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ABSTRACT

A Mond-Weir type second-order dual continuous programming problem associated with a class of nondifferentiable
continuous programming problems is formulated. Under second-order pseudo-invexity and second-order quasi-invexity
various duality theorems are established for this pair of dual continuous programming problems. A pair of dual con-
tinuous programming problems with natural boundary values is constructed and the proofs of its various duality results
are briefly outlined. Further, it is shown that our results can be regarded as dynamic generalizations of corresponding
(static) second-order duality theorems for a class of nondifferentiable nonlinear programming problems already studied

in the literature.
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1. Introduction

Second-order duality in mathematical programming has
been extensively investigated in the literature. In [1]
Chen formulated second order dual for a constrained
variational problem and established various duality results
under an involved invexity-like assumption. Subsequently,
Husain et al. [2], have presented MondWeir type second-
order duality for the problem of [3], and by introducing
continuous-time version of secondorder invexity and
generalized second-order invexity, validated various
duality results. Recently Husain and Masoodi [4] formu-
lated a Wolfe type dual for a nondifferential variational
problem and proved usual duality theorems under
second-order pseudoinvexity condition.

In this research, in order to relax the requirement of
second-order pseudoinvexity we formulate a Mond-Weir
type second-order dual to a class of nondifferentiability
continuous programming problems where nondifferen-
tiability enters due to the square root of a certain qua-
dratic form appearing in the integrand of the objective
functional. The popularity of this type of problems seems
to originate from the fact that, even though the objective
function and or constraint functions are non-smooth, a
simple representation of the dual problem may be found.
The theory of non-smooth mathematical programming
deals with more general type of functions by means of
generalized subdifferentials. However, square root of
positive semi-definite quadratic form is one of the few
cases of the nondifferentiable functions for which one
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can write down the sub-or quasi-differentials explicitly.
Here, various duality theorems for this pair of Mond-
Weir type dual problems are validated under second-
order pseudo-invexity and quasi-invexity conditions. A
pair of Mond-Weir type dual variational problems with
natural boundary values rather than fixed end points is
formulated and the proofs of its duality results are briefly
indicated. It is also shown that our second-order duality
results can be considered as dynamic generalizations of
corresponding  (Static) second-order duality results
established for nondifferentiable nonlinear programming
problems, considered by J. Zang and Mond [5].

2. Pre-Requisites

Let I = [a, b] be areal interval, ¢:Ix R" x R" — R and
w: I x R" x R" — R" be twice continuously differentiable
functions. In order to consider ¢(t,x(t),5c(t)) where x: [
— R" is differentiable with derivative x, denoted by ¢

nd ¢,, the first order of ¢ with respect to x(t) and

x(t) respectively, that is,

w22 )

oo’ ax
’ _[% o 6¢jf
Clext T et )

Denote by ¢, the nxn Hessian matrix of ¢, and y,
the m x n Jacobian matrix respectively, that is, with re-
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spect to x(f), that is

(o
P = (8}6’8}0’ j’

i,j=1,2, -, n, w,the m x n Jacobian matrix.
oy oy v
ox' ox* ox"
oy* oy’ oy’

v, = ox'  ox? ox"

m m m

oy v .
o' o’ X" Jn

The symbols ¢,, ¢, ¢, and w, have analogous
representations. Designate by X the space of piecewise
smooth functions x: / — R”, with the norm
||x|| = ||x||oo +||Dx||m, where the differentiation operator D
is given by

u=Dx& x(t):.:[u(s)ds

d . oL
Thus % =D except at discontinuities.

We incorporate the following definitions which are
required in the subsequent analysis.

Definition 1. (Second-Order Invex): If there exists a
vector function 7 =7(s,x,x)eR" where #: I x R" x R"
— R" and with # = 0 at t = a and ¢ = b, such that for a
scalar function ¢(¢,x,x), the functional

[#(tx,%)de
where ¢. [ X R" x R" — R satisfies
j¢(z,x,x)dt—j{qﬁ(t,x,x*)_%pr (z)Gp(t)}dt

> _[{UT¢X (&%, E) +(Dn)" ¢, (t)?f) + UTGp(t)} dar

1

Then [#(t,x.%)de

7
is second-order invex with respect to #. Where
G=¢,-2Dg,+D’¢,— D4, and peC(L,R"), the
space of n -dimensional continuous vector functions
Definition 2. (Second-Order Pseudoinvex): If the
functional j ¢(t,x,%)de satisfies

I{”T@ +(Dn) ¢, + UTGp(t)} dt>0

1

:>j¢(t,x,x)dt 2£{¢(t,)_c,x;)—%p(t)r Gp(t)}dt

1

>
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Then [#(t,x.%)de

1
is said to be second-order pseudoinvex with respect to 7.

Definition 3. (Second-order Quasi-Invex): If the
functional J¢(t,x,5c)dt satisfies

}f¢(t,[x,5c)dt < l{qﬁ(r,f, x;)—%p(t)T Gp(t)}dt
= f{’ﬁ’x +(Dn) ¢, +77’G(t)p(t)}dz <0
Then jqﬁ(t,x,ic)dt

is said to be second-order quasi-invex with respect to 7.

Remark 1. If ¢ does not depend explicitly on #, then
the above definitions reduce to those given in [5] for
static cases.

Consider the following class of nondifferentiable con-
tinuous programming problems studied in [6]:

(VP): Minimize

(x50 0y 301500 s

Subject to x(a) = 0 =x(b), g(t.x(¢).x(¢))<0, tel,
h(tx(t),%(t))=0,te1.

Where, 1) f, g and /4 are twice differentiable functions
from I x R" x R" into R, R" and R" respectively, and

2) B(t) is a positive semi-definite n x n matrix with
B(-) continuous on /.

The proposition gives the Fritz John optimality condi-
tions which are derived by Chandra, et al. [6].

Proposition 1. (Fritz John optimality Conditions):
If (CP) attains a local minimum at x € X and if
h, (t,y_c(t),x;(t)) maps X onto a closed subspace of C(/,
RP), then there exist Lagrange multipliers z€R, ,
piecewise smooth y: 1 — R™ and ji: I — R, not all
zero, and also piecewise smooth z : / — R" satisfying,
forall tel,

If h (t,f(t),fc(t)) is surjective, then 7 and y are
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not both zero. The following Schwartz inequality has
been used in deriving the above optimality conditions
given and will also be required in the forthcoming analy-
sis of the research.

Lemma 1 (Schwartz Inequality): It states that

x(e) B(e)w(r)
<(w(0)" B()x(0))” (se) Bl)w(c)
with equality in (1) if (and only if)

B(1)(x(t)-q () w(1) =0

for some ¢(7)eR.

Remark 2. The Fritz John necessary optimality condi-
tions in Proposition 1 for (VP) become the Karush-
Kuhn-Tucker type optimality conditions if 7 = 1. It suf-
fices for 7 = 1, that the following Slater’s Constraint
qualification holds:

g(6x(0),% (1)) + g, (6:%(2),%(1))v(2)

+g (6% (1), %(1))v (1) <O, v() e X, for all te 1

12 (D
el

3. Mond-Weir Type Second-Order Duality

Consider the following continuous programming prob-
lem (CP) by ignoring the equality constraint,
h(t x(t),x(t )) =0,t eI, in the problem (VP):

(CP): Minimize

[{rlets0) (07 801500 o

Subject to
x(a):Ozx(b) (2)
g(tx(t),x(r))<0,rel 3)

In the spirit of Zhang and Mond [5], we formulated the
following Mond-Weir type second-order dual continuous
programming problem (M — WCD):

(M — WCD): Maximize

Jif(t,u,d)+u(t)T B(Z)a)(t)—%ﬂ(t)T F(z)ﬂ(z)}dr
Subject to
u(a)=0=u(b) “

/ +B(t)a)(t)+y(t)T g,
+(F+G)p(1)=0,tel

J,{y(f)Tg(t”u,d)—%ﬂ(t)fGﬂ(t)}drzo (6)

_D(fu"'y(t)rg;‘,) )

w(t) B(t)w(t)<ltel )
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y(t) >0,tel (8)
where  F(t,uu,ii,it) = f,, 2D f,, + D f,, =D’ fy.t €1

and
G([5u7u5u7u) = y(t)T guu _2Dy(t)T gut't +D2y(t)T gm)
—D3y(t)gm.i,t el

If B(f) = 0, for ¢t € I, then the problems (CP) and (M —
WCD) constitutes the pair of problems treated by Husain
etal [2].

Theorem 1. (Weak Duality): Assume that

(4)): xe X is feasible for (CP) and (u, y, w, p) is
feasible for (M — WCD),

(4): [(£ @+ () Bo)w(r))ae
is second-order pseudoinvex and

Jy txx dt

is second-order quasi-invex with respect to the same
Then, infimum (CP) > supremum (M — WCD).
Proof: Since x is feasible for (CP) and (u, y, w, p) is
feasible for (M — WCD), we have

jy txxdt

< J‘[ p(t) Gp(t)} dt

By the second-order qua51 -invexity of

tuu—

Jy txxdt

and integrating by parts this implies

!nf |:y(t)T g, —D(y(t)r gd)+Gp(l‘)}dt

+y(1) g, i

<0
a
which by using (4) and (5) yields
J”T [y(f)T &, —D(y(t)T gu)+Gp(t)}dt <0
I
Using equality Constraint (6), this gives
[n"[ £, +B(t)w(t)~D f,+F p(t)]de>0.
I

By integration by parts and using (1), from this we
have,

I[nr(fu +B(t)o(t)-D f, +77TFp(t):|dt >0.

This, because of second-order pseudoinvexity of

J-[f(t,x,)'c)—i-x(t)r B(t)a)(t)]dt, for a)(t) eR"

T , implies,
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'If[f(t,x,)'c)+x(t)T B(f)a)(t)Jdt
z J.|:f(t’u’u)+”(t)rB(t)w(t)—%p(t)r Fp(t)}dt.

I
Since a)(t)T B(t)w(t)<l,rel, by the generalized
Schwartz inequality, the above inequality gives

j[ £ () (x(0) B(0)x(0))” }dt
. j{ £ (0w 8)+u() B)o() L p(0) Fp(t)}n.

This implies Infimum (CP) > Supremum (M — WCD).

Theorem 2. (Strong Duality): If X € X is an opti-
mal solution of (CP) and is also normal, then there exist
piecewise smooth function y: I — R™ and z: I — R" such
that (J?(t),)_/(t),f(t),p(t) = 0) is a feasible solution of
(M — WCD) and the two objective values are equal. Fur-
thermore, if the hypotheses of Theorem 1 hold, then
(J_c(t),)_z(t)j(t),p(t)) is an optimal solution of the
problem (M — WCD).

Proof: From Proposition 1, there exist piecewise
smooth functions y:/— R"and z : I — R" such that

(£ (7.5)+ B)Z()+5(0) g(17.%))
—D(j; (t,f,x;)+)_/(t)r gi(t,)?,x;)):o, tel (9)

7(t) g(6.%.x)=0, el (10)

¥(0) B)w()=(%() B()x(0)) .eer Q)
p(t)=0,rel (12)

y(1)20,rel (13)

The relation (10) along with (12) gives

. 1
I(y(t)rg(t,x,x)——zp(t)r Gp(t)}lt=0
I
Hence ()_c(t),)_/(t),v_v(t),]_y(t):O) satisfies the con-
straints of the problem (M — WCD) Using (10), (11)
and p(¢)=0, € I, we have

1

j{ #0375 B0~ Lo F p(;)}dt
—f{ (17.5)+(%( )TB(t)f(t))l/z}dt

In view of the hypothesis of Theorem 1, it implies that
(J_c(t),)_z(t)j(t),p(t)) is an optimal solution of (M —
WCD).

Theorem 3. (Converse Duality) Assume that

(Az) The Vector {F;, G;,i=1,2,3, -, n} are hnearly
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independent. Where F; and G; are the i" row of F and G
respectively,

(43) (yrgx)—D(yTgx.)+Gp(t)¢0,t el ,and

(Ay) either jp(z)T (G+(y(t)T g, )X)p(t)dt >0

and Ip ( )dt>0
or _I[p(t) G+(v(e) gx)xp(t)dt<0,
and jp ( )dt<0

Then X (¢) is feasible for (CP) and the two objective
functionals have the same value. Also, if theoreml holds
for all feasible solution of (CP) and (M — WCD), then x
is an optimal solution of (CP).

Proof: Since (X,7,®,p) is an optimal solution of
(M — WCD) by Proposition 1 there exist 7€ R,y € R
and piecewise smooth functions 8: / — R" and : [ — R"
such that the following Fritz John optimality conditions
are satisfied at (X,7,®,p):

z'(fX+B(t)a)(t)—DfX-—%(p(t)TFp(t))
#30(p(e) Fp<r>)x+§(p< ) o),
(1)), =5 (p() £ ()
oo )t )
-b(f+(r(0e) )

o oot s )

X

+—D3(
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(0(t)+7p(t))F+(0(r)+ap(r))G=0.tel  (16)

eB(1)x(1)+0(1)B(1)-24(1) B(t)w(t)=0,0e1 (17)

y!((y(t)Tg—%p(t)T Gp(t)jdz=0,tel (18)

nTy(t)zo,tel (19)
#(0)(1-0 (1) B()o(1)) =0, (20)
(z’,a,¢(t),,77(t)) >0 (21)
(r,y,n(t),gzﬁ(t),@(t)) #0 (22)

Using the hypothesis (A;), the Equation (3) yields
(9(t)+Tp(t):0,t€1 (23)
6(t)+;/p(t):0,tel (24)

Using (5), (23) and (24) in (14), we have

(r—y)[(yu)f g -Dy(t) gx)+Gp<r)]
w5 (o E2(0)) -2 (] )

+D2( Fp(t) D ( )
+D* (p(e) Fp(1)). }
+0(1) [((F+6)p(1)), ~D((F+6) p(1),
+D*((F+G)p(1)). -D*((F+G) p(1)),
+D*((F+G)p(1). ]
37| (p@) G r0)-(p(y )
+D2( Gp(t) D3( )
+D*(p(e ) Gr(1). } 0tel

(25)

Let y = 0, then (24) implies 8(f) = 0,z and (10)
implies p(f) =0, t . Thus (25) gives

T(y(t)T g, —Dy(t)T g+ Gp(t)) =0,tel (26)

This, because of the hypothesis (As), gives 7= 0.The
equation (15) implies #(¢) = 0, ¢t € 1. Using 7= 0 and 6(¢)
=0, t € I'in (17), we have 8()B(f)w(f) = 0, t € I, which
together with (20) yields ¢(t) =0,z € 1.

Consequently, (z,8(t),y,n(t),#(t)) =0, a contradict-
tion to (22). Hence 7= y> 0.

Premultiplying (15) by y(f) and using (19), we have
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o) (»(1) g.+3(1) g -7 (1) &
20 (20) )90

Using (18), this gives

) (y(t)T g, +(y(f)gn)p(t))dt

)dt+—jp

—7fp(t

3l

which reduces to
zj'p(t)r(y(t)r gx)dt
1

+!P(f)T(G+y(t)T gxx)p(t)dt -0

( (1) g. )p(t)dt =0

This in view of the hypothesis in (4,) implies, p(f) = 0,
tel

Consequently (23) or (24) gives 8(£) =0, ¢t € I.

Using 6(¢) = 0 along with 7> 0, (17) implies

B(t)x(t):[m)B(t)a)(t),tel @7

T

Hence the Schwartz inequality (1) along with (27)
gives

x(1)" B(1)oo(r) o8
= (x(0) B)x(1) " ((e) B@)x(0)) e

If ¢(t)>0,¢e1, Then ¢(¢)(1-w(t) B(t)o(t))=0,
o(t) B()o(t)=1rel. ( )( ) Ble)al ))

So, (28) gives,

<) Bt =(x(e) B)x(0)) el @9)

If ¢(¢) = 0, then (27) implies B($)x(z) =0, ¢t € I.
So we still obtain

x(0) B()aoe) = (x(t) B)x(0)) e

Therefore from (29) and p(¢) = 0, we have
j[ F (o) (x(e) B(t)x(t))l/z}dt
—J‘{ t xx +x B(t)a)(t)—%p(t)TF(t)p(t)}

If, for all feasible (x, u, y, w, p),

J[7(ex0)+x(0) B)o(o) i

1

is second-order pseudoinvex and

fy(t)r gdt
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is second-order quasi-invex with respect to the same # by
Theorem 1 it implies that X is an optimal solution of
the problem (CP).

Theorem 4. (Strict Converse Duality): Assume that

(Cy): _[( txx +x(t) B() ())dt

is second-order strictly pesudoinvex and
J(2() g(t.x.5))ae
1

is second-order quasi-invex with respect to the same #. and

(C,): x is an optimal solution for (CP).

If (u,y,w,p) is an optimal solution of (M — WCD)
then u# is an optimal solution of (CP) and u =x.

Proof: We assume that u # x and exhibit a con-
tradiction. Since x is an optimal solution of (CP) it fol-
lows for theorem 2 that there exist y(¢f)eR" and
w(t)e R" such that (u, y, w, p) is optimal solution of
(M — WCD). Since (u, y, w, p) is also an optimal solu-
tion for (M — WCD), it follows that

[ (60.5)+x(0)" By w(e) i

1
_ f( Pt i) eule) BE)w(o) - p(e) Fp(t)jdt
This, because of second-order strict pseudo-invexity of

J(f(t X, x)+x(t) B(t )dt forall w(t )eR”

gives

J[UT (f.+ B(r)w(t))+(Dn)T 1. +77TFp(t)Jdt <0 (30)

1

Also from the Constraint of (CP) and (M — WCD),
}[(y(t)r g(t,f,?c))dt
<j( ¢(ti —;p(t)TB(t)p(t))dt
From the second-order quasi-invexity of
!y(ﬂrg(naxyh,
the above inequality implics

I (v(e) <) +(0a) (3(0) &) G p(0)fa

1

<0
€2y
Combining (30) and (31)
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0> [} (+() &) +(o) (100 &)
+n" (F+G)p(t)}dt

H () g )

(F G (1)

[ (50 &) (000 s.)

+(F+G)p(1)}di+n" (1, +yrgx)i:

—fn {(f +y( x)—
+HF+G)p ()}dt

D(fﬁy(t)r gx)

D(f+x(1) &)

That is,

fn {(f +y(

<0.

x)_D(f\% +y(t)T gvé)+(F+G)p(t)}dl

which contradicts the equality constraints of (M — WCD).
Hence x(t)=u(t), tel.

4. Natural Boundary Values

In this section, we formulate a pair of nondifferentiable
second-order dual variational problems with natural
boundary values rather than fixed end points.

(CPy): Minimize

j{f(t, X, %)+ (a_c(t)T B(t)f(t)); }dt

1

Subjectto g(z,x,%)<0,rel.
(CDg): Maximize

[ eo)0) 5 B0)=(0 - () 700

Subject to

=0 (32)
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— T — = [:b
_ -0, tel 33
(1) g (n%%)| _ =0, te (33)

The conditions (32) and (33) are popularly known as
natural boundary conditions in calculus of variations.

We shall not repeat the proofs of theorems of the pre-
ceding section for these problems as these proofs follow
analogously except with some slight modifications.

5. Nondifferentiable Nonlinear
Programming Problems

If all functions in the problems (CPy) and (CD,) are in-
dependent of ¢ and b — a = 1, then these problems will
reduce to following nondifferentiable dual variational
problems, treated by Zhang and Mond [5]:

(NP): Minimize / (x)+(x"Bx)”
Subject to
g(x) <0,
(ND): Maximize f(x)-i—xTBw—%pTV2 (f(x))p
Subject to

V(f(x)+)cTBw+yTg(x))+V2 (f(x)+yTg(x))p =0
yTg(x)—%pTVZyTg(x)p 20

w Bw<1,y>0

where
V(f(x)+xTBz+yTg(x)) =1 (x)+Bz+yTgX (x)

and V?(f(x)+2"g(x))= fuu (x)+(5" 2. (%))

x

6. Conclusions

In this research, we have discussed a class of nondiffer-
entiable continuous programming problems treated in [6]
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and formulated Mond-Weir type second-order dual
variational problem which is in the spirit of Zhang and
Mond [5] for a nondifferentiable nonlinear programming
problem.

Under second-order pseudoinvexity and second-order
quasi-invexity, we established weak, strong, strict-con-
verse and converse duality theorems. When functions,
occurring in the formulations of the problems, do not
depend explicit on #, our results reduce to those of Zhang
and Mond [5].

Thus our results become dynamic generalizations of
the results in [5]. The problems of this research can be
investigated in Multiobjective setting.
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