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Abstract 
 
We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems 
by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems 
with only continuous variables. We express conditions of exactness for MINLP problems and show how the 
exact penalty approach can be extended to constrained problems.  
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1. Introduction 
 
One way for relaxing the integer constraints on the vari-
ables of a problem is adding an appropriate penalty term 
to the objective function to create a new problem with 
only continuous variables. This approach was first intro-
duced by Ragavachari [1] to solve 0-1 linear program-
ming problems and was used by several researchers for 
solving real nonlinear discrete programming problems 
[2-5]. Recently, Murray and Ng [6] have extended this 
approach for large scale 0-1 nonlinear programming 
problems with linear constraints.  

In [7], the exact penalty approach was extended to 
nonlinear integer programming problems. In [3,8], sev-
eral penalty functions were presented and the exactness 
of some of them were proved in [9]. Here, using ideas of 
Lucidi [9] we introduce conditions for exactness of a 
penalty function for mixed integer nonlinear program-
ming (MINLP) problems. Then, we extend the exact 
penalty approach to constrained mixed integer nonlinear 
programming problems.  

Notation 1. Let  denote the optimal value of prob- 
lem .  

(.)v
(.)

 
2. Penalty Method for Unconstrained 

MINLP Problems 
 
An unconstrained mixed integer nonlinear programming 

problem is expressed as:  
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 LPThe continuous relaxation of  can be ex- 
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We construct the following problem by adding some 
constraints to the relaxed problem :   R
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where, the    i iq x nonnegative continuous functions 
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It is easy to see that  UMINLP
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, ,

n

in  and is positive on points in   {0,1}n (0,1) .n

iq

, = 1,i 

, = 1, ,i 

  ,

Some appropriate definitions for the  are:  

     1 = 1i i i iq q x x x n  

   2 = 1 cos 2π .i i iq q x x  

Now, for every , let > 0r

   , = ,rH x y f x y rq x

 

 

and consider the following penalty problem for the 
:   UNLP
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UP
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Note that the problem r  is a continuous ver- 
sion of the problem .  

UPEN
 LPUMIN

Under certain assumptions, we show that for some fi- 
nite value of penalty parameter r, problem  is 
equivalent to .  

 rEN
 UMINLP

For  , 0 < < 1 2 , define a punctured neighborhood 
of  in [0,  as follows:  {0,1} 1]

   = 0, 1 ,1J    .             (2) 

Assumption 1. There exist > 0  and > 0  such that 
i) for every    ,

nn 0,1 ,x y J Y  Y  we have  

 , < , = 1, , ,
i

f x y i
x
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ii) each i is differentiable on q J  and for each ix J , 
we have  
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= = n

q
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Note that if f has bounded derivatives, then it satisfies 
Assumption 1(i), and as an example, ( 1) satisfies As- 
sumption 1(ii).  

The following theorem shows that we can find a solu- 
tion of an unconstrained MINLP problem by solving a 
finite sequence of NLP problems.  

Theorem 1. Under Assumption 1, there exists a finite 

0  such that for any 0  any solution of r > ,r r  rUPEN  
also solves  with  UMINLP   =r v U

)
.  v UPEN

( ,
MINLP

Proof. For any feasible point x y  for  UMINLP , 
we have  

     , = ,r  = , .H x y f x y rq x f x y  

Since any feasible point for (UMINLP) is also feasible 
for , the above relation implies:  UPE rN

   .rv UMINLP v UPEN           (3) 

For any , let > 0r  ,r r x y  be an optimal solution of 
 rUPEN . Suppose that   ,r rx y  is a convergent sub- 

sequence of optimal solutions of  rUPEN  and  ,x y 

,1
 

is its limit. Note that since   ,r r  0
n

x y Y  and 
 0,1

n
Y  is compact, at least one convergent subse- 

quence exists. 
Since rx x , there exists an r  such that for every 
>r r , we have: < .rx x 


 Therefore, (2) implies 

that  0,1r
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ix J .  
Now, let  0 = mr ax ,r   and suppose that 0 . 

If 
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 0,1 ,r
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ix J  Since f and i  are dif- 
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q
J  and the first-order necessary condi- 
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we have  
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Assumption 1(ii) implies:  
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This is clearly a contradiction to Assumption 1(i). 
Therefore, for  we have  Thus,  0> ,r r  0,1

nrx  .
 ,r rx y  is feasible for   and . Fur- 
thermore,  

UMINLP q x r = 0
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Relations (3) and (4) imply:  
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Therefore, for any  0> ,r r  ,r rx y  is an optimal solu- 
tion for both problems.  
 
3. Exact Penalty Functions 
 
The following penalty functions have been suggested [3, 
9] for zero-one problems ( ):  0 1ix 

    3 = 4 1i i i iq q x x x  ,   
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where, , > 0p , 0 < < 1 2  and . Penalty 
functions  were introduced in [9]. Here, to 
have (1) satisfied, we add a fixed number to every func- 
tion   

0 < < 1q
( 5)q 

( 5) ( 9).q q

( 9)q

Also, two other penalty functions for zero-one prob- 
lems can be defined as follows:  

     10 = sin π ,i i iq q x x  

        11 = 1 1 ,i i i i i iq q x x x x x      

where, > 0 . 
Note that any bounded MINLP problem can be refor- 

mulated as a mixed zero-one programming problem by 
using the following representation for the integer vari- 
ables (see [7]):  

     
=0

= 2 , 0,1 , = 1, ,
M

i ik
i k k

k

,x y y i n   

where, M is an upper integer bound for log ix . Thus, we 
can use the penalty functions for all bounded integer 
problems.  

Also, note that direct use of penalty functions for 
MINLP problems (not zero-one) is not suitable, because 
due to the structure of the i  (see (1)), the resulting 
nonconvex optimization problem, in general, may have 
many local minimizers (see [4]).  

q

Now, we show that  rUPEN  with the penalty func- 
tions  are exact for ( 3) ( 11)q q  UMINLP

1).q

. Note that 
exactness of  have already been proved in 
[9]. Here, by using Theorem 1, we prove the exactness 
corresponding to all of   

( 5)q ( 9)q

( 3) ( 1q 
Let us suppose that f satisfies Assumption 1 1). We 

then need to show that Assumption 1 2) holds for every 
one of ( 3 For) ( 11).q q = 1 3, we have  

  = 0,1 3 2 3 ,1J  . It is easy to show that for the 
functions  we have  ( 3) ( 11),q q

   1
0, , > 1 3 > 0,

3i i i ix q x q
     
 

 

and  

   2
,1 , < 2 3 < 0.

3i i i ix q x q
     
 

 

Therefore, Assumption 1(ii) is satisfied for ( 3) ( 11)q q . 
Thus, the penalty problem  with any one of 
the functions 

 .rUPEN 
( 3) ( 11)q q  is exact for .   LPUMIN

 
4. Extension to Constrained Problems  
 
A constrained mixed integer nonlinear programming 
problem is expressed as:  
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where, Y is a compact subset in  .m
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A penalty function for  MINLP  is defined as fol- 
lows:  

   
 

0, ,
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A typical penalty function for the constraints jg  in 
 MINLP  is:  

   
=1

, = max 0, ,
l

j
j

p x y g x y .        (5) 

Consider the penalty problem of  MINLP  as:  
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and define the following continuous penalty problem for 
 MINLP : 
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To prove the exactness of  for  ,rPEN   ,MINLP  
first we show that for some penalty function p,  PEN  
is exact for  MINLP . Note that exactness for some 
penalty functions, such as absolute-value penalty func- 
tion, for the nonlinear programming (NLP) problems or 
nonlinear integer programming (NLIP) problems has 
already been proved (see [10,11]), that is, it has been 
shown that for a finite value of the penalty parameter, the 
main problem and the corresponding penalty problem are 
equivalent. Here, we prove exactness for the constrained 
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MINLP problems.  

Theorem 2. Consider MINLP  and for every x, 
define the following NLP problem,  

 
 

 
min ,

. . , 0, = 1, , ,

,

x
j

f x y

NLP s t g x y j l

y Y




  

and its corresponding penalty problem,  
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Suppose that for any x feasible to  ,xNLP  there exists 
a x  such that for every > ,x   problems  xNLP  
and  xPEN  are equivalent. Then, there exists a 0  
such that for every 0> ,   any solution of  PEN  
also solves  MINLP  and   =N v M

( , )
 NLPv PE I .  

Proof. For any feasible point x y  of  MINLP , 
we have  

       , = , , = , .H x y f x y p x y f x y   

Since any feasible point for  MINLP  is also feasi- 
ble for PEN  , it follows from the above equality that  
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For any fixed x, define  

 = , 0, = 1,x jS y Y g x y j l   , .
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Consider the following two cases. 
Case 1: . Consider the following problem:  xS  

   , ,min
y Y

f x y p x y


  

From the assumption of the theorem, there exists x  
such that for any > ,x   any solution of the above 
problem is also a solution of the following problem,  

 min , .y Sx
f x y  

Case 2: . From the definition of =xS  xS , for any 
,y Y  we have . Since Y is compact, then    , > 0p x y

 , = > 0min x
y Y

p x y 
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This means that if > x  then  
     , ,f x y p x y P > v MINL 1 

>
. Thus, (6) implies 

that if x  , then minimum does not occur in this 
case. Now, let  0,10 = .max nx x   For any 0> ,   if 
 ,x y   is an optimal solution of PEN  , then from 
the previous implication we get that Case 2 does not oc- 
cur. From Case 1, we have  
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Let f  be an upper bound of f on  Then   0,1 .
n

Y

   , , .f x y p x y f      

Since this relation holds for any 0>  , we have 
 , = 0p x y  . Therefore,  ,x y   is feasible to  MINLP . 

Furthermore,  
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Thus,  ,x y   is an optimal solution for both 
 PEN  and  MINLP .                        

Theorem 2 shows that if p is an exact penalty function 
for an NLP problem, then it is also exact for the MINLP 
problem. Thus, (5) is an exact penalty function for 
 MINLP .  

Now, we show that  ,rPEN  is exact for  MINLP , 
that is, for finite penalty parameter values of r and  , 
 ,rPEN  and  MINLP  are equivalent.  

Assumption 2. Assumption 1(i) holds for each ,jg  
namely, for each  , n ,x y J Y   we have  

 , < , = 1, , , = 1, ,j
i

.g x y i n j l
x





   

Theorem 3. Suppose that both Assumption 1 and As- 
sumption hold and p is an exact penalty function for 
 MINLP . Then, there exist 0  and 0r   such that for 
every  and 00r>r > ,   any solution of  ,rPEN  
also solves  MINLP  and    N v M = .INLP,r

Proof. Since p is an exact penalty function for 
v PE

 MINLP , 
there exists a 0  such that for each 0> ,   any solu- 
tion for  ,rNPE  also solves  MINLP  and  

xv MINLP f    For any > ,x   we have  x
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   =v PEN v MINLP

PEN
. 

Theorem 1 on  implies that there exists an 

0 such that for every , any solution of  is 
also a solution of 

,r

0>r rr  ,rPEN

PEN  and    ,rv P = v PENEN   
Therefore, for every 0>   and 0  any solution of 

 also solves 
> ,r r

 ,rPEN MINLP
 MINLP

 and  
 ,rv PEN = v .                         

 
5. Summary 
 
We proposed an exact penalty approach for solving 
mixed integer nonlinear programming (MINLP) prob- 
lems and showed how to convert a MINLP problem to a 
finite sequence of NLP problems. We stated conditions 
for exactness of a penalty function for MINLP problems 
and showed how exact penalty functions for NLP prob- 
lems could serve as exact penalty functions for MINLP 
problems.  
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