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ABSTRACT 

Bacteria, like industrial engineers, must manage processes that convert low value inputs into high value outputs. Bacte- 
ria are not intelligent, so they utilize self-organizing production systems to accelerate life-sustaining chemical processes. 
Here I explore two questions. First, can businesses apply the principles of self-organization? Second, can operations 
researchers contribute to our understanding of biological systems? I explain biochemical concepts in plain terms, illus- 
trated with a few informative laboratory evolution experiments, and describe the organizing principles that underlie 
complex biological systems. I describe the new disciplines of synthetic biology and metabolic engineering, which offer 
opportunities for interdisciplinary collaboration between life scientists and operations researchers. 
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1. Cells Are Self-Organizing Factories 

Imagine the perfect factory, one that manufactures high 
value products quickly and efficiently according to de- 
mand, resists disruptions, but readily reorganizes to pro- 
duce new products in response to new market opportuni- 
ties. Bacterial cells evince these properties, although the 
analogy is imperfect. Bacteria don’t require human em- 
ployees who are sometimes driven by motivations that 
don’t align with organizational goals. Furthermore, bac- 
teria are “selfish”, as they evolved to produce compounds 
for themselves rather than for sometimes fickle human 
customers. The similarities and differences between fac- 
tories and bacteria are nevertheless informative, and offer 
lessons to industrial engineers and biologists alike.  

Bacteria face challenges analogous to those that con- 
front factory managers. They must convert low value 
inputs (substrates, such as sunlight, water or carbon di- 
oxide) into higher value outputs (products, such as sugar) 
to survive. All organisms are obliged to compete for food, 
so their life-sustaining processes must be fast (high 
throughput or flux), resource efficient (lean processes, 
with minimal bottlenecks and waste products) and pre- 
cise (low process variation). Bacteria live in changing 
environments, so they must detect molecular signals, 
withstand health threats and make efficient process 
tradeoffs (appropriate prioritization of cost, quality, time, 
flexibility) in accordance with their needs. Bacteria are 
not intelligent, and unlike factories are self-assembling, 
self-regulating, self-repairing and self-replicating. Most 
importantly, they invent new systems that evolve without 
guidance from any intelligent designer. Indeed, an under- 

standing of adaptive molecular evolution is the key to 
understanding how and why the manufacturing opera- 
tions of a cell self-organize. 

The purpose of this review is to pose two questions. 
First, can operations researchers design self-organizing 
businesses? Second, can mathematical modeling be used 
to understand and improve biological systems? Solutions 
to these problems could be theoretically important and 
economically valuable, but will not be easy. They will 
likely require interdisciplinary collaboration that will be 
impeded by the linguistic barriers between the biological 
and industrial sciences. 1 will first review some funda- 
mental biochemical concepts in lay terms (Section 2). 
Readers already well-versed in the scientific jargon of 
enzymes and metabolism are welcomed to skip ahead to 
Section 3, which describes the nature of complex sys- 
tems. Lessons for operations researchers are summarized 
in Section 4, and collaborative opportunities with syn- 
thetic biologists and metabolic engineers are described in 
Section 5. 

2. Biochemical Concepts in Plain English 

All living things (organisms) survive by converting nu- 
trients into chemical energy (catabolism), and using that 
energy to convert available building block molecules into 
cellular infrastructure (anabolism). To a biochemist, this 
set of self-sustaining processes IS life. Most of these re- 
actions do not occur rapidly enough under physiological 
conditions (in water at neutral pH at body temperature) to 
support life, so cells create tiny protein machines called 
enzymes that accelerate the conversion of input (substrate 
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molecules) into output (product molecules). Each en- 
zyme catalyzes at least one assembly process (chemical 
reaction), and is thus analogous to a piece of manufac- 
turing equipment within a factory. 

Enzymes, like modern manufacturing equipment, are 
incredibly fast and precise. Many have maximum capaci- 
ties (or turnover numbers) of thousands of chemical 
conversion events per second; some catalyze millions of 
events per second. Enzymes typically cause reactions to 
occur a billion times faster than they otherwise would 
[1]—a reaction that would normally take 30 years to 
complete in a test tube would occur within a second after 
the addition of enzyme. It has to be the right enzyme 
though, as most are highly specific, which is to say that 
most are thought to recognize a particular substrate and 
convert it into a particular product. Recent experimental 
results, including some from my laboratory, suggest that 
enzymes are not perfectly precise. I will explain the im- 
plications of these findings below. 

Individual enzymes are not sufficient to transform 
sugar into chemical energy, or to convert sunlight, water 
and carbon dioxide into sugar and oxygen. Enzymes 
work in assembly lines called metabolic pathways, in 
which the product of one enzyme becomes the substrate 
for the next. Each pathway is a collection of enzymes 
that carries out a process, defined as “collection of tasks, 
connected by flows of goods and information, that trans- 
forms various inputs into more valuable outputs” [2]. 
Most of the substrates and products within a cell at any 
given time are metabolic intermediates, analogous to 
unfinished inventory within the continuous processes of 
an operational factory. For example, the pathway that 
produces cholesterol, a valuable compound essential for 
cell membranes and steroid hormones, from acetyl-CoA, 
the common breakdown product of carbohydrates, lipids 
and proteins, includes 12 enzyme-catalyzed reactions. 
Nearly all steps are thermodynamically unfavorable, 
which means that they are very unlikely to occur in the 
absence of a catalyst. In the cell they are coupled by the 
enzymes to the expenditure of chemical energy extracted 
(by other enzymes) during the breakdown of nutrients 
into acetyl-CoA. The human body thus produces choles- 
terol whenever it is absent from the diet. 

All of the metabolic pathways in a cell connect th- 
rough their substrates and products to form a single 
metabolic network. Maps of these networks resemble the 
process flow diagrams for the manufacture of compli- 
cated products. Only a subset of the metabolic pathways 
are activate at any given time, in accordance with the 
needs of the cell. The production and utilization of che- 
mical energy in a cell is analogous to the cash flows of a 
business. Anabolic pathways, such as those that build the 
biological infrastructure of the cell, require energy inputs 
that are analogous to operational expenses. Over the long 
run, the catabolic (energy producing) pathways must pro- 

duce at least as much energy as that utilized by anabolic 
pathways, so that the cell can achieve balance (steady- 
state). 

Bacteria, like businesses, do not live in constant envi- 
ronments except perhaps in the protected confines of a 
laboratory. Metabolic pathways are regulated through a 
variety of mechanisms. Enzymes depreciate (unfold) qui- 
ckly for reasons explained below, so they can be regu- 
lated by increasing or decreasing the rates at which they 
are replaced. Some enzymes, generally those that cata- 
lyze the rate-determining step (bottleneck), are activated 
or deactivated by the substrates or products of other en- 
zymes. This transistor-like form of control, called allos- 
tery, enables almost instantaneous feedback regulation of 
pathways. Some enzymes catalyze the chemical modifi- 
cation of other enzymes—indeed multi-enzyme signaling 
pathways mediate most of the information flow from the 
exterior a cell to the enzymes within. These regulatory 
mechanisms collectively enable appropriate responses to 
changes in intracellular inventory counts and the external 
environment. 

For example, the enzyme 3-hydroxy-3-methyl-glutar- 
yl-CoA reductase (HMG-CoA reductase), which cata- 
lyzes the rate-limiting step of the aforementioned bio- 
synthesis of cholesterol, is regulated in several ways. The 
logic is straightforward—HMG-CoA reductase is acti- 
vated whenever chemical energy is available—but can 
seem complicated in the obscure jargon of metabolic bio- 
chemistry. The Sterol Regulatory Element Binding Pro- 
tein activates the transcription of the HMB-CoA Reduc- 
tase gene when cholesterol levels are low. When the con- 
centration of Adenosine Mono Phosphate is high, indi- 
cating low levels of chemical energy (since AMP is a 
precursor to ATP, the chemical energy currency of the 
cell), a regulatory enzyme called AMP-activated protein 
kinase inactivates HMG-CoA reductase by catalyzing the 
attachment of a phosphate group. Another regulatory 
enzyme, HMG-CoA reductase phosphatase, which is it- 
self activated by the hormone insulin through a complex 
multi-protein mechanism, catalyzes the removal of that 
phosphate group, and the consequent re-activation of 
HMG-CoA reductase [3]. This key enzyme is regulated 
in at least two other ways. The logic is simple but the 
biochemical mechanisms are too complicated to discuss 
here. Incidentally, these regulatory mechanisms appar- 
ently evolved in a low cholesterol world. Too much cho- 
lesterol can cause heart disease, so many people today 
must reduce their dietary intake and artificially inhibit 
HMG-CoA reductase with statins, such as Lipitor™, 
Crestor™ and Zocor™. 

3. Enzymes, Metabolic Pathways and  
Regulatory Networks Are Complex  
Systems 

All biological systems are complex, which is to say that 
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their emergent properties are functions of interactions 
between their components. Enzymes are proteins, which 
are chains of subunits (amino acids) that fold up (self- 
assemble) into three-dimensional shapes. All proteins are 
composed of the same 20 amino acids, just as all English 
words are composed of some subset of the same 26 let- 
ters. Proteins with different amino acid sequences fold up 
into different three dimensional shapes with different 
functions. Biological complex systems are holons, which 
means that they function as components are larger com-
plex systems [4]. Metabolic pathways are composed of 
enzymes. Metabolic networks are composed of pathways. 
Populations are composed of individual organisms. Eco- 
systems are composed of populations. Businesses are 
similarly complex at each level of order. It is therefore 
impractical to formulate models, of either metabolic net- 
works or businesses, without making some simplifying 
assumptions. 

All complex systems evolve, and this property enables 
self-assembly, self-repair and self-replication. The pro- 
tein sequences are encoded by DNA (deoxyribonucleic 
acid) sequences, which are subject to change through 
mutation. The three-dimensional fold (conformation) of a 
wild-type (non-mutant) protein is critical for function, 
but is also fragile. Relatively modest changes in tem- 
perature or concentration can cause a protein to unfold, 
aggregate and lose its biological function, which inci- 
dentally is why normally transparent egg “whites” solid- 
ify and turn white when they are cooked. Deleterious 
mutations can cause DNA to encode novel protein se- 
quences that never fold properly, and therefore never 
function at all. Beneficial mutations, which are much 
rarer, lead to improvements in the function (speed, speci- 
ficity) or durability (stability) of a protein, thereby im- 
parting a competitive advantage upon the whole organ- 
ism. 

My research team, and many others, studies the adap- 
tive evolution of proteins in the laboratory. Random mu- 
tations can be introduced into protein-coding genes as 
they are amplified (under conditions that compromise the 
fidelity of the enzyme that copies DNA [5,6]). The mu- 
tated genes are inserted into a “vector”, most commonly 
a circular “plasmid” DNA that is replicated by the en- 
zymes within bacteria, which are then injected into live 
cells. The “transformed” cells, those now carrying a mu- 
tant gene and plasmid, are induced to express (produce) 
mutant protein and evaluated in high throughput screens. 
Cells, or colonies of genetically identical cells, that ex- 
hibit properties (such as reactivity with a substrate that 
changes color in reactions with enzyme) are isolated and 
characterized. Multiple rounds of random mutation and 
screening can lead to the evolution of protein variants 
quite different from their ancestors [7]. The lessons that 
we learn from these “directed evolution” experiments, 
and from the subsequent biochemical analysis of the 

evolved proteins, and the intermediate forms, are de- 
scribed below. 

Charles Darwin understood 150 years ago that varia- 
tion, which we now know is caused by mutation, and 
natural selection can improve the fitness of a biological 
system. It was not obvious then how new functions ori- 
ginate. Theologian William Paley captured the dilemma 
well when he wrote “The existence of a watch implies 
the existence of a watchmaker” [8]. Contemporary Crea- 
tionists still wonder out loud how complex systems can 
originate by chance if their components cannot function 
on their own. Darwin’s responded by hypothesizing that 
biological parts that were selected for one function could 
nevertheless end up with other “promiscuous” activities 
[9]. Darwin’s hypothesis has received ample experimen- 
tal support [10], and we and others have demonstrated 
that it holds true at the molecular level. 

Wayne Patrick, now a faculty member at Otago Uni- 
versity in New Zealand, screened the genes of the bacte- 
rium Escherichia coli. He found over a dozen that were 
multifunctional, each with secondary activity strong en- 
ough to rescue cells from starvation [11]. The screen was 
limited to a small subset (2.4%) of the genes (each with 
at least one function) within this bacterium so we predict 
that multi-functionality is common among enzymes [12]. 
Our results suggest that many functions are redundant, 
which make E. coli, and presumably all other organisms, 
more robust (resilient) against mutations. In combination 
with the directed evolution experiments reviewed above, 
they also suggest a plausible mechanism for the evolu- 
tion of novel catalytic functions. Suppose that a popula- 
tion of bacteria were challenged with a new toxin, or a 
new potential nutrient. The multifunctional proteins with 
those bacteria could potentially serve as seeds for the 
next steps in evolutionary innovation, just as redundant 
manufacturing equipment could be re-purposed for the 
production of a new product. The modularity of DNA 
and protein sequences enables adaptation to changes in 
the chemical environment, just as the design principles of 
service oriented architectures help businesses adapt to 
changes in the marketplace. 

4. Lessons for Operations Researchers 

Biologists have used the bacterium, E. coli, as a model 
system (or reference organism) for over a century [13]. 
They continue to study the structure and function of its 
metabolic network, but the lessons learned so far could 
be instructive to operations researchers. As I argued 
above, bacteria rely not upon intelligence but rather upon 
systems that are self-assembling, self-repairing and self- 
replicating to convert low value inputs into high value 
outputs. The Darwinian formula of genetic variation and 
natural selection enables self-organization. We and many 
other have shown that laboratory evolution can increase 
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the stability and/or catalytic efficiency of enzymes (vide 
supra). An analogous selection process has improved 
manufacturing productivity throughout the global econ- 
omy since the start of the Industrial Revolution. The di- 
rected evolution of factories is not practical as a design 
tool, but computer simulations of competing virtual busi- 
nesses could well be informative.  

My co-workers and I have learned three broad lessons 
from our experiments that may prove useful to industrial 
engineers. First, random mutation and selection can make 
a mediocre enzyme better, but don’t often create entirely 
new activities [14]. The universe of possible proteins will 
never be explored. The average E. coli protein contains 
360 amino acids so the number of possible proteins 
(composed of the standard 20 amino acids) of that length 
is 20360 = 2 × 10468. It is technically difficult to charac- 
terize a million cells at a time (106 = 204.6). Populations 
of mutant proteins that differ in sequence from their an- 
cestor by more than five mutations cannot be exhaus- 
tively characterized. Since five mutations is only 1.4% of 
the average protein, it is unlikely that entirely new activi- 
ties could emerge from the population. I have neverthe- 
less tried this experiment on several occasions, but so far 
without success. We currently believe that enzymes gain 
unselected secondary activities by chance [11], and that 
these novel functions are improved through Darwinian 
evolution in response to environmental change. 

We also learned about the trade-offs between general- 
ist and specialist enzymes. In macroscopic terms, gener- 
alists are species, such as the cockroach and rat, that 
consume a wide variety of foods. In contrast, specialists, 
like the giant panda and koala, excel at extracting energy 
from a single food source. Specialists thrive when the 
environment is stable, while generalists are more likely 
to survive periods of change. In our experience, however, 
directed enzyme evolution generally leads to enzyme 
variants that are broader in specificity (i.e. reactive with 
broader range of substrates) than the ancestral form (a 
naturally specific enzyme), even under conditions in 
which the environment is permanently changed from one 
state to another [15,16]. Specialist enzymes are appar- 
ently more architecturally elaborate, and therefore more 
difficult to evolve, than generalist enzymes. 

Finally, we have come to appreciate the benefits of 
functional redundancy. Biological systems can fail, just 
as manufacturing equipment can break down, so the ca- 
pacity of one enzyme to “pinch hit” for another enhances 
the robustness (resistance to perturbation) of the whole 
system. Redundancy also enhances evolvability, by en- 
abling one copy to adapt to new circumstances, while 
another retains its original essential function [17]. The 
costs of redundancy upon biological systems and busi- 
nesses are generally easier to estimate than the benefits. 
Furthermore, I expect that control theorists are biased 

toward simpler networks because they are easiest to 
model and explain. The emergent properties of more 
com-plicated complex systems are relatively difficult to 
predict, so it seems likely that industrial engineers disre- 
gard opportunities to make businesses more evolvable 
and more robust. 

5. Opportunities for Operations Researchers 
in Synthetic Biology and Metabolic  
Engineering 

Traditionally, biologists have conducted experiments to 
understand how living systems work. In recent years, 
however, some have begun to modify existing systems or 
to create completely artificial ones. The new discipline of 
synthetic biology was enabled by several new technolo- 
gies. The cost of DNA sequencing continues to drop, so 
the number of possible “parts” for the design of biologi- 
cal “circuits” and “devices” continues to increase. The 
cost of gene synthesis also continues to decrease, so it is 
now possible to create new bacterial chromosomes that 
contain millions of nucleotide subunits [18]. Many DNA 
sequences are synthesized in accordance with the “Bio- 
Brick” standard [19], so that “parts” created in one lab 
can easily be combined with those from another. High 
throughput screens, like those employed for directed evo- 
lution experiments (vide supra), enable the trial-and- 
error of different designs on an industrial scale. Synthetic 
biologists have applied these tools to create bacterial 
cameras [20] and bacteria that swim toward theophylline, 
a natural drug derived from cocoa beans [21]. 

Some synthetic biologists assemble and express meta- 
bolic pathways in living cells, thereby converting them 
into microbial factories that add value to chemical feed 
stocks (metabolic engineering). The economic impact of 
any artificial biosynthetic pathway depends upon its yield. 
For example, biofuels get a lot of press (and venture 
capital funding) but all products of this fledgling industry 
are more expensive to produce than gasoline. New path- 
ways generally require new regulatory mechanisms for 
optimal productivity. The host genome, that is the genes 
on the bacterial chromosome, can also be modified to 
improve production yields, but metabolic networks re- 
main poorly characterized so it is difficult to know a pri- 
ori how alterations in the flux of one pathway will affect 
the flux through another.  

Metabolic engineers employ two complementary ap- 
proaches. The rational design approach is exemplified by 
Bernhard Palsson and his co-workers, who formulated a 
computational model of the Escherichia coli metabolic 
network [22]. Metabolic engineers have used this model 
to guide the rational mutagenesis of the E. coli genome 
[23]. This approach, however, is limited by the mathe- 
matical accuracy of the model; most of the underlying 
parameters (i.e. the concentrations of enzymes metabolic 
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intermediates, catalytic properties of hundreds of en- 
zymes) have not been experimentally determined. Fur- 
thermore, the primary functions of many proteins, par- 
ticularly those from poorly characterized organisms, re- 
main unknown. The secondary activities described above 
remain mostly undocumented [11,12,24,25]. Metabolic 
network models are experimentally tested and refined by 
measuring overall constraints (growth rates, capacity to 
withstand mutation) [26]. In metabolic flux analyses, 
isotope-labeled substrates are fed to bacteria and tracked 
(by nuclear magnetic resonance or gas chromatography- 
mass spectroscopy) as enzymes convert them into other 
compounds [23,27]. Functional genomics experiments 
will continue to elucidate the biological roles of unchar- 
acterized Open Reading Frames (ORFs) [28].  

Metabolic engineers also use random mutagenesis and 
screening to increase the flux through an economically 
valuable pathway. This classical approach mimics natural 
selection, but is generally labor-intensive and inefficient 
for two reasons. First, bacterial reproduction is generally 
asexual (no DNA recombination), which means that the 
evolving strains accumulate mildly deleterious mutations 
(Muller’s Ratchet); beneficial alleles compete instead of 
recombine, and drive each other into extinction (clonal 
interference [29]). The second difficulty is the labor as- 
sociated with high throughput screening. The desired 
secondary metabolite is rarely essential to the host or- 
ganism, so the productivity of individual strains must be 
determined by techniques, such as automated reverse 
phase High Performance Liquid Chromatography (HPLC), 
that are relatively difficult to scale up in throughput. 

Bacterial are “selfish”, as they evolved to produce en- 
ergy and chemical compounds for themselves rather than 
for human consumers. The efficient biosynthesis of phar- 
maceuticals, biofuels and biomaterials will likely require 
large scale restructuring of bacterial genomes. It is possi- 
ble to direct the mutation of many genes [30,31]. One 
group has synthesized a whole bacterial chromosome, 
and has implanted it within a cell to demonstrate its func- 
tionality [18]. The capacity to change or create DNA, 
however, does not guarantee the design of more efficient 
processes. The latter will require an understanding of 
metabolic biochemistry and control theory. A few indi- 
viduals possess expertise in both disciplines [23, 32-34] 
but many challenges remain so interdisciplinary collabo- 
rations are still likely to be productive.  

6. Conclusion 

Bacteria convert low value inputs into high value outputs, 
but unlike factories are products of evolution rather than 
intelligent design. In other words, bacteria and industrial 
engineers face similar problems but solve them in very 
different ways. Unfortunately, the biochemists who study 
metabolism and the operations researchers who study 

businesses generally work in different schools, speak dif- 
ferent languages, and study their systems in very dif- 
ferent ways. The traditional segregation of these disci- 
plines creates some interesting collaborative opportuni- 
ties. Can self-organizing systems improve the efficien- 
cies of factories? Can evolutionary approaches be applied 
to the design of industrial processes? Can the mathe- 
matical models of operations research help explain the 
structure and organization of natural metabolic networks? 
Does control theory offer solutions to metabolic engi- 
neers? I hope that this essay provokes some interdisci- 
plinary conversations that lead to the right questions. 
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