
3()n time.

R. KAMEUGNE ET AL.

Open Access AJOR

595

 ,lct est jj i  and ect esti j (line 46), then the energy

required by interval   ,est , lctj j i

 is computed in the

inner loop of line 47. The condition of line 49 checks if
the interval   ,est , lctkk i


 is overloaded (see inequality

(12)). If the energetic reasoning condition is fulfilled at
line 51 (see inequality (ER)), then the release date of task
i is updated at line 52 based on the current potential

update value determined by interval   ,est , lctj j i

 .

3) At the next iteration of this outer loop,  ,j i is
re-initialized.

Merging Algorithms 1 and 2, the corresponding algo-
rithm title “EnEEF” is an energetic extended edge-find-
ing algorithm.

3.3. Some Properties of EnEEF

The energetic extended edge-finding algorithm EnEEF is
compared to the conjunction of the edge-finding and the
extended edge-finding. It is proved that, this algorithm
subsumes the conjunction of edge-finding and extended
edge-finding algorithm.

3.3.1. The Energetic Extended Edge-Finder EnEEF
Performs Some Additional Adjustments
Missing by (Extended) Edge-Finding

Using the CuSP instance of Figure 1, it is found that the
energetic extended edge-finder EnEEF performs addi-
tional adjustments missing by (extended) edge-finding.
Indeed, the application of the (extended) edge-finding
algorithm on the CuSP instance of Figure 1 doesn’t
produce any adjustment whereas the application of our
energetic extended edge finder EnEEF permits to update
the release date of task A from 1 to 5. When the task B
(resp. C or D) is considered at the outer loop of line 3,
the bounds of the task intervals of maximum density are
[3,6) and the condition of line 19 holds for 3a  and

6.b  It follows that

     
   

, , , , ,

8 2 10 9 3 6 3

lW a b W a b A W a b A

C b a

 

         

and
       

  
, , ,

8 0 3 1 6 3 2.

AW a b W a b A C c b a   

     

Therefore, the release date est A is updated to

      , , ,
est

3 2 5.

A
A

A

W a b W a b A C c b a
a

c

    
   

 
  

The reader can check that no propagation is performed
by the timetable edge-finding rule of [12] and the timeta-
ble extended edge-finding rule of [13] on the CuSP in-
stance of Figure 1.

3.3.2. The Energetic Extended Edge-Finder EnEEF
Subsumes the Edge-Finding Algorithm

Theorem 1 The energetic extended edge-finder EnEEF
subsumes the edge-finding algorithm of [7,8].

Proof. It is important to prove that the edge-finding
algorithm can not propagate anything when the energetic
extended edge-finder EnEEF reaches the fix point.

By contradiction: assume that the energetic extended
edge-finder EnEEF reaches the fix point, and that how-
ever, the edge-finding algorithm can propagate i.e., there
are i ,  and  ,    such that (EF) or (EF1)
holds and (Upd) improves est i using  . It will be
prove (by contradiction) that the energetic extended
edge-finding algorithm EnEEF can update the time
bounds of task i .

1) The rule (EF1) holds. In this case, two subcases are
considered:

(a) If est est i  , then the energy contribution of task
i in the time interval  est , lct  is  lct esti ic  
since ect lct .i  The inequality

 1
est rest , esti i

i

c
c    (16)

holds since the release date of task i is updated using
the rule (Upd) and it is algebraically equivalent to

   lct est lct est .i ie c C       (17)

Let k T be a task such that : .klct lct According
to [7,8],  is the task intervals of minimum slack
(Definition 4) and it follows

    
 
 

, ,,lct est lct est

lct est .

k i kk k i

i i

C e C e

c

    



    

 
 (18)

When the task k is considered in the outer loop of line
3, in the second inner loop of line 23 the condition

       , , , , ,lW a b W a b i W a b i C b a     (19)

is detected at line 35 since    
 , ,

, , ,
k i k

W a b W a b i e


 

and    , , lct estl i iW a b i c   where  ,: est k ia  and
: lctkb  and the adjustment follows.
(b) If est esti  , then the energy contribution of task

i in the time interval  est , lct  is  lct estic  
since ect lct .i  The inequality

 rest , 0ic  (20)

holds since the release date of task i is updated using
the set  and the rule (Upd) and it is algebraically
equivalent to

   lct est lct est .ie c C        (21)

Let k T be a task such that : .klct lct According
to [7,8],  is the task intervals of maximum density

R. KAMEUGNE ET AL.

Open Access AJOR

596

(Definition 6) and it follows

 

 

, ,

,

.
lct est lct est

k i k

i
k k i

e e
C c





 

 

  
 

 (22)

Therefore, it appears that

       , , , ,lct est lct est .
k i k i k kk i k ie c C

       (23)

When the task k is considered in the outer loop of line
3, in the first inner loop of line 5 the condition

       , , , , ,lW a b W a b i W a b i C b a     (24)

is detected at line 19 since    
 , ,

, , ,
k i k

W a b W a b i e
 

and     ,, , lct estl i k k iW a b i c   where  ,: est k ia 
and : lctkb  and the adjustment follows.

2) The rule (EF) holds: Let k T be a task such that
lct : lct .k  According to [7,8],  is the task intervals
of minimum slack (Definition 4) and it follows

    , ,,lct est .
k i kk ik iC e e

    (25)

When the task k is considered in the outer loop of line
3, in the second inner loop of line 23 the condition

       , , , , ,lW a b W a b i W a b i C b a     (26)

is detected at line 35 since    
 , ,

, , ,
k i k

W a b W a b i e


 

and  , ,l iW a b i e where  ,: est k ia  and : lctkb 
and the adjustment follows using the potential update
values previously computed.■

According to this theorem, the first outer loop of line 3
ensures us that the fix point of the edge-finding rule will
always be reached. This result is used to demonstrate that
our algorithm dominates the extended edge-finding rule.
In the following theorem, it is proved that, at the fix point
of the edge-finding rule, if the extended edge-finding rule
detects the relation i for a set of tasks  and a
task i then the set  can help to compute the poten-
tial updated value of est i .

3.3.3. The Energetic Extended Edge-Finder EnEEF
Subsumes the Extended Edge-Finding
Algorithm

Theorem 2 [11] Let T  be a set of tasks and
i T  be a task of an E-feasible CuSP. At the fix
point of the edge-finding rule, if the extended edge-
finding rule detects i then

   1
rest , 0 and est rest , est .i i i

i

c c
c

 
     

 

Using theorem 2, it is derived the following theorem:
Theorem 3 The energetic extended edge-finder EnEEF

subsumes the extended edge-finding algorithm of [11].
Proof. As in Theorem 1, it is prove that the extended

edge-finding algorithm can not propagate anything when
the energetic extended edge-finder EnEEF reaches the fix
point.

The contradiction is used: assume that the energetic
extended edge-finder EnEEF reaches the fix point, and
that however, the extended edge-finding algorithm can
propagate i.e., there are i ,  and  ,    such
that (EEF) holds and (Upd) improves est i using  . It
will be prove (by contradiction) that the energetic ex-
tended edge-finding algorithm EnEEF can update the
time bounds of task i .

Let j T be a task such that est : est .j  Accord-
ing to [11],  is the task intervals of minimum slack
(Definition 7) and it follows

    
 
 

, ,,lct est lct est

ect est .

j j ijj i

i i

C e C e

c

    



    

 
 (27)

When the task j is considered in the outer loop of line
37, in the inner loop of line 39 the condition

       , , , , ,lW a b W a b i W a b i C b a     (28)

is detected at line 51 since    
 , ,

, , ,
j j i

W a b W a b i e
 

and    , , ect estl i iW a b i c   where : est ja  and

 ,: j ib lct . According to Theorem 1, the fix point of

the edge-finding rule is reached and the Theorem 3
shows that the task intervals used for detection can also
be used to perform the adjustment. Therefore, an adjust-
ment is performed at line 52 since this adjustment is jus-
tified by the condition of line 51.■

4. Experimental Results

For our experiments, it is consided the resource-con-
strained project scheduling problems (RCPSP). A RCPSP
consists of a set of resources of finite capacities, a set of
tasks of given processing times, an acyclic network of
precedence constraints between tasks, and a horizon (a
deadline for all tasks). Each task requires a fixed amount
of each resource over its execution time. The problem is
to find a start time assignment for every task satisfying
the precedence and resource capacity constraints, with a
makespan (i.e., the time at which all tasks are completed)
at most equal to the horizon. The cumulative scheduling
problem (CuSP) is a sub-problem of the RCPSP, where
precedence constraints are relaxed and a single resource
is considered at a time; both problems are NP-complete
[10].

Tests were performed on the RCPSP single-mode J30,
J60 and J90 test sets of the well-established benchmark
library PSPLib [9] as well as on the library of [10] (BL).
The data sets J30, J60 and J90 consist of 480 instances of
30, 60 and 90 tasks respectively, while BL consists of 40

R. KAMEUGNE ET AL.

Open Access AJOR

597

instances of 20 and 25 tasks respectively. Each instance
from the PSPLib sets includes tasks to be scheduled over
4 resources, while instances from the BL suite share 3
resources.

Starting with the provided horizon as an upper bound,
each instance of problem is modeled as an instance of
Constraint Satisfaction Problem (CSP); variables are start
times of tasks and they are constrained by precedence
graph (i.e., precedence relations between pairs of tasks
were enforced with linear constraints) and resource limi-
tation (i.e., each resource was modeled with a single CU-
MULATIVE constraint [2]).

Dynamic branching schemes are the most used branch-
ing strategy in CP, as they typically result in smaller
search trees. However, when comparing filtering algo-
rithms of differing pruning strengths, dynamic branching
can be misleading: in some cases the domain resulting
from weaker pruning may result in a choice point yield-
ing a smaller subtree, and hence a faster solution. In or-
der to minimize the effect of differing pruning strength
on the shape of the search trees, it is consided two
branching models:

1) For dynamic branching, variable selection was
based on the minimum of domain size, divided by degree
(i.e., the number of propagators depending on the vari-
able). Ties were broken by selecting the task with the
minimum latest start time; values were taken from the
smallest range for domains with multiple ranges, or the
lesser half of the domain when only one range existed [23].

2) For static branching, it is selected the first unas-
signed variable, and the smallest value in the domain.

Tests were performed on a Pentium(R) Dual-Core
processor, CPU 2.70 ghz, 1.96 GB of RAM. The imple-
mentation was done in c++ using the Gecode 3.7.3 [23]
constraint solver. For each benchmark instance, it is used
branch and bound search to minimize the makespan,
stopping only when the optimum solution was found.
Each test was run three times, with the best result re-
ported; any search taking more than 300 seconds was
counted as a failure.

Two filtering algorithms for different configurations of

the global constraint CUMULATIVE have been considered.
1) The first CUMULATIVE propagator noted “EEF”

for tasks of fixed duration is a sequence of three filters:
the  2n extended edge-finding algorithm from [11],
the overload checking from [19] and timetabling algo-
rithm from [1].

2) The second propagator noted “EnEEF” is a modi-
fied version of “EEF” that substitutes the extended edge-
finding algorithm from [11] for the  3n energetic
extended edge-finder of this paper (EnEEF).

4.1. Dynamic Branching

Table 1 reports the results for all instances from the test
sets BL, J30, J60 and J90 that were solved by at least one
propagator using dynamic branching. There were 40, 392,
341 and 324 for BL, J30, J60 and J90 respectively. In
this table, the line “solve” reports the number of in-
stances in which each algorithm found the optimal solu-
tion, did so in the fastest time “time”, and generated the
smallest search tree “nodes”, using dynamic branching.
Line “Av.time” reports the average CPU time (in second)
used to reach the optimal solution while line “Av.node”
denotes the average number of nodes reported on in-
stances solved by both propagators. Both propagators
solve the same number of instances in each test sets. As
can be observed form Figure 2, using dynamic branching
EnEEF performs the strongest among the two algorithms
on instances less than 30 tasks. Unfortunately, the use of
a dynamic branching scheme appears to hide the domina-
tion of EnEEF on EEF. On instances with more than 30
tasks, EnEEF requires more time for small reduction of
tree search.

Here, on BL set (reputed to be highly cumulative [10]),
87.5% of instances were solved by EnEEF with better
running time and 85% of instances were solved with
smallest search tree. On J30, J60 and J90 instances (re-
puted to be highly disjunctive [10]), the performance of
the EnEEF is reduced. This result confirms that of Bap-
tiste et al. [1] concerning the usage of the energetic rea-
soning on tightness instances.

Table 1. Number of instances in which each algorithm found the optimal solution (solve), did so in the fastest time (time), and
generated the smallest search tree (nodes), using dynamic branching. Average runtime (Av.time) and nodes (Av.node) count
on instances where both solvers can found the optimal solution are considered.

 BL20 BL25 J30 J60 J90

 EEF EnEEF EEF EnEEF EEF EnEEF EEF EnEEF EEF EnEEF

solve 20 20 20 20 392 392 341 341 324 324

time 5 15 0 20 289 101 319 21 319 5

node 0 14 0 20 5 59 3 21 4 10

Av.time 4.04 3.44 35.60 15.00 5.64 6.59 1.93 2.10 1.08 2.94

Av.node 27073 20410 166389 86930 19462 17302 3792 3161 2031 2050

R. KAMEUGNE ET AL.

Open Access AJOR

598

4.2. Static Branching

In Table 2, lines “solve”, “time”, “node”, “Av.time” and
“Av.node” have the same meaning as in Table 1. For
static branching scheme, an instance of BL25 was solved
only by the propagator EnEEF in the time available. Two
other instances for J30 and J60 respectively was soled by
EEF only in the time available. The tests show that the

EEF propagator is faster in a large majority of test in-
stances but the EnEEF remains the best on BL test set.
As in Table 1, the average running time of EEF is more
than two times the one of EnEEF on the BL25 test set.
The same remark can be observed on the average of
nodes count of the different propagators on BL25 for
both static and dynamic branching scheme. Figure 3
compares (left) the proportional runtime of EnEEF over

Runtimes comparison: EnEEF/EEF

101

100

10-1

20 25 30 60 90

number of tasks

Pr
op

or
tio

na
l r

un
ti

m
e

102

Nodes comparison: EnEEF/EEF

101

10-1

20 25 30 60 90

number of tasks

P
ro

po
rt

io
na

l n
od

es
 c

ou
nt

10-2

100

Figure 2. Comparison of (left) proportional runtimes of EnEEF over EEF and (right) proportional nodes count when using
dynamic branching, sorted by number of tasks of instances.

Table 2. Number of instances in which each algorithm found the optimal solution (solve), did so in the fastest time (time), and
generated the smallest search tree (nodes), using static branching. Average runtime (Av.time) and nodes (Av.node) count on
instances were both solvers can found the optimal solutions are considered.

 BL20 BL25 J30 J60 J90

 EEF EnEEF EEF EnEEF EEF EnEEF EEF EnEEF EEF EnEEF

solve 18 18 17 18 359 358 326 325 325 325

time 3 15 3 14 280 78 304 20 322 3

node 0 17 0 17 0 52 0 24 0 11

Av.time 3.69 2.50 28.86 14.11 4.31 5.56 1.37 1.56 0.43 1.36

Av.node 28818 13291 149298 53120 12465 11150 2616 2313 195 190

Runtimes comparison: EnEEF/EEF

101

100

10-1

20 25 30 60 90

number of tasks

Pr
op

or
ti

on
al

 r
un

ti
m

e

Nodes comparison: EnEEF/EEF

100

10-1

20 25 30 60 90

number of tasks

P
ro

po
rt

io
na

l n
od

es
 c

ou
nt

Figure 3. Comparison of (left) proportional runtimes of EnEEF over EEF and (right) proportional nodes count when using
static branching, sorted by number of tasks of instances.

R. KAMEUGNE ET AL.

Open Access AJOR

599

EEF and (right) the proportional nodes count when using
static branching, sorted by number of tasks of instances.
It appears that the propagator EnEEF subsumes the EEF
in almost all test instances. On tests set J30, J60 and J90,
EnEEF need more time for a weak reduction of the tree
search on instances solved by the propagators.

5. Conclusion

In this paper, it is presented a new filtering algorithm for
cumulative resource, hybridization of the extended edge-
finding rule and the energetic reasoning. The new algo-
rithm is stronger than the extended edge-finding algo-
rithm, but weaker than the energetic reasoning and runs
in  3n where n is the number of tasks sharing the
resource. In practice, it is a good trade-off between the
filtering power and the running time. Experimental re-
sults demonstrate that on a standard benchmark suite, our
new algorithm reduces substantially more number of
nodes—thus the tree search—than the extended edge-
finding algorithm on instances where the number of tasks
is less than 30. The time complexity of this algorithm
remains too high. Our future work will focus on the re-
duction of the complexity of this algorithm from  3n
to  2 logn n using a  -tree data structures.

6. Acknowledgements

The authors would like to thank Pierre Ouellet and
Claude-Guy Quimper for providing their paper. We also
thank anonymous referees sincerely for their constructive
and insightful feedback.

REFERENCES
[1] P. Baptiste, C. Le Pape and W. P. M. Nuijten, “Con-

straint-Based Scheduling: Applying Constraint Program-
ming to Scheduling Problems,” Springer, Berlin, 2001.
http://dx.doi.org/10.1007/978-1-4615-1479-4

[2] A. Aggoun and N. Beldiceanu, “Extending CHIP in Order
to Solve Complex Scheduling and Placement Problems,”
Mathematical and Computer Modelling, Vol. 17, No. 7,
1993, pp. 57-73.
http://dx.doi.org/10.1016/0895-7177(93)90068-A

[3] P. Baptiste, “Resource Constraints for Preemptive and
Non-Preemptive Scheduling,” Master 2 in Computer
Science and Operation Research, University of Paris VI,
Institut Blaise Pascal, 1995.

[4] L. Mercier and P. Van Hentenryck, “Edge Finding for
Cumulative Scheduling,” INFORMS Journal on Comput-
ing, Vol. 20, No. 1, 2008, pp. 143-153.
http://dx.doi.org/10.1287/ijoc.1070.0226

[5] S. F. Betmbe, “Energetic Edge Finder: Propagator of
cUmulative Resource Constraints,” Master 2 in Computer
Science, University of Yaounde 1, 2012.

[6] R. Kameugne and L. P. Fotso, “Energetic Edge-Finder for
Cumulative Resource Constraint,” Proceeding of CPDP

2009 Doctoral Program, Lisbone, 2009, pp. 54-63.

[7] R. Kameugne, L. P. Fotso, J. Scott and Y. Ngo-Kateu, “A
Quadratic Edge-Finding Filtering Algorithm for Cumula-
tive Resource Constraints,” In: J. H. M. Lee, Ed., CP
2011—Principles and Practice of Constraint Program-
ming, Springer, Berlin, 2011, pp. 478-492.
http://dx.doi.org/10.1007/978-3-642-23786-7_37

[8] R. Kameugne, L. P. Fotso, J. Scott and Y. Ngo-Kateu, “A
Quadratic Edge-Finding Filtering Algorithm for Cumula-
tive Resource Constraints,” Extended Version of the CP
2011 Paper, Constraints, Forthcoming, 2013.

[9] “PSPLib—Project Scheduling Problem Library,” Online,
2012. http://129.187.106.231/psplib/

[10] P. Baptiste and C. Le Pape, “Constraint Propagation and
Decomposition Techniques for Highly Disjunctive and
Highly Cumulative Project Scheduling Problems,” Con-
straints, Vol. 5, No. 1, 2000, pp. 119-139.
http://dx.doi.org/10.1023/A:1009822502231

[11] R. Kameugne, L. P. Fotso and J. Scott, “A Quadratic
Extended Edge-Finding Filtering Algorithm for Cumula-
tive Resource Constraints,” International Journal of Plan-
ning and Scheduling, Forthcoming, 2013.

[12] P. Vilm, “Timetable Edge Finding Filtering Algorithm for
Discrete Cumulative Resources,” In: T. Achterberg and J.
C. Beck, Eds., CPAIOR 2011—Integration of AI and OR
Techniques in Constraint Programming, Springer, Berlin,
2011, pp. 230-245.
http://dx.doi.org/10.1007/978-3-642-21311-3_22

[13] P. Ouellet and C.-G. Quimper, “Time-Table Extended-
Edge-Finding for the Cumulative Constraint,” Proceeding
of the 19th International Conference on Principles and
Practice of Constraint Programming, LNCS, 2013,
Springer, Berlin, Vol. 8124, pp. 562-577.

[14] R. Kameugne and L. P. Fotso, “A Cumulative Not-First/
Not-Last Filtering Algorithm in O(n2logn),” Indian
Journal of Pure and Applied Mathematics, Vol. 44, No. 1,
2013, pp. 95-115.
http://dx.doi.org/10.1007/s13226-013-0005-z

[15] A. Schutt and A. Wolf, “A New O(n2logn) Not-First/
Not-Last Pruning Algorithm for Cumulative Resource
Constraints,” In: D. Cohen, Ed., CP 2010—Principles
and Practice of Constraint Programming, Springer, Ber-
lin, 2010, pp. 445-459.
http://dx.doi.org/10.1007/978-3-642-15396-9_36

[16] T. Berthold, S. Heinz and J. Schulz, “An Approximative
Criterion for the Potential of Energetic Reasoning,” In: A.
Marchetti-Spaccamela and M. Segal, Eds., Theory and
Practice of Algorithms in (Computer) Systems, Springer,
Berlin, 2011, pp. 229-239.
http://dx.doi.org/10.1007/978-3-642-19754-3_23

[17] S. Heinz and J. Schulz, “Explanations for the Cumulative
Constraint: An Experimental Study,” In: P. M. Pardalos
and S. Rebennack, Eds., Experimental Algorithms, Springer,
Berlin, 2011, pp. 400-409.
http://dx.doi.org/10.1007/978-3-642-20662-7_34

[18] A. Schutt, T. Feydy and P. J. Stuckey, “Explaining Time-
Table-Edge-Finding Propagation for the Cumulative Re-
source Constraint,” CPAIOR 2011—Integration of AI

http://dx.doi.org/10.1007/978-1-4615-1479-4�
http://dx.doi.org/10.1016/0895-7177(93)90068-A�
http://dx.doi.org/10.1287/ijoc.1070.0226�
http://dx.doi.org/10.1007/978-3-642-23786-7_37�
http://dx.doi.org/10.1023/A:1009822502231�
http://dx.doi.org/10.1007/978-3-642-21311-3_22�
http://dx.doi.org/10.1007/s13226-013-0005-z�
http://dx.doi.org/10.1007/978-3-642-15396-9_36�
http://dx.doi.org/10.1007/978-3-642-19754-3_23�
http://dx.doi.org/10.1007/978-3-642-20662-7_34�

R. KAMEUGNE ET AL.

Open Access AJOR

600

and OR Techniques in Constraint Programming, 2013, pp.
234-250.

[19] P. Vilm, “Max Energy Filtering Algorithm for Discrete
Cumulative Resources,” In: W. J. van Hoeve and J. N.
Hooker, Eds., CPAIOR 2009—Integration of AI and OR
Techniques in Constraint Programming, Springer, Berlin,
2009, pp. 294-308.
http://dx.doi.org/10.1007/978-3-642-01929-6_22

[20] A. Wolf and G. Schrader, “O(nlogn) Overload Checking
for the Cumulative Constraint and Its Application,” In: M.
Umeda, A. Wolf, O. Bartenstein, U. Geske, D. Seipel and
O. Takata, Eds., INAP 2005—Applications of Declarative
Programming for Knowledge Management, Springer,

Berlin, 2006, pp. 88-101.
http://dx.doi.org/10.1007/11963578_8

[21] P. Vilm, “Edge Finding Filtering Algorithm for Discrete
Cumulative Resources in O(knlogn),” In: I. P. Gent, Ed.,
CP 2009—Principles and Practice of Constraint Pro-
gramming, Springer, Berlin, 2009, pp. 802-816.
http://dx.doi.org/10.1007/978-3-642-04244-7_62

[22] Y. Caseau and F. Laburthe, “Improved CLP Scheduling
with Task Intervals,” In: P. Van Hentenryck, Ed., ICLP
1994—Logic Programming, MIT Press, Cambridge, 1994,
pp. 369-383.

[23] Gecode, 2012. http://www.gecode.org

http://dx.doi.org/10.1007/978-3-642-01929-6_22�
http://dx.doi.org/10.1007/11963578_8�
http://dx.doi.org/10.1007/978-3-642-04244-7_62�

