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ABSTRACT 

This paper is concerned with the relationship between maximum principle and dynamic programming in zero-sum sto- 
chastic differential games. Under the assumption that the value function is smooth enough, relations among the adjoint 
processes, the generalized Hamiltonian function and the value function are given. A portfolio optimization problem 
under model uncertainty in the financial market is discussed to show the applications of our result. 
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1. Introduction 

Game theory has been an active area of research and a 
useful tool in many applications, particularly in biology 
and economic. Among others, there are two main ap- 
proaches to study differential game problems. One ap- 
proach is Bellman’s dynamic programming, which re- 
lates the saddle points or Nash equilibrium points to 
some partial differential Equations (PDEs) which are 
known as the Hamilton-Jacobi-Bellman-Isaacs (HJBI) 
Equations (see Elliott [1], Fleming and Souganidis [2], 
Buckdahn et al. [3], Mataramvura and Oksendal [4]). 
The other approach is Pontryagin’s maximum principle, 
which finds solutions to the differential games via some 
Hamiltonian function and adjoint processes (see Tang 
and Li [5], An and Oksendal [6]). 

Hence, a natural question arises: Are there any rela- 
tions between these two methods? For stochastic control 
problems, such a topic has been discussed by many au- 
thors (see Bensoussan [7], Zhou [8], Yong and Zhou [9], 
Framstad et al. [10], Shi and Wu [11], Donnelly [12], etc.) 
However, to the best of our knowledge, the study on the 
relationship between maximum principle and dynamic 
programming for stochastic differential games is quite 
lacking in literature. 

In this paper, we consider one kind of zero-sum sto- 
chastic differential game problem within the frame work  

of Mataramvura and Oksendal [4] and An and Oksendal 
[6]. However, we don’t consider jumps. This more gen- 
eral case will appear in our forthcoming paper. For our 
problem in this paper, [4] related its saddle point to some 
HJBI Equation and obtained the stochastic verification 
theorem. [6] proves both sufficient and necessary maxi- 
mum principles, which state some conditions of optimal- 
ity via the Hamiltonian function and adjoint Equation. 
The main contribution of this paper is that we connect 
the maximum principle of [6] with the dynamic pro- 
gramming of [4], and obtain relations among the adjoint 
processes, the generalized Hamiltonian function and the 
value function under the assumption that the value func- 
tion is enough smooth. As applications, we discuss a 
portfolio optimization problem under model uncertainty 
in the financial market. In this problem, the optimal 
portfolio strategies for the trader (representative agent) 
and the “worst case scenarios” (see Peskir and Shorish 
[13], Korn and Menkens [14]) for the market, derived 
from both maximum principle and dynamic program- 
ming approaches independently, coincide. The relation 
that we obtained in our main result is illustrated. 

The rest of this paper is organized as follows. In Sec- 
tion 2, we state our zero-sum stochastic differential game 
problem. Under suitable assumptions, we reformulate the 
sufficient maximum principle of [6] by adjoint Equation 
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and Hamiltonian function, and the stochastic verification 
theorem [4] by HJBI Equation. In Section 3, we prove 
the relationship between maximum principle and dy- 
namic programming for our zero-sum stochastic differ- 
ential game problem, under the assumption that the value 
function is smooth enough. A portfolio optimization pro- 
blem under model uncertainty in the financial market is 
discussed in Section 4, to show the applications of our 
result. 

Notations: throughout this paper, we denote by nR  
the space of n-dimensional Euclidean space, by n dR   
the space of n d  matrices, by nS  the space of n n  
symmetric matrices. ,  and |.| denote the scalar product 
and norm in the Euclidean space, respectively.  ap-
pearing in the superscripts denotes the transpose of a 
matrix. 

2. Problem Statement and Preliminaries 

Let 0T   be given, suppose that the dynamics of a 
stochastic system is described by a stochastic differential 
Equation (SDE) on a complete probability space  , , P   
of the form 

      
      

 

, ; , ;

, ;

, ;

d , , d

, , d ,

,

t x u t x u

t x u

t x u

X s b s X s u s s

s X s u s W s

X t x



 

 




     (1) 

with initial time  0,t T  and initial state nx R . 
Here   

0 t T
W t

 
 is a d-dimensional standard Brown- 

ian motion. For given  0,t T , we suppose the filtra- 
tion  s T

t

t s 
  is generated as the following 

    s t

t

r s
W r W t

 
    , 

where   contains all P-null sets in   and 1 2   
denotes the  -field generated by 1 2  . In particular, 
if the initial time 0t  , we write s

t
s   . 

In the above, 

 : 0, n nb T R U R   , 

 : 0, n n dT R U R     

are given continuous functions, where kU R  is non- 
empty and convex. The U-valued process    , ,u t u t   
  is the control process. 

For any  0,t T , we denote by  ,U t T  the set of 
 s t

t

s
 -adapted processes. For given    . ,u U t T   

and nx R , an nR -valued process  , ; .t x uX  is called  

a solution to (1) if it is an t
s -adapted process such that 

(1) holds. We refer to such    . ,u U t T  as an 
admissible control and     , ; . , .t x uX u  as an admissible  
pair. 

We make the following assumption. 

(H1) There exists a constant 0C   such that for all 
  ˆ ˆ0, , , , ,ns T x x R u u U   , we have 

   ˆ ˆ ˆ ˆ, , , ,b s x u b s x u x x u u     , 

   ˆ ˆ ˆ ˆ, , , ,s x u s x u x x u u      , 

     , , , , 1b s x u s x u x   . 

For any    . ,u U t T , under (H1), it is obvious that 
SDE (1) has a unique solution  , ; .t x uX . 

Let  : 0, nf T R U R    and : ng R R  be con- 
tinuous functions. For any    , 0, nt x T R   and ad-  
missible control    . ,u U t T , we define the following  

performance functional 

      
  

, ;

, ;

, ; , , d

.

T t x u

t

t x u

J t x u E f s X s u s s

g X T

 
 


     (2) 

Now suppose that the control process has the form 

      . . ,π .u  ,               (3) 

where   and π  are valued in two sets 1K  and 2K , 
respectively. We let  ,t T  and  ,t T  be given fami- 
lies of admissible controls  s t s T

 
 

  and  π πs t s T 
 , 

respectively. The zero-sum stochastic differential game 
problem is to find      * *,π , ,t T t T    such that 

   

   
 

   
 

* *

,,

, ,

, , ; ,π

sup inf , ; ,π

inf sup , ; ,π ,

t Tt T

t T t T

V t x J t x

J t x

J t x



 









 



   
 

 
  

 

       (4) 

for given   , 0, nt x T R  , with    , , nV T x g x x R  .  

Such a control process (pair)  * *,π  is called an opti- 
mal control or a saddle point of our zero-sum stochastic 
differential game problem (if it exists). And the corre- 
sponding solution    * , ;. .t x uX X


  to (1) is called the 

optimal state. 
The intuitive idea is that there are two players, I and II. 

Player I controls   and Player II controls  . The ac- 
tions of the two players are antagonistic, which means that 
between Players I and II there is a payoff  , ; ,πJ t x   
which is a cost for player I and a reward for Player II. 

We now define the Hamiltonian function 

  1 2: 0, n n n dH T R K K R R R       

by 

   

    

, , ,π, , : , , ,π ,

, , ,π , , ,π .

H s x p q b s x p

tr s x q f s x

 

  



 
      (5) 
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In addition, we need the following assumption. 
(H2) B, σ, f are continuously differentiable in  , ,πx   

and g  is continuously differentiable in x . Moreover, 
,x xb   are bounded and there exists a constant 0C   

such that for all  0, ,s T    1 2,π K K   , we have 

     , , ,π 1 , .n
x xf s x g x C x x R       

The adjoint Equation in the unknown s -adapted pro- 
cesses ,n n dp R q R    is the backward stochastic dif- 
ferential Equation (BSDE) of the form 

            
   

    

, ; ,π

, ; ,π

d , , ,π , ,

d ,

.

t x

t x
x

H
p s s X s s s p s q s

s
q s W s

p T g X T





    





(6) 

For any      ,π 0, 0,T T   , under (H2), we 
know that BSDE (6) admits a unique s -adapted solu- 
tion     . . .p q . 

We now can state the following sufficient maximum 
principle which is Corollary 2.1 in An and Oksendal [6]. 

Lemma 2.1 Let (H1), (H2) hold and nx R  be fixed. 
Suppose that  

     ,π 0, 0,T T    

with corresponding state process    ˆ ˆ0, 0, ; ,πˆ ˆ. .x xX X  .  

Let  0, ;π .xX  and  0, ; .xX   be  ˆ0, ; ,π .xX   and 

   ˆ0, ; 0, ; ,π. .x xX X  , respectively. Suppose that there  

exists a solution     ˆ ˆ. , .p q  to the corresponding 
adjoint Equation (6). Moreover, suppose that for all 

 0,s T , the following minimum/maximum conditions 
hold: 

        
          

        

1

2

0, ;

0,

0, ;π

π

ˆinf , , ,π , ,

ˆˆ ˆ, , ,π , ,

ˆsup , , ,π, , ,

. .

x

K

x

x

K

E H s X s s p s q s

E H s X s s s p s q s

E H s X s s p s q s

P a s














 
 

   
   



   (7) 

1) Suppose that for all    0, ,s T g x  is concave 
and 

        ˆ ˆ ˆ,π , , ,π, ,x H s x s p s q s  

is concave. Then 

   ˆ ˆˆ0, ; ,π 0, ; ,π , πJ x J x    , 

and 

   
π

ˆ ˆˆ0, ; ,π sup 0, ; ,πJ x J x 


 . 

2) Suppose that for all    0, ,s T g x  is convex and 

        ˆ ˆ ˆ, , , ,π , ,x H s x s p s q s   

is convex. Then 

   ˆ ˆ ˆ0, ; ,π 0, ; ,π ,J x J x     , 

and 

   ˆ ˆ ˆ0, ; ,π inf 0, ; ,πJ x J x


 


 . 

3) If both Cases (1) and (2) hold (which implies, in 
particular, that g is an affine function), then 

   * * ˆ ˆ,π ,π   

is an optimal control (saddle point) and 

    
 

π
sup inf 0, ; ,π

inf sup 0, ; ,π .

V x J x

J x



 







 



   
 

          (8) 

Next, when the control process  ,πu    is 
Markovian, then we can define the generator ,πA  of 
diffusion system (1) by 

   

      

        

,π

2

2

, ,

, , ,π , ,

1
, , ,π , ,

2

A t x t x
t

b t x x x t x
x

tr t x x x t x
x









 










 
  

 

   (9) 

where     1,2.,. 0, ;nC T R R   . 
The following result is a stochastic verification theo- 

rem of optimality, which is an immediate corollary of 
Theorem 3.2 in Mataramvura and Oksendal [4]. 

Lemma 2.2 Let (H1), (H2) hold and    , 0, nt x T R   
be fixed. Suppose that there exists a  

    1,2.,. 0, ;nV C T R R   

and a Markovian control process     ˆ ˆ,πx x   
such that 

1)     ˆ,π ˆ, , , ,π 0, , ,nA V t x f t x x x R        

2)     ˆ,π ˆ, , , ,π 0, π , ,nA V t x f t x x x R       

3)       ˆ ˆ,π ˆ ˆ, , , ,π 0, ,nA V t x f t x x x x R      
4)  ,π  ,  

     0, ; ,π 0, ; ,πlim , x x

t T
t X t h X T 


 , 

5) the family   0, ; ,πx

K
X 





 is uniformly integrable  

for all nx R ,  ,π  , where K  is the set of  

stopping times 

T  .                  (10) 

Then 
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      

   

 

π π

π

sup inf 0, ; ,π inf sup 0, ; ,π

ˆ ˆsup 0, ; ,π inf 0, ; ,π

ˆ ˆ0, ; ,π ,

V x J x J x

J x J x

J x

 



 

 



  



    
 

 



(11) 

and    * * ˆ ˆ,π ,π   is an optimal Markovian control. 

3. Main Result 

In this section, we investigate the relationship between 
maximum principle and dynamic programming for our 
zero-sum stochastic differential game problem. The main 
contribution is that we find the connection between the 
value function V , the adjoint processes ,p q  and the 
following generalized Hamiltonian function 

  1 2: 0, n n nG T R K K R S R       

defined by 

   

    

, , ,π, , : , , ,π ,

1
, , ,π , , ,π .

2

G t x p A b t x p

tr t x A f t x

 

  



 
   (12) 

Our main result is the following. 
Theorem 3.1 Let (H1), (H2) hold and    , 0, nt x T R    

be fixed. Suppose that  * *,π  is an optimal Mark-  

ovian control, and  * .X  is the corresponding optimal 
state. Suppose that the value function  

    1,2.,. 0, ;nV C T R R  , 

then 
(1) 

  
   

     

*

*

* *

, ; ,π

, ; ,π *

2
, ; ,π , ; ,π

2

,

, , ,π ,

, , , ,

t x

t x

t x t x

V
s X s

s

G s X s s

V V
s X s s X s

x x





 








 


 
  

   (13) 

 , , , . .,s t T P a s     

(2) 

  
   

     

*

*

* *

, ; ,π

, ; ,π *

2
, ; ,π , ; ,π

2

,

, , ,

π, , , , ,

t x

t x

t x t x

V
s X s

s

G s X s s

V V
s X s s X s

x x





 








 


 
  

 (14) 

 π , , , . .,s t T P a s     and 

(3) 

        

     

* * * *

2
* *

2

, , , ,π ,

, , , ,

V
s X s G s X s s s

s

V V
s X s s X s

x x




   
 
  

(15) 

 , , . .s t T P a s    

Further, suppose that  

    1,3.,. 0, ;nV C T R R   

and sxV  is also continuous. For any  ,s t T , define 

    
    

      

* *

* *

* *

, ; ,π

2
, ; ,π

2

, ; ,π * *

, ,

,

, , ,π ,

t x

t x

t x

V
p s s X s

x

V
q s s X s

x

s X s s s





 

  
 


 


     (16) 

then     . , .p q  solves the adjoint Equation (6). 
Proof. (13), (15) can be obtained from the HJBI Equa- 

tion (10), by the definitions of the generator ,πA  in (9) 
and the generalized Hamiltonian function G  in (12). 

We proceed to prove the second part. If 

    1,3.,. 0, ;nV C T R R   

and sxV  is also continuous, then from (15), we have 
 

         
 *

2
* *

2
, , , ,π , , , , 0.

x X s

V V V
s x G s x s s s x s x

x s x x




              
 

 

This is equivalent to 
 

            

                     

                       

2 2
* * * * *

2

3
* * * * * * * *

3

2
* * * * * * * * * *

2

, , , , ,π

1
, , ,π , tr , , ,π ,

2

tr , , ,π , , , ,π , , ,π 0,

V V
s X s s X s b s X s s s

s x x

b V V
s X s s s s X s s X s s s s X s

x x x

V f
s X s s s s X s s X s s s s X s s s

x xx



  

    

 


  
   

   
   

               

 


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where 
 

     
13 2 2

3 2 2
tr : tr , , t r ,

n
V V V

x xx x x
  

                                        




  
 

 

with 
1

, , .
n

V V V

x x x

                  




 
On the other hand, applying Ito’s formula to 

  *,
V

s X s
x




, we get 

 

               

           

           

                

      

2 2
* * * * * *

2

3
* * * *

3

2
* * * *

2

* * * * * * *

* * *

d , , , , , ,π

1
tr , , ,π , d

2

, , , ,π d

, , ,π , , , ,π

tr , , ,π

V V V
s X s s X s s X s b s X s s s

x s x x

V
s X s s s s X s s

x

V
s X s s X s s s W s

x
b V f

s X s s s s X s s X s s s
x x x

s X s s s
x



 

 

 

 

  
 

   
    

  




    
  

   





         

           

2
* * * *

2

2
* * * *

2

, , , ,π d

, , , ,π d .

V
s X s s X s s s s

x

V
s X s s X s s s W s

x

 

 

  
 

 
 
 

    







 

 
Note that 

     * *, x

V
T X T g X T

x





. 

Hence, by the uniqueness of the solutions to (6), we 
obtain (16). The proof is complete.□ 

4. Applications 

In this section, we will discuss a portfolio optimization 
problem under model uncertainty in the financial market, 
where the problem is put into the framework of a ze- 
ro-sum stochastic differential game. The optimal portfolio 
strategies for the investor and the “worst case scenarios” 
for the market, derived both from maximum principle and 
dynamic programming approaches independently, coin- 
cide. The relation that we obtained in our main result 
Theorem 3.1 is illustrated. 

Suppose that the investors have two kinds of securities 
in the market for possible investment choice: 

(1) a risk-free security (e.g. a bond), where the price 
 0S t  at time t  is given by 

       0 0 0d d , 0 0,S t t S t t S   

here  t  is a deterministic function; 
(2) a risky security (e.g. a stock), where the price 
 1S t  at time t  is given by 

             1 1 1 1d d d , 0 0,S t t S t t t S t W t S     

here  .W  is a one-dimensional Brownian motion and 
   , 0t t    are deterministic functions with 
   t t  . 
Let  π t  be a portfolio for the investors in the market, 

which is the proportion of the wealth invested in the risky 
security at time t . 

Given the initial wealth  π 0 0Y y  , we assume 
that  π .  is self-financing, which means that the corre-
sponding wealth process  π .Y  admits the following 
dynamics 

            
       

 

π π

π

π

d π d

π d ,

0 .

Y t Y t t t t t t

Y t t t W t

Y y

  



    










  (17) 

A portfolio π  is admissible if it is an t -adapted 
process and satisfies 

        
    

0

2 2

π

π d , - . .

T
t t t t

t t t P a s

  



 

  


 

The family of admissible portfolios is denoted by  . 
Now, we introduce a family Q  of measures Q  pa- 

rameterized by processes  t   such that 



J. T. SHI 

Open Access                                                                                           AJOR 

450 

     d d ,   on  ,TZ T P  Q           (18) 

where 

       
 

d d ,

0 1.

Z t Z t t W t

Z

 



 







           (19) 

We assume that 

 2

0
d , - . .

T
t s P a s               (20) 

If   t   satisfies 

  1,E Z T                    (21) 

then Q  is a probability measure. If in addition, 

         , 0, ,t t t t t T            (22) 

then 

     d dZ T P  Q  

is an equivalent local martingale measure. But here we do 
not assume that (22) holds. 

All   satisfying (20) and (21) are called admissible 
controls of the market. The family of admissible controls 
  is denoted by  . 

The problem is to find  * *,π   such that 

  

  *

*

π

π

π

inf sup

,

U Y T

E U Y T

E




 

  
 

   


 
 



Q

Q

        (23) 

where    : 0, ,U      is a given utility function, 
which is increasing, concave and twice continuously dif- 
ferentiable on  0, . 

We can consider this problem as a zero-sum stochastic 
differential game between the agent and the market. The 
agent wants to maximize his/her expected discounted 
utility over all portfolios π  and the market wants to 
minimize the maximal expected utility of the agent over 
all “scenarios”, represented by all probability measures 
 ;  Q . 

To put the problem in a Markovian framework so that 
we can apply the dynamic programming, define 

    

  *

*

π
1 2

π

π

, , inf sup

,

V t x x U Y T t

E U

E

Y T t





 

   

  

 
 
 

  

Q

Q

   (24) 

where  0,t T  denote the initial time of the investment,  

and    1 1 2 2,x X t x X t   are the initial values of the  

process         ,π 2
1 2: : ,X s X s X s X s R    given 

by 

 
 
 

 
 

          
   

     
   

1

π
2

π

π

dd
d

d d

0
d

π

d , , ,
π

Z sX s
X s

X s Y s

s
Y s s s s s

Z s s
W s s t T

Y s s s





  





  
    
      

 
  

     
 

  
  

   (25) 

which is a 2-dimensional process combined the Ra- 
don-Nikodym process  .Z  with the wealth process 

 π .Y . 

4.1. Maximum Principle Approach 

To solve our problem by maximum principle approach, 
that is, applying Lemma 2.1, we write down the Hamilto- 
nian function (5) as 

 
      

 

1 2 1 2 1 2

1 1 2 2

2 2

, , , ,π, , , , ,

π

π .

H s x x p p q q

x q x s s s p

x s q



   



      


    (26) 

The adjoint Equations (6) are 

         

    
1 1 1

1 2
1

d d d ,

,

p s s q s s q s W s

U
p T X T

x

 











    (27) 

and 

            
         

    

2 2

2 2

2 2
2

d π

π d d

.

p s s s s s p s

s s q s s q s W s

U
p T X T

x

  



     

 













 (28) 

Let  ˆ ˆ,π  be a candidate optimal control (saddle 
point) and let       1 2

ˆ ˆ ˆ. . , .X X X  be the correspond- 
ing state process, with corresponding solution  

             1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ. . , . , . . , .p p p q q q   

to the adjoint Equations. 
By (7) in Lemma 2.1, we first maximize the Hamilto- 

nian function H  over all π . This gives the fol- 
lowing condition for a maximum point π̂ : 

            2 2 2
ˆ ˆ ˆ 0.X s s s p s s q s        (29) 

Then, we minimize H  over all   , and get the  

Following condition for a minimum point ̂ : 

   1 1
ˆ ˆ 0.X s q s                  (30) 

We try a process  1ˆ .p  of the form 
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      1 2
ˆˆ ,p s U f s X s           (31) 

with a deterministic differential function f . 
Differentiating (31) and using (17), we get 

          
            

           
      

              

1 2 2

2 2 2 2
2 2

2

2

2 2

ˆ ˆd

1 ˆ ˆπ̂
2
ˆ π̂

ˆ d

ˆ ˆπ̂ d .

{

}

p s f s X s U f s X s

f s X s s s U f s X s

X s s s s s

f s U f s X s s

X s s s f s U f s X s W s



  



 



  





 (32) 

Comparing this with the adjoint Equation (27) by equat- 
ing the  d ,ds W s  coefficients respectively, we get 

              1 2 2
ˆ ˆˆ π̂ ,q s X s s s f s U f s X s    (33) 

and 

        
            

           
        

2 2

2 2 2 2
2 2

2

2 1

ˆ ˆ

1 ˆ ˆπ̂
2
ˆ π ( )

ˆˆ ˆ .

f s X s U f s X s

f s X s s s U f s X s

X s s s s s f s U

f s X s s q s



  



 



  

 

  (34) 

Substituting (33) into (30), we have 

              1 2 2
ˆ ˆ ˆπ̂ 0,X s X s s s f s U f s X s   (35) 

or 

   π̂ 0, , .s s t T               (36) 

Now, we try a process  2p̂ s  of the form 

          2 1 2
ˆ ˆˆ .p s X s f s U f s X s       (37) 

Differentiating (37) and using (17), (36), we get 

          
          
          

            

2 1 2

2 2

2
2

1 2

ˆ ˆˆd

ˆ ˆ

ˆ ˆ d

ˆ ˆ ˆ d .

p s X s f s U f s X s

f s f s X s U f s X s

f s X s s U f s X s s

f s s X s U f s X s W s





 

 





    (38) 

Comparing this with the adjoint Equation (28), we have 

            2 1 2
ˆˆ ˆˆ ,q s f s X s s U f s X s       (39) 

and 

               
               

2 2

2 2

ˆ ˆ

ˆ ˆ .

f s U f s X s s f s U f s X s

f s X s U f s X s f s s f s





  

  
(40) 

Substituting (39) into (29), we have 

             
            

1 2

1 2

ˆ ˆ

ˆˆ ˆ 0,

s s X s f s U f s X s

s f s X s s U f s X s

 

 



 
 

or 

         ˆ , , .s s s s s t T               (41) 

From (40), we get 

              
      

2 2 2
ˆ ˆ ˆ

0,

U f s X s X s f s U f s X s

f s s f s

 

  
 

or 
      0,f s s f s             (42) 

i.e., 

      exp d , , .
T

s
f s r r s t T         (43) 

Let 0t  , we have proved the following theorem. 
Theorem 4.1 The optimal portfolio strategy π̂  

for the agent is 

   π̂ 0, 0, .t t T                 (44) 

The optimal “scenario”, that is, the optimal probability 
measure for the market is to choose ̂   such that 

          1ˆ , 0, .t t t t t T           (45) 

That is, the market minimize the maximal expected 
utility of the agent by choosing a scenario (represented by 
a probability law  d dZ T P Q ), which is an equiva- 
lent martingale measure for the market (see (22)). 

In this case, the optimal portfolio strategy for the agent 
is to place all the money in the risk-free security, i.e., to 
choose  π 0t   for all t . 

This result is the counterpart of Theorem 4.1 in An and 
Oksendal [6] without jumps with complete information. 

4.2. Dynamic Programming Approach 

To solve our problem by dynamic programming approach, 
that is, applying Lemma 2.2, we write down the generator 

,πA  of the diffusion system (25) as 

   

          

   

     

       

,π
1 2 1 2

2 1 2
2

2
2 2
1 1 22

1

2
2 2 2
2 1 22

2

2

1 2 1 2
1 2

, , , ,

π , ,

1
, ,

2

1
π , ,

2

π , , ,

A t x x t x x
t

x t t t t t x x
x

x t t x x
x

x t t t x x
x

t t t x x t x x
x x

 

  





 





     
















   (46) 
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for     1,2,2 2.,.,. 0, ;C T R R   . 

Applying to our setting, the HJBI Equation (10) gets 
the following form 

     
     
     

ˆ,π 2
1 2 1 2

ˆ,π 2
1 2 1 2

ˆ ˆ,π 2
1 2 1 2

, , 0, , , ,

, , 0, π , , ,

, , 0, , .

i A V t x x x x R

ii A V t x x x x R

iii A V t x x x x R







   

   

  

  (47) 

We try a V  of the form 

    1 2 1 2, , ,V t x x x U f t x           (48) 

for some deterministic function f  with   1f T  . 
Note that conditions (i), (ii), (iii) in (47) can be rewritten 
as 

   ˆˆ ˆ,π ,π
1 2 1 2inf , , , , 0,A V t x x A V t x x 


      (49) 

   ˆ ˆ ˆ,π ,π
1 2 1 2

π
sup , , , , 0.A V t x x A V t x x 


      (50) 

Maximizing  ˆ,π
1 2, ,A V t x x  over all π  gives the 

following first-order condition for a maximum point π̂ : 

          
        

2

2
2 2

ˆ0

π̂ .

t t t t U f t x

x t t f t U f t x

   



     


    (51) 

We then minimize  ˆ,π
1 2, ,A V t x x  over all   and 

get the following first-order condition for a minimum 
point ̂ : 

        1 2 2π̂ 0.t x x t f t U f t x         (52) 

From (52) we conclude that 

   π̂ 0, 0, ,t t T                 (53) 

which substituted into (51) gives 

         ˆ , 0, .t t t t t T              (54) 

And the HJBI Equation (iii)  ˆ ˆ,π
1 2, , 0A V t x x   states  

that with these values of π̂  and ̂ , we should have 

           1 2 2 2 1 2 0,x U f t x x f t x t x U f t x f t     

or 

      0,f t t f t                (55) 

i.e., 

      exp d , 0, .
T

t
f t r r t T         (56) 

We have proved the following result. 
Theorem 4.2 The optimal portfolio strategy π̂  

for the agent is 

   π̂ 0, 0,t t T                 (57) 

(i.e., to put all the wealth in the risk-free security) and the 

optimal “scenario” for the market is to choose ̂   
such that 

          1ˆ , 0,t t t t t T             (58) 

(i.e., the market chooses an equivalent martingale meas- 
ure or risk-free measure 

̂
Q  for the market). 

This result is the counterpart of Theorem 2.2 in Ok- 
sendal and Sulem [15] without jumps. 

4.3. Relationship between Maximum Principle 
and Dynamic Programming 

We now verify the relationships in Theorem 3.1. In fact, 
relationship (13), (14), (15) is obvious from (47). We only 
need to verify the following relations 

 

 
 

1
1

1 2

2

2

ˆ
, , ,

ˆ

V
p t x

t x x
Vp t
x

 
  
 
  

 
 
 

 

and 

 
 

   
   

2 2

2
1 1 2 11

1 22 2
2 2

2
2 1 2

ˆˆ
, , .

ˆ π̂

V V
q t x x x tx

t x x
q t V V x t t

x x x





  
                       

 

Note that  π̂ 0t  , the above relations are easily ob- 
tained from (48), (31), (37), (33) and (39). 

5. Conclusions and Future Works 

In this paper, we have discussed the relationship between 
maximum principle and dynamic programming in zero- 
sum stochastic differential games. Under the assumption 
that the value function is smooth, relations among the ad- 
joint processes, the generalized Hamiltonian function and 
the value function are given. A portfolio optimization pro- 
blem under model uncertainty in the financial market is 
discussed to show the applications of our result. 

Many interesting and challenging problems remain 
open. For example, what is the relationship between max- 
imum principle and dynamic programming for stochastic 
differential games without the illusory assumption that the 
value function is smooth? This problem may be solved in 
the framework of viscosity solution theory (Yong and 
Zhou [9]). Another topic is that we can continue to inves- 
tigate the relationship between maximum principle and 
dynamic programming for forward and backward sto- 
chastic differential games, and then study its applications 
to stochastic recursive utility optimization problem under 
model uncertainty (Oksendal and Sulem [16]). Such top- 
ics will be studied in our future work. 
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