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ABSTRACT 

A Mond-Weir type second-order dual continuous programming problem associated with a class of nondifferentiable 
continuous programming problems is formulated. Under second-order pseudo-invexity and second-order quasi-invexity 
various duality theorems are established for this pair of dual continuous programming problems. A pair of dual con-
tinuous programming problems with natural boundary values is constructed and the proofs of its various duality results 
are briefly outlined. Further, it is shown that our results can be regarded as dynamic generalizations of corresponding 
(static) second-order duality theorems for a class of nondifferentiable nonlinear programming problems already studied 
in the literature.  
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1. Introduction 

Second-order duality in mathematical programming has 
been extensively investigated in the literature. In [1] 
Chen formulated second order dual for a constrained 
variational problem and established various duality results 
under an involved invexity-like assumption. Subsequently, 
Husain et al. [2], have presented MondWeir type second- 
order duality for the problem of [3], and by introducing 
continuous-time version of secondorder invexity and 
generalized second-order invexity, validated various 
duality results. Recently Husain and Masoodi [4] formu- 
lated a Wolfe type dual for a nondifferential variational 
problem and proved usual duality theorems under 
second-order pseudoinvexity condition.  

In this research, in order to relax the requirement of   
second-order pseudoinvexity we formulate a Mond-Weir 
type second-order dual to a class of nondifferentiability 
continuous programming problems where nondifferen- 
tiability enters due to the square root of a certain qua- 
dratic form appearing in the integrand of the objective 
functional. The popularity of this type of problems seems 
to originate from the fact that, even though the objective 
function and or constraint functions are non-smooth, a 
simple representation of the dual problem may be found. 
The theory of non-smooth mathematical programming 
deals with more general type of functions by means of 
generalized subdifferentials. However, square root of 
positive semi-definite quadratic form is one of the few 
cases of the nondifferentiable functions for which one 

can write down the sub-or quasi-differentials explicitly. 
Here, various duality theorems for this pair of Mond- 
Weir type dual problems are validated under second- 
order pseudo-invexity and quasi-invexity conditions. A 
pair of Mond-Weir type dual variational problems with 
natural boundary values rather than fixed end points is 
formulated and the proofs of its duality results are briefly 
indicated. It is also shown that our second-order duality 
results can be considered as dynamic generalizations of 
corresponding (Static) second-order duality results 
established for nondifferentiable nonlinear programming 
problems, considered by J. Zang and Mond [5]. 

2. Pre-Requisites 

Let I = [a, b] be a real interval,  : I × Rn × Rn → R and 
ψ: I × Rn × Rn → Rm be twice continuously differentiable 
functions. In order to consider where x: I 
→ Rn is differentiable with derivative 

    , ,t x t x t 
x , denoted by  

and x  x t  and   , the first order of  with respect to 
 x t  respectively, that is, 

1 2
, , ,

T

x nx x x

           
 , 

1 2
, , ,

T

x nx x x

           
 

  
. 

n nDenote by xx  the   Hessian matrix of , and ψx 
the m × n Jacobian matrix respectively, that is, with re- 
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 , , d
I

t x x t   spect to x(t), that is 

2

i jxx x x


 

  
  

, 

i, j = 1, 2, ···, n, ψx the m × n Jacobian matrix. 
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The symbols , ,x xx xx      and x   have analogous 
representations. Designate by X the space of piecewise 
smooth functions x: I → Rn, with the norm  

x x Dx 

   d
t

a

t u s s 

 
, where the differentiation operator D 

is given by 

u D x x   

Thus 
d

d
D

t
  except at discontinuities. 

We incorporate the following definitions which are 
required in the subsequent analysis. 

Definition 1. (Second-Order Invex): If there exists a 
vector function  , , nt x x R  

x

 , , d
I

t x x t 

 where η: I × Rn × Rn 
→ Rn and with η = 0 at t = a and t = b, such that for a 
scalar function , the functional  , ,t x

 

where : I × Rn × Rn → R satisfies 

       

     

1
, , d , ,

2

, , , ,

T

I I

T

x x
I

t x x t t x x p

t x x D t x x

 

   

 

 

 

 



    
d

dT T

t Gp t t

Gp t t







 , , d
I

t x x t 

2 32

, 

Then            

is second-order invex with respect to η. Where  

xx xx xx xxG D D D        , np C I R

 , , d
I

t x x t 

    

    , and , the 
space of -dimensional continuous vector functions n

Definition 2. (Second-Order Pseudoinvex): If the 
functional  satisfies 

     1
, , , ,

2

x x

 

d 0

d

TT T

T

I I

D G p t t

t x x dt t x x p t G p t t

    

 

  

    
  





I


, 

Then             

is said to be second-order pseudoinvex with respect to η. 

Definition 3. (Second-order Quasi-Invex): If the 
functional  , , d

I

t x x t 

 

 satisfies 

      

      

1
, , d , , d

2

d 0

T

I I

TT T
x x

I

t x x t t x x p t Gp t t

D G t p t t

 

    

  


   

 

 


 

 , , d
I

t x x t 

          

 Then 

is said to be second-order quasi-invex with respect to η. 
Remark 1. If  does not depend explicitly on t, then 

the above definitions reduce to those given in [5] for 
static cases. 

Consider the following class of nondifferentiable con- 
tinuous programming problems studied in [6]: 

(VP): Minimize 

 1 2

, , d
T

I


f t x t x t x t B t x t t

 
  

    , , 0g t x t x t

 

Subject to x(a) = 0 = x(b),  t I,  , 
    , , 0h t x t x t  I, t . 
Where, 1) f, g and h are twice differentiable functions 

from I × Rn × Rn into R, Rm and Rk respectively, and 
 B t is a positive semi-definite n × n matrix with 2) 

 B   continuous on I. 
The proposition gives the Fritz John optimality condi-

tions which are derived by Chandra, et al. [6]. 
Proposition 1. (Fritz John optimality Conditions): 

If (CP) attains a local minimum at x X  and if  
    , ,h t x t x t

R
x  maps X onto a closed subspace of C(I, 

Rp), then there exist Lagrange multipliers   , 
piecewise smooth : I → Rm and y  : I → Rk, not all 
zero, and also piecewise smooth z

t I
: I → Rn satisfying, 

for all  , 

        

             
           

      

, ,

, , , ,

, , , ,

, , ,

T

x

T T

x x

T

x x

T

x

f t x t x t z t B t

y t g t x t x t t h t x t x t

D f t x t x t y t g t x t x t

t h t x t x t t I











 

 
 

 





 

 



 

     , , 0,
T

y t g t x t x t t I   

      1,
T

z t B t z t t I 

           1 2

,
T T

x t B t z t x t B t x t t I   

    If , ,xh t x t x t  is surjective, then τ and y  are 
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  0,not both zero. The following Schwartz inequality has 
been used in deriving the above optimality conditions 
given and will also be required in the forthcoming analy-
sis of the research. 

y t t I 

Lemma 1 (Schwartz Inequality): It states that 

     

             1 2

T

T T

x t B t w t
1 2

,x t B t x t w t B t w t t I
 (1) 

with equality in (1) if (and only if) 

         0q t w t 

 q t R

B t x t  

for some .  
Remark 2. The Fritz John necessary optimality condi-

tions in Proposition 1 for (VP) become the Karush- 
Kuhn-Tucker type optimality conditions if τ = 1. It suf-
fices for τ = 1, that the following Slater’s Constraint 
qualification holds: 

           
      

, , , ,

, , 0, ( )

x

x

g t x t x t g t x t x t

, for all

t

g t x t x t t v t X







 

 

  t I 

  0,x t t I 

    

 

3. Mond-Weir Type Second-Order Duality 

Consider the following continuous programming prob- 
lem (CP) by ignoring the equality constraint,  

, in the problem (VP):   , ,h t x t 
(CP): Minimize 

      
1 2

dt x t t



 

   0

, ,
T

I

f t x t x t x t B
    

Subject to 

x a x b 

  0,

              (2) 

  , ,g t x t x t t I             (3) 

In the spirit of Zhang and Mond [5], we formulated the 
following Mond-Weir type second-order dual continuous 
programming problem (M – WCD): 

(M – WCD): Maximize 

         1
, ,

2
T T

I

f t u u u t B t t t        dF t t t 
  

   0 u b 

  T T

u u u

 

Subject to 

u a               (4) 

     
    0,

uf B t t y t g D f

F G t t I





  

   

   

y t g 
   (5) 

 1
,, ,

2
T

I
y t g t u u t

   d 0
T

G t t   

  1,w t t I 

   (6) 

   w t B t
T

           (7) 

               (8) 

  2 3, , , , 2 ,uu uu uu uuF t u u u u f D f D f D f t Iwhere         

       
 

2

3

, , , , 2

,

T T T

uu uu uu

uu

G t u u u u y t g D y t g D y t g

D y t g t I

  

 

  



  

 
and 

 

If B(t) = 0, for t  I, then the problems (CP) and (M – 
WCD) constitutes the pair of problems treated by Husain 
et al. [2]. 

Theorem 1. (Weak Duality): Assume that 
(A1): x X  is feasible for (CP) and (u, y, w, p) is 

feasible for (M – WCD), 

      ( ,.,.) . d
T

I

(A2):         f t B t w t t

   , , d
T

I

 

is second-order pseudoinvex and 

y t g t x x t 

   

   

 

is second-order quasi-invex with respect to the same η 
Then, infimum (CP) ≥ supremum (M – WCD). 
Proof: Since x is feasible for (CP) and (u, y, w, p) is 

feasible for (M – WCD), we have 

   

   , , d

1
, , d

2

T

I

T T

I

y t g t x x t

y t g t u u p t G p t t
    









   , , d
T

I

 

By the second-order quasi-invexity of  

y t g t x x t 

   

 

and integrating by parts this implies 

   

 

d

0

T T T

u u
I

T

u

y t g D y t g Gp t t

t b
y t g

t a





    


 



 



   

 

which by using (4) and (5) yields  

    d 0
T TT

u u
I

y t g D y t g G p t t         

Using equality Constraint (6), this gives 

      d 0T
u u

I

f B t w t D f F p t t       

     ( d 0T T
u u

I

f B t t D f Fp t t   

. 

By integration by parts and using (1), from this we 
have, 

     

         , , d , for
T n

I

. 

This, because of second-order pseudoinvexity of  

f t x x x t B t t t t R     
, implies, 
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            d
2

T

I

T T

I

f t x x x t B t t t, , d

1
, , .f t u u u t B t t p t Fp t t





  

     




 

  1,t t I  , by the generalized 
he above ineq



Since    T
t B t 

Schwartz inequality, t uality gives 

        
           

, , d

1
, , d .

2

I

T T

I

f t x x x t B t x t t
1 2T

f t x x u t B t t p t Fp t t

  

     








 

This implies Infimum (CP) ≥ Supremum (M – WCD). 

 

Theorem 2. (Strong Duality): If x X  is an opti- 
m al, theal solution of (CP) and is also norm n there exist 
piecewise smooth function y: I → Rm and z: I → Rn such 
that         , , , 0x t y t z t p t   is a feasible solution of 
(M – ve values are equal. Fur- 
thermore, if the hypotheses of Theorem 1 hold, then  

 WCD) and the two objecti

        , , ,x t y t z t p t  is an optimal solution of the 

Proof: From Prop
problem (M – WCD). 

osition 1, there exist piecewise 
smooth functions y : I → Rm and z : I → Rn such that 

          
      

, , , ,

, , , , 0 ,

x

T

x x

f t x x B t z t y t g t x x

D f t x x y t g t x x t I

 

    
 

 
(9

 

T 

)

    0,x t I, ,
T

y t g t x             (10) 

            1 2

,
T T

x t B t w t x t B t x t t I     (11) 

 =0,p t t I                (12) 

  0,y t t I 

The relation (10) along with (12) 

               (13) 

gives 

       , , d 0
2I

y t g t x x p t Gp t t
   

    
1T T

Hence         , 0t p t   satisfies the con-
 (M – WCD

, ,x t y t w
str  the problemaints of ) Using (10), (11) 
and  =0,p t t I , we have 

           

        1 2

1
, ,

2

, , d

d
T

I

T

I

T
f t x x x t B t w t p t F p t t

f t x x x t B t x t t

   
 

   
 








 

In view of the hypothesis of Theorem 1, it implies that 
       , , ,x t y

WCD). 
e

t z t p t  is an optimal solution of (M – 

Theor m 3. (Converse Duality): Assume that  
 1( ) , , ,A x y p is an optimal solution of (M – WCD).  

) The vector

in

(A2  {Fi, Gi, i = 1, 2, 3, ···, n} are linearly 

dependent. Where Fi and Gi are the ith row of F and G 
respectively, 

(A3)    ( ) 0,T
x xD y g Gp t t ITy g     , and 

(A4) either         d 0
T T

x
xI

p t G y t g p t t   

and              d 0
T T

xp t y t g t  , 

or          
I

   ( d 0
T T

x
xI

p t G y t g p t t  , 

and                d 0
T T

xp t y t g t  . 

Then 
I

x (t) is feasible for (CP) and the two objective 
functionals have the same value. Also, if theorem1 holds 
for all feasible solution of (CP) and (M – WCD), then x  
is an optimal solution of (CP). 

Proof: Since  , , ,x y p  is an optimal solution of 
(M – WCD) by Proposition 1 there exist ,R R    
and piecewise smooth functions θ: I → Rn an  
such that the following Fritz John optimality conditions 
are satisfied at 

d η: I → Rm

 , , ,x y p : 
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2
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1 1
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T
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x

T T
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T T T

xx xx x x
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xx x
x
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xx x
x
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x x

f B t t Df p t Fp t

D p t Fp t p t Fp t

D p t Fp t p t Fp t
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3 4

1

2
1 1
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1 1
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2 2
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T TT
x x

x

T T

xx

T T

x x

G p t D F G p t

y t g D y g p t Gp t
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D p Fp D p Gp t I



  

  

 

   









 

(14) 

        

 

1

2
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T T

x xx xxt g g p t g p t g p t

t t I

 



    
 

  
(15) 
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        t p t F t p       0,t G t I     (16) 

  0,t t I    (17)            2
T

B t x t t B t t B t   

     1

2

T T

I

y t g p t Gp t   ( d 0,t t I
  

 
   

  0,T y t t I                 

      1 0,
T

t t B t t      

   (18) 

 (19) 

         (20) 

   , t

 

 , , ,t   0             (21) 

   , 0t t t    

1), the Equatio

  0,t t I               (23) 

  0,t t I    

    

 , , ,             (22) 

Using the hypothesis (A

 t p 

n (3) yields 

 t p             (24) 

Using (5), (23) and (24) in (14), we have  
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Let γ = 0, then (24) implies θ(t) = 0, t I  and (10) 
implies τp(t) = 0, t I . Thus (25) gives 

       0,

y t g   Gp t 

p t Fp t D p t Fp t   

T T

x xy t g Dy Gp t t I    

ives 
g  = 0 and θ(t) 

= 0, t  I in (17), we have θ(t)B(t)ω(t) = 0, t  I
together with (20) yields ( ) 0, .t t I

t g  (26) 

This, because of the hypothesis (A5), g  = 0.The 
equation (15) impl (t) = 0, t  I. Usinies η

, which 
    

Consequently, ( , ( ), , ( ), ( )) 0,t t t       a contradict- 
tion to (22). Hence  =  > 0. 

Premultiplying (15) by y(t) and using (19), we have 

   

 

   
       0

2 xxp t y t g p t1 T

) (
T

x xx

T
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T T
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Using (18), this gives 

         
         

d

( )d 0
2

T T
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I

T
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I I

p t y t g y t g p t t
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d
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T T
p t Gp t t  




 

which reduces to 

    
    

2 d
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x
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G y t g p t t 
I

p t  


 

This in view of the hypothesis in (A4) implies, p(t) = 0, 
t  I. 

Consequently (23) or (24) gives θ(t) = 0, t  . 
Using θ(t) = 0 along with  > 0, (17) implies 



 I

         
2

,
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B t x t B t t t I
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ith (27) 
gives 

     

 

Hence the Schwartz inequality (1) along w
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(28) 

If ( ) 0, ,t t I   Then         1 0,
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      1,
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So, (28) gives, 

            1 2

,
T T

x t B t t x t B t x t t I      (29) 

If ϕ(t) = 0, then (27) im ies B(t)x(t) = 0, t  I.  

           

pl
So we still obtain 

 1 2

,
T T

x t B t t x t B t x t t I 

       

 

Therefore from (29) and p(t) = 0, we have  

 
           1
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f t x x x t B t t p t F  

1 2
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2

T

I

I

f t x x x t B t x t t
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If, for all feasible (x, u, y, ω, p),  

       , , d
T

I

f t x x x t B t t t

 

     

is

  d

 second-order pseudoinvex and  
T

I

y t g t  
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is second-order quasi-invex with respect to the same η by 
Theorem 1 it i plies that m x  is an optimal solution of 

uality): Assume that 

   d

the problem (CP). 
Theorem 4. (Strict Converse D

(C1):   , , ( )T

I

f t x x x t  B t w t t  

is second-o uasi-invex with respect to the sam  η. and 
(C ): x is an optimal solution for (CP). 

is second-order strictly pesudoinvex and  

    , , d
T

y t g t x x t   
I

rder q e
2

If  , , ,u y w p  is an optimal solution of (M – WCD) 
then u  is an optimal solution ) and of (CP u x . 

Proof: We e that  assum u x  and exhibit a con- 
tradiction. Si  optimal solution of (CP) it fol- 

w al solution of 
(M  WCD). Si

or

nce x is an

n

lows for theorem 2 that there exist   ny t R  and 
  nt R  such that (u, y, w, p) is optim
 – ce (u, y, w, p) is also an optimal solu- 

tion f  (M – WCD), it follows that 
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4. Natural Boundary Values 

In this section, we formulate a pair of nondifferentiable 

0 imize 

second-order dual variational problems with natural 
boundary values rather than fixed end points. 
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T
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x x p t Gp t t

y t t I

, ,x xf t x x B t w

,
T

y t g t

I     

 
 

 



 



 

 
 



 , , 0x

t a
f t x x

t b





               (32) 

Copyright © 2012 SciRes.                                                                                AJOR 



I. HUSAIN, S. K. SHRIVASTAV 

Copyright © 2012 SciRes.                                                                                AJOR 

295

   , ,
T

x

t b
y t g t x x

t a




 0, .t I      (33) 

The conditions (32) and (33) are popularly known as 
natural boundary conditions in calculus of variations. 

We shall not repeat the proofs of theorems of the pre- 
ceding section for these problems as these proofs follow 
analogously except with some slight modifications. 

5. Nondifferentiable Nonlin
Programming Problems 

If all functions in the problems (CP0) and (CD
dependent of t and b – a = 1, then these prob
re

ear  

0) are in-
lems will 

duce to following nondifferentiable dual variational 
problems, treated by Zhang and Mond [5]: 

(NP): Minimize    1 2Tf x x Bx  

Subject to  

  0,g x   

D): Maximize  (N   2Tp f x
1

2

Subject to 

 

Tf x x Bw  p  

   2( ) ( ) 0T T Tf x x Bw y g x f x y g x p       

    0T Tp y g x p    

1, 0Tw Bw y   

wher

T T
xBz y g x 

   .x

21

2
Ty g x

e 

  Tf x x Bz      xy g x f x

an     T T

  

d 2
xx x

f x y g x f x y   g x  

6. Conclusions 

In this research, we have discussed a class f nondiffer-
entiable continuous programming problems treated i

formulated Mond-Weir type second-orde al 
al problem which is in the spirit of Zhang and 

Mond [5] for a nondifferentiable nonlinear programming 

and r du
variation

problem. 
Under second-order pseudoinvexity and second-order 

quasi-invexity, we established weak, strong, strict-con- 
verse and converse duality theorems. When functions, 
occurring in the formulations of the problems, do not 
depend explicit on t, our results reduce to those of Zhang 
and Mond [5]. 

Thus our results become dynamic generalizations of 
the results in [5]. The problems of this research can be 
investigated in Multiobjective setting. 
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