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ABSTRACT 

Rice is one of the most important crops, providing sta- 
ple food for about half population of the world. Drou- 
ght stress affects plant growth and development seri- 
ously. This article reviewed the research progress of 
the physiological and molecular biology mechanism 
including osmotic adjustment, scavenging oxidative 
radicals, endogenous hormones, drought-resistance 
genes and epigenetic modification, it may be afford 
interrelated reference for increasing rice drought re- 
sistance and breeding drought resistance rice varie- 
ties.  
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1. INTRODUCTION 

Rice is one of the most important crops, providing staple 
food for about half population of the world [1]. Rice 
production must be increased 60% so as to meet for the 
contention by the year 2025 [2]. A growing population, 
urbanization, industrialization, pollution, and drought 
have compounded the shortage of water resources [3]. 
Drought is one of the most important constraints in crop 
resulting in large yield losses and limiting the average 
yield increase. In fact, since the 1990s China’s average 
annual drought-affected area was up to 26.67 million 
hectares decreasing food production by 70 - 80 billion kg 
[4]. Therefore, the development and production of dro- 
ught-resistant rice varieties is be of great significance in 
ensuring food security, shortage of water resources, pro- 
tecting environment and increasing income. The article 
reviewed the research progresses of the Physiological 

and molecular biology mechanism, which could supply 
interrelated reference for increasing rice drought resis- 
tance and breeding drought resistance rice varieties.  

2. PHYSIOLOGICAL MECHANISM 
DROUGHT RESISTANCE IN RICE 

2.1. Osmoregulation Substance 

Study has shown that cellular holds turgidity through in- 
ducing solute accumulation and decrease of osmotic 
potential [5]. Osmoregulation substance could be clas- 
sified two categories according to mechanism of action: 
One is inorganicions adjusting osmotic potential of va- 
cuole, such as K+, Na+ etc., the other is organic matter 
adjusting osmotic potential of cytoplasm, such as proline, 
betaine etc. [6]. Cai et al. [7] argued that ability of leaf 
osmoregulation is greater than the root after subjecting to 
water stress at different growth stages; In addition, K+ 
gave the greatest contribution to whether roots or leaves, 
secondly Ca2+. The sequence ordered based on content is 
K+ > Ca2+ > soluble sugar > Mg2+ > free amino acid > 
proline, however, the sequence is proline > free amino 
acid > soluble sugar > K+ > Mg2+ > Ca2+ according to 
extent of increase. (Cai et al., 2008). Cabuslay et al. [8] 
revealed that ability of leaf osmoregulation is also grea- 
ter than the root after subjecting to water stress. The re- 
sults of experiment in wheat also showed that K+ gave 
the greatest contribution in drought stress, yet the sequ- 
ence (K+ > soluble sugar > free amino acid > Ca2+ > 
Mg2+ > Pro) is different from that in rice [9]. The 
difference of Osmoregulation in contribution rate could 
be concerned with plant varieties, growth stages, inten- 
sity, environment, and time in stress. 

In the last years, studies have showed small organic 
molecules play an important role such as proline, glycine, 
betaine, trehalose, mannitol, fructosan, etc. [10,11]. Stud- 
ies indicated that accumulation of proline and betaine 
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could decrease extent of damage [12]. Since 1954 accu- 
mulation of free Proline was discovered, the relation of 
accumulation of free proline and water stress was studied 
widely [13]. Content of free praline would had a multi- 
plication in crops such as sorghum, sorghum, rice etc. 
[14-16]. Proline was synthesized through P5CS(△^1- 
pyrrolin-5-carboxylate synthetase), but it was synthetized 
by ornithine in normal conditions (Delauney et al. [17] 
and. Sheela et al. [18] indicated that there was close rela- 
tionship between free proline and drought resistance 
because of the strong hydratability to hold on water. Wu 
et al.’s [19] study showed that the gene for Na+/H+ of 
reverse transport protein was expressed efficiently in rice 
and then activated biosynthesis of proline. Moreover, 
content of Na+ and proline in transgenic were above 
them in contrast. Storey et al. [20] indicated that salinity 
and water result in accumulation of Glycine-beyaine in 
barley. 

2.2. The ROS-Eliminating System 

Production and elimination of ROS (reactive oxygen 
species) was in balance [21,22]. The ROS could pose a 
hazard to plant cells in adversity. The plant eliminated 
the ROS by antioxidase system and antioxidant [23-25]. 
Antioxidase system includes superoxide dismutase 
(SOD), peroxidase (POD）catalase (CAT) and ascorbate 
peroxidase (APX-POD). Generally, high and low of an- 
tioxidase activity is connected to stress resistance in 
plant. The stronger stress resistance, the higher anti- 
oxidase activity [26,27]. There are diversities of anti- 
oxidase activity in different plant. SOD is in centre of 
antioxidase system and Widespread in the plant body 
[28,29]. In addition, the POD and CAT are also major 
members of antioxidase system, playing a very important 
in stress drought. The research showed the protective 
enzymes of seedlings were increased significantly by 
pre-treating seeds with water and 10% - 15% PEG and 
that effect of appropriate pre-treating with PEG is super 
to effect of pre-treating with water [30]. Wu et al. [31] 
proved that drought stress could result in increasing of 
significantly. In further, the study showed Antioxidase 
activities in plant leaf were higher than them in plant root 
significantly. In the ROS-eliminating system, antioxidant 
also played a significant role such as ascorbic acid 
(ASA), glutathione (GSH), carotenoid, etc. These sub- 
stance quenched reactive oxygen species by several ways 
directly or indirectly [32,33]. 

2.3. Signal Molecule—Hormone 

Plant hormone the generic terms of growth regulation 
with trace by synthesizing in plant. Although simpleness 
in chemical structure, it has the complicated physio- 
logical effect [34]. The growth and development of every 
stages was regulated by the hormone [35]. During the 

reaction process to water stress, the plant hormone per- 
form a key role in the signal transduction. At present, the 
research on this field is one of the most pop content in 
life science [36-40]. ABA (abscisic acid) was mostly 
researched in plant hormone [41]. Most research showed 
that ABA was the major signal substance, especially for 
root. In the early 1960s, Wright and Hiron [42] had 
proved that osmosis stress could induce synthesis of 
ABA in cellular and synthesis of ABA had great relation- 
ship with stress drought. At the same time, ABA could 
be used for evaluation index in authenticating stress 
drought. Research showed that ABA could adjust sto- 
matal behavior of plant to enhance stress drought[41]. 
Root is earlier than leaf in the synthesis of ABA [43]. 
Chen et al. [44] proved that content of cytokine in the 
rice organs (overground part) change unconspicuously, 
yet ABA changed remarkably in content. Studies showed 
that hormonal balance was effected in water stress. 
Content of cytokinin and ethylene decreased, yet content 
of ABA increased significantly [45,46]. In addition, 
Yang et al. [47] argued that antagonism of ABA and 
ethylene regulated the development of spikelet, further- 
more Ratio of ABA and ethylene is a physiological fea- 
ture coping with water stress. 

In recent years, researches about SA (salicylic acid), 
BR (brassinolide) [48,49], JA (jasmonic acid) [50-54,] 
were studied in water stress. In addition, some secondary 
metabolites such as peptide, NO, SL (strigol-actones), 
etc, play a part like hormone in growth and development 

[55]. Wu et al. [56] argued that a new regulatory factor, 
protein (14-3-3), was in signal transduction pathway of 
brassinolide. In addition, they also reveal a new regu- 
lating mechanism for protein OsBZR1. This Would sup- 
ply a new way and means for plant in stress drought.  

3. RESEARCH ADVANC OF DROUGHT  
RESISTANCE INMOLECULAR  
BIOLOGY 

During adapting to the drought stress, the plant has some 
reactions in molecular level. The reactions were regu- 
lated by several genes forming response systems to the 
drought [57]. Drought genes were divided into two clas- 
ses according to the way of action [58]. The first is 
function genes with protecting directly in drought resis- 
ting; the second is regulation genes, productions which 
encold could regulate function genes in signal transduc- 
tion and gene expression. 

3.1. Function Gene with Drought-Resistance 

Research showed that there were several significant 
differences between transgenic rice with gene for GST 
and CAT1 and normal rice in growth, photosynthesis, 
reduction extent of RWC (relative water content), ac- 
cumulation of H2O2 and MDA (malon dialdehyde) and 
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so on. These results implied that the GST and CAT1 
transgene mitigated oxidative damage from water stress 
[59]. Excessive expression of the coli trehalose synthesis 
A (otsA) and coli trehalose synthesis B (otsB) transgene 
rice, accumulation of trehalose increased and oxidative 
damage caused by photooxidation decreased [60]. Jang 
et al. [61] revealed that the bifunctional fusion of the 
TPS and TPP (TPSP) transgene enhanced resistance to 
drought, salty and cold. By activating gene GH3.13 of 
rice and adapting the content of IAA in leaf, stem and 
tuber, adaptability to the drought was enhanced [62].  

3.2. Regulator Gene with Drought Resistance 

Hou et al. [63] separated a gene named osSKIPa. Studies 
implied that the gene osSKIPa, an upstream gene for 
regulating, would mobilize the other gene of drought 
resistance, promote the cell vitality, increased viability in 
water stress. The mechanism similar to chain reaction 
was never founded before. Huang et al. [64] acquired the 
rice mutant named drought and salt tolerance (DST) 
through screening from mutant library large-scaly. Fur- 
ther; they cloned the gene DST with stress-resistance. 
They argued that DST down-regulated expression of the 
gene related to metabolization of H2O2, and the ability 
with eliminating H2O2 declined. This resulted in accumu- 
lation of H2O2, and shut of stoma in guard cells，and 
then improved the ability of drought-resistance by decre- 
asing evaporation of water.  

3.3. Epigenetics Mechanism 

Epigenetics refers to the heritable changes in gene ex- 
pression without any alteration in DNA sequence, inclu- 
ding DNA methylation, histone modification and chro- 
matin conformation [65,66]. DNA methylation is one of 
the important modifications in eukaryotic genome. It regu- 
lates genetic information from the epigenetic level inclu- 
ding regulation of gene expression, growth and develop- 
ment, genomic imprinting and so on. In the recent years, 
researches have showed that DNA methylation would be 
effected in stress such as heat, drought, etc. [67], and the 
genes with DNA methylation were connected with stress 
[68]. That is to say that DNA methylation involved the 
expression and regulation progress of gene in stress. Pan 
et al. [69] argued that the level of DNA methylation in- 
creased significantly in water stress, the level and state of 
DNA methylation under drought was temporal-spatial 
specific and variety specific, and the change of DNA 
methylation was related to drought responsiveness. 

4. CONCLUSION 

It is important issue of water resource shortage which is 
harm to agriculture development of the world. Efficient 
use of water resources is an urgent problem around the 

world [70]. However, drought-resistance is a compli- 
cated problem and is regulated by several pathways in- 
volved with many genes [71]. Thus, there are several 
problems to resolve in the signal perceiving, the relations 
between several factors in signal transduction, epigenet- 
ics mechanism, transgene silence etc. Therefore, these 
researches would help us understand molecular mecha- 
nism in drought-resistance in depth. In addition, we 
should further study by integrating molecular level, cell, 
organ, and the whole etc. The studies would improve 
resistance of crops and water utilization efficiency, and 
establish basement for cultivating the varieties of resis- 
tance. 
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