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Abstract 
This paper proposes a quantum-inspired evolutionary algorithm with neighborhood search (call- 
ed QEANS) to solve the project portfolios optimization problem with limited multiple resources 
and bounded risks for each project portfolio. The decision concerns how to find an optimal or best 
assignment of projects to a set of project portfolios that maximizes the total profit. The studied 
problem is formulated by a 0-1 linear programming model, and a quantum-inspired evolutionary 
algorithm with neighborhood search is proposed to solve it. In specific, each problem solution is 
encoded by a Q-bits matrix, which is updated by quantum-rotation gate. In addition, crossover and 
mutation operators are integrated so as to increase the population diversity. Furthermore, an ef-
fective repairing procedure is proposed for dealing with the generated infeasible solutions. To 
prevent the local optimum, a specific neighborhood search procedure is also proposed. Randomly 
generated instances are used to test and justify the effectiveness of the proposed QEANS. The ob-
tained results indicate that the proposed QEANS is effective. 
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1. Introduction 
With the fast development of technology and the changing consumer behavior, most enterprises or companies 
have to face an ever experienced complicated competition environment. This is because that, in the Internet Age, 
lots of new ideas and concepts are emerged around the world each day or in a short period of time, and some of 
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them may be quickly transformed into new products (services) or new technologies, which are then widely 
spread across the world. Due to this reason, new markets or services will be created and new companies or en-
terprises are founded. Therefore, all companies have to compete with each other and suffer from uncertain oper-
ational risks as well as relatively small profit margins. Hence, almost all the great or powerful enterprises adopt 
the market diversification strategy and expect to mitigate risks, improve competitiveness, maintain company’s 
sustainability and obtain considerable profits from different marketing fields.  

In practice, only minority companies had achieved their expectations and most of them had failed. The rea-
sons were generally from two aspects. One aspect was that companies had made wrong market diversification 
strategies because of many reasons, so company’s resources (i.e., money, technologies, human resources and so 
on) were used in wrong places and wasted. The other was that companies had made proper diversification strat-
egies but they lacked sufficient ability or resources to implement them, because the diversification strategy gen-
erally belonged to macroscopical level, and it must be reflected in the specific business activities. From this 
point, we can know how to choose specific business activities from numerous possible ones for achieving com-
pany’s long-term strategy and how to assign existing limited resources to each chosen activity as well as how to 
manage them to effectively play a key role in the success of strategy implementation.  

To tackle the above mentioned problems, it is a good choice to implement the diversification strategy by us-
ing the methodology of Project Portfolio Management (PPM). According to [1] and [2], project portfolio man-
agement refers to the process for effectively identifying, assessing, selection, and optimizing the collection of 
projects in order to meet some certain expectations and needs (such as long-term strategic objectives) of an en-
terprise or a company. From above descriptions, we can know that company’s strategy implementation can be 
seen as project management process, as company’s new businesses can be seen as projects, and project portfolio 
management is an important tool to effectively manage and implement these projects in strategy implementation. 
A key issue to the project portfolio management is the portfolio selection and resource allocation problem.  

Motivated by the above descriptions, this paper proposes a novel meta-heuristic approach (called Quantum- 
inspired Evolutionary Algorithm with Neighborhood Search, QEANS) to solve the strategy-oriented project 
portfolio optimization problem under bounded risks and with the consideration of resources sharing in different 
projects. This problem is NP-complete. Our objective is to find an optimal projects selection scheme such that 
the overall revenues of selected projects are maximized. 

The rest of this paper is arranged as follows. Section 2 presents the literature review. The problem description 
and its formulation are given in Section 3. In Section 4, we introduce the proposed solution method, i.e., Quan-
tum-inspired Evolutionary Algorithm with Neighborhood Search (QEANS). In Section 5, randomly generated 
instances are used to test the effectiveness of the proposed algorithm. At last, Section 6 concludes this paper and 
discusses some possible future research directions. 

2. Literature Review 
This section presents a literature review of related project portfolio problems and Quantum-inspired Evolutio-
nary Algorithm (QEA). Studies on different kinds of project portfolio problems have been reported by research-
ers. For example, Arcjer and Ghasemzadeh [3] developed a decision support system consisted by a multi-stage 
integrated framework for the project portfolio selection process. Dickinson et al. [4] proposed a nonlinear integ-
er program model for optimizing the portfolio of new technology projects selection problem with considering 
the interdependencies between different projects. Girotra et al. [5] investigated the structure and effect of mul-
tiple projects targeting the same market at the portfolio level. Chen and Askin [6] developed a general mathe-
matical formulation for the joint problem of selecting and scheduling projects with maximizing the present 
worth of profit. Besides, Coffin and Taylor [7] developed a beam search procedure for solving the R&D projects 
selection and scheduling problem. Heidenberger [8] developed an MILP (mixed integer linear programming) 
approach for dynamic projects selection problem. In addition, some researchers also proposed effective ap-
proaches for the projects selection problem from very specific background. For instance, Badri et al. [9] formu-
lated a 0 - 1 goal programming model for IS (Information System) project selection problem. Eilat et al. [10] 
developed a DEA (Data Envelopment Analysis) model embedded in the BSC (Balanced Score Card) approach 
for funding suitable projects from new R&D portfolios. 

Since 1990, QEA has been received much attention from engineers and researchers due to its excellent opti-
mization ability. According to Hey [11], QEA can be regarded as a probability optimization algorithm because it 
is based on the principle and concept of quantum computing, i.e., quantum bit (Q-bit) representation, quantum 
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parallelism and quantum updating gate. It has showed very good performance in terms of solution quality and 
computation time in solving many famous combinatorial optimization problems. For instance, Narayanan and 
Moore [12] and Talbi et al. [13] proposed different QEAs to optimize the travelling salesman problem (TSP) 
and obtained better performance compared to traditional approaches. Han and Kim [14] and Zhao et al. [15] de-
veloped various effective QEAs for knapsack problems. Besides, some researchers have also developed different 
kinds of QEA for flowshop/jobshop scheduling problem [16] [17].  

Viewing from the above descriptions, we can see that project portfolio optimization problem with limited 
risks and multiple kinds of resources have rarely been studied in the literature. In addition, various efficient 
QEAs have been applied in several research fields except for optimizing project portfolio problem. Therefore, 
this work tries to connect this research gap. 

3. Problem Description, Notation and Formulation 
3.1. Problem Description 
In this paper, we consider the following problem. Suppose that a company decides to use the methodology of 
project portfolio management to achieve its strategic objectives. And according to its strategic objectives, the 
company intends to invest some idle resources (including money, technology, human resource and so on) to N 
new projects which had been evaluated by professional experts and are considered to have great investment val-
ue, that is, the success of implementing these new projects can effectively help the company improve its compe-
titiveness, maintain high sustainability, maximize its incomes and so on. Here, we suppose that all resources re-
quired for implementing these new projects are available or the company has the ability to get the required re-
sources for carrying out these new projects. Furthermore, it is supposed that each project has its own expected 
revenue and potential risk of failure. We also suppose that some different projects may use the same type of re-
sources (such as technology or equipment), which is called resource-sharing. Besides, due to resource limita-
tions, the company can only implement at most M project portfolios at a certain period of time, that is to say, 
each project portfolio has a maximum resource allocation quantity. In order to control risk in an acceptable 
range or level, each project portfolio must have a maximum risk tolerance. That is to say, the overall risks of 
projects belonging to a same project portfolio cannot exceed the pre-defined maximum risk setting.  

Based on the above descriptions, this paper studies how to optimize the project portfolio selection problem with 
satisfaction of bounded portfolio-risks and resource limitations. The decision concerns how to select the projects 
among a given set of projects for each project portfolio such that the total profits of selected projects in all portfo-
lios are maximized. To facilitate the problem formulation, we give the following notation and decision variables: 

N: the number of total projects. 
M: the number of project portfolios. 
K: the types of available resources. 
Rj: the maximum risk acceptance degree of project portfolio j, 1 ≤ j ≤ M. 
vi: the expected revenue or profit of project i, 1 ≤ i ≤ N. 
ri: the failure risk of project i, 1 ≤ i ≤ N. 
Ck, j: the maximum quantity of resource k assigned to project portfolio j, 1 ≤ k ≤ K, 1 ≤ j ≤ M. 
qk, i: the quantity of resource k assigned to project i, 1 ≤ i ≤ N, 1 ≤ k ≤ K. 
ϕk: the sharing-degree of resource k, and ϕk ∈ [0, 1], 1 ≤ k ≤ K. If ϕk = 0, it means that resource k cannot be 

shared or used by different projects; Otherwise, resource k (such as equipment and buildings) can be completely 
used by different projects. 
µi: the projects similarity of project portfolio i, and µi ∈ (0, 1), 1 ≤ i ≤ M. For µi ≈ 0, it implies that all projects 

in portfolio i are different, and for µi ≈ 1, it implies that all projects in portfolio i are nearly the same ones. It 
should be noted that, since there does not exit the same projects, we have µi ≠ 1. 

The decision variables are the following: 
V: the total profits of M project portfolios. 
xi, j: 0-1 variable. If xi, j = 1, it means that project i belongs to project portfolio j; Otherwise (i.e., xi, j = 0), 

project i does not belong to project portfolio j, for 1 ≤ i ≤ N, 1 ≤ j ≤ M.  

3.2. Mathematical Model 
Based on the above descriptions and notation, the mathematical model for project portfolio optimization prob-
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lem with limited resources and bounded risks can be formulated as follows: 
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In the above model, the problem objective is formulated as (1), i.e., maximization of the total profit of all 
portfolios. Constraint (2) indicates that each project i can only be assigned to at most one project portfolio j, be-
cause it cannot be divided. From this definition, we can know that each project is either be selected for a project 
portfolio or not be selected. Furthermore, constraint (3) defines that the total resource of type k required by all 
projects in a portfolio j cannot exceed its pre-allocated quantity Ck, j. Finally, constraint (4) defines that the over-
all risk of all projects in a project portfolio j cannot exceed its pre-defined maximum risk acceptance level Rj. 

4. Solution Method 
In this section, due to the NP-complete characteristic of our studied problem, we introduce a novel meta-heuris- 
tic approach to solve it. That is called as Quantum-inspired evolutionary algorithm (QEA) with neighborhood 
search procedure. In what follows, we first introduce the Q-bits representation, and then describe other compo-
nents of the proposed algorithm in details. 

4.1. Representation 
QEA is formulated according to the principles of quantum computing [11] [14]. The smallest unit of information 
in QEA is called Q-bit, which is usually defined as follows [14]: 

2 20 1 ,  where 1ψ α β α β= + + = .                              (5) 

In Equation (5), complex numbers α and β respectively denote the probability amplitudes of Q-bit ψ in state 
“0” and state “1”. From this definition, we can know that each Q-bit would be found in state “0” with probabili-
ty |α|2 or in state “1” with probability |β |2. In order to determine its final state, a random-key observation way is 
generally applied to each Q-bit. In specific, a number rd is randomly generated from uniform distribution [0, 1). 
If rd > |α|2, then Q-bit is in state “1”; otherwise, Q-bit is in state “0”. Due to this reason, QEA can be regarded as 
a probabilistic algorithm.  

As mentioned above, the value of integer decision variable xi, j belongs to 0 or 1. Hence, it has a same charac-
teristic with Q-bit. Inspired by this fact, the chromosome is defined as follows: 
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By using the above mentioned random-key way, the final state of each Q-bit ψi, j can be determined. If Q-bit 
ψi, j is in state “0”, we let it represent that project i is not in portfolio j, i.e., xi, j = 0; Otherwise, project i is in 
portfolio j, i.e., xi, j = 1. Finally, all values of decision variables xi, j (hereafter we called binary matrix X) are 
known, and correspondingly, the objective value (i.e., V) can also be calculated. 

4.2. Feasibility Checking Procedure 
For each obtained binary matrix X (i.e., values of decision variables xi, j) associated with a Q-bits chromosome, it 
may be an infeasible solution. Therefore, we need to check whether it satisfies the problem constraints (2), (3) 
and (4). If it does not satisfy the problem constraints, then we repair it. To do this, consider the following: 

Step (A): Check constraint (2). Because each project can only be assigned to at most one project portfolio, for 
any project i (1 ≤ i ≤ N), if it is assigned to more than one project portfolio, we randomly remove it from one of 
portfolios (i.e., reset xi, j = 0, 1 ≤ j ≤ M), until constraint (2) is satisfied. 

Step (B): Check constraint (3). Suppose that maximum resource (type k) quantity of project portfolio j (i.e., Ck, 

j) is exceeded, then we remove project i with the minimum ratio value of vi/qk, i from project portfolio j until the 
total required resources of projects in portfolio j are smaller than or equal to Ck, j. 

Step (C): Check constraint (4). Suppose that the maximum risk acceptance degree (i.e., Rj) of portfolio j is 
exceeded, then we remove project i with the minimum ratio value of vi /ri from project portfolio j until the over-
all risk of portfolio j is satisfied. 

Based on the above works, each obtained problem solution (i.e., binary matrix X) is either proved or repaired 
to be feasible. Hence, the corresponding objective value can be easily calculated. 

4.3. Updating Q-Bits Individuals 
For each Q-bit ψi, j in a quantum chromosome Y, it is updated by the well-known quantum rotation gate, which is 
usually defined as the follows [14]: 

( ) ( )
( ) ( )

, , , , ,

, , , , ,

cos sin

sin cos

i j i j i j i j i j

i j i j i j i j i j

α α θ β θ

β α θ β θ

′ = × ∆ − × ∆

′ = × ∆ + × ∆
 for 1 ,1i N j M≤ ≤ ≤ ≤ .                  (7) 

In (7), ∆θi, j is the rotation angle, which decides the rotation direction and magnitude in the process of updat-
ing Q-bit ψi, j. We first define θ0 be the initial rotation angle, and then suppose that VY represents the objective 
value related to quantum chromosome Y, and VB represents the objective value of the best chromosome (denoted 
by B) found in population. Similar to [14], the rotation angle ∆θi, j is determined based on the values of decision 
variable xi, j in individual Y (marked as Y-xi, j) and in the best one (marked as B-xi, j). If VY < VB, then consider the 
following cases:  

(a) For Q-bit ψi, j in the 1st or 3rd quadrant, if Y-xi, j = 1 and B-xi, j = 0, then we set ∆θi, j = θ0, which aims to in-
crease the probability of Q-bit ψi, j in state “0”; else if Y-xi, j = 0 and B-xi, j = 1, then we set ∆θi, j = (−θ0), which 
aims to increase the probability of Q-bit ψi, j in state “1”; else, ∆θi, j = ±0.002π, which aims to let Q-bit search its 
neighborhood area. 

(b) For Q-bit ψi, j in the 2nd or 4th quadrant, if Y-xi, j = 1 and B-xi, j = 0, then we set ∆θi, j = (−θ0), which aims to 
increase the probability of Q-bit ψi, j in state “0”; else if Y-xi, j = 0 and B-xi, j = 1, then we set ∆θi, j = θ0, which 
aims to increase the probability of Q-bit ψi, j in state “1”; else, ∆θi, j = ±0.002π, which aims to let Q-bit search its 
neighborhood area. 

4.4. Chromosome Mutation 
To increase the population diversity, mutation operation is applied to quantum chromosome according to certain 
probability. In particular, four points p, q, g, h (they can be the same or different) are randomly generated for 
each chosen chromosome, 1 < p, q < N, 1 < g, h < M, then, for each Q-bit ψi, j, p ≤ i ≤ q, g ≤ j ≤ h, we swap its 
amplitudes of states “0” and “1”, that is, the original Q-bit ψi, j is defined as: |ψi, j〉 = α i, j |0〉 + β i, j|1〉, after muta-
tion operation, it becomes: |ψi, j〉 = βi, j |0〉 + α i, j|1〉.  

4.5. Binary Matrix Variation 
To further increase the solution diversity, crossover and mutation operations are applied to the selected problem 
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solutions (i.e., values of decision variable xi, j) according to their respective probabilities. In specific, binary 
tournament method is used to select individuals for crossover. At first, four different points p, q, g, h are ran-
domly generated, 1 < p, q < N, 1 < g, h < M. For generating offspring1, the value of xi, j (p ≤ i ≤ q, g ≤ j ≤ h) is 
copied from parent 2, and the values of other xi, j (i ∉ [p, q], j ∉ [g, h]) is copied from parent 1; similarly, for 
offspring2, the value of xi, j (p ≤ i ≤ q, g ≤ j ≤ h) is copied from parent 1, and values of other xi, j (i ∉ [p, q], j ∉ [g, 
h]) is copied from parent 2. 

Furthermore, mutation operator is applied to each chosen problem solution X. More precisely, four different 
points p, q, g, h are randomly generated, 1 < p, q < N, 1 < g, h < M. For p ≤ i ≤ q, g ≤ j ≤ h, if xi, j in X is equal to 
1 (i.e., project i is in project portfolio j), then we set xi, j = 0; else (i.e., project i is not in project portfolio j), then 
we set xi, j = 1. 

4.6. Neighborhood Search Procedure 
For improving the solution quality as many as possible, neighborhood search procedure is applied to the ob-
tained binary matrix at each generation. In specific, for a binary matrix X, if there exists a project i which does 
not be assigned for any of project portfolios (i.e., for each j, we have xi, j = 0), then we randomly put it into 
project portfolio j (1 ≤ j ≤ M), i.e., setting xi, j = 1; else, if project i is in project portfolio j (i.e., xi, j = 1), then we 
randomly put it into project portfolio j − 1 or j + 1 (i.e., setting xi, j = 0 and xi, j−1 = 1 or xi, j+1 = 1). Finally, eva-
luate all the generated new solutions, and update the best solution. 

4.7. Quantum Population Re-Initialization 
Although several effective variation ways have been proposed to increase the diversity of quantum population 
and problem solutions, it still has some possibilities to enhance the diversity in order to prevent the algorithm 
falling into the local optimum. To do this, we re-initialize all the quantum chromosomes at every λ generation. 

4.8. Steps of the Proposed Algorithm 
Input: Pops (size of the quantum chromosomes); Maxgen (maximum number of iterations); cp (crossover proba-
bility); mp (mutation probability); λ (population re-initialization period); θ0 (the initial rotation angle). 

Output: the best solution VB and xi, j. 
Step (I): Randomly initialize quantum chromosomes and set t = 0. 
Step (II): Determine Q-bits state, and assign the corresponding value to decision variable xi, j. 
Step (III): Evaluate individuals, i.e., check the feasibility of the obtained solutions xi, j. 
Step (IV): Store the best solution among all the solutions and related values of variables xi, j.  
Step (V): Let t = t + 1. 
Step (VI): if t > Maxgen, then go to stop and output the stored best solution; else, go to Step (VII). 
Step (VII): Apply Q-gate to update each quantum chromosome. 
Step (VIII): Apply mutation operator to quantum chromosomes. 
Step (IX): Determine Q-bits state, evaluate individuals, and finally update the best solution. 
Step (X): Apply crossover and mutation operators to obtained binary matrixes (i.e., xi, j). 
Step (XI): Evaluate individuals and update the best solution. 
Step (XII): Apply neighborhood search procedure. 
Step (XIII): At every λ generation, re-initialize all the quantum chromosomes. Then, determine the Q-bits 

state, evaluate individuals, and finally update the best solution .After that, go to Step (V). 

5. Computational Results 
In this section, randomly generated instances are used to evaluate the performance of our proposed quantum- 
inspired evolutionary algorithm with neighborhood search (QEANS). The experimental study is carried out on a 
HP personal computer with an Inter Core i5-2400 Processor 3.10 GHz (Windows 7 environment). The proposed 
QEANS is implemented in C++ programming language. The random instances are generated by the following 
way. We set N ∈ {100, 200, 500}, M ∈ {15, 20}, K ∈ {5, 10}, and let U (a, b) be a uniform distribution be-
tween parameters a and b. The expected revenue or profit of project i is set as: vi = U (30, 100); the risk of 
project i is set as: ri = U (0.1, 0.5), for 1 ≤ i ≤ N. The projects similarity of project portfolio j is set as: µj = U (0.1, 



W. D. Lei, S. K. Li 
 

 
402 

0.9); the maximum risk acceptance level of project portfolio j is set as: Rj = U (0.85, 1), for 1 ≤ j ≤ M. Moreover, 
the sharing-degree of resource k is set as ϕk = U (0.1, 0.95), for 1 ≤ k ≤ K. For each given values of N, M and K, 
five instances are randomly generated. Furthermore, the algorithm parameters are set as follows: Maximum 
generations: Maxgen = 500; Population size: Pops = 500; Crossover probability: cp = 0.8; Mutation probability: 
mp = 0.1; Population re-initialization period: λ = 20. 

Table 1 reports the computational results on the randomly generated instances. Note that the “B.P.” and the 
“CPU” respectively refer to the average best profit and the average computation time of the five randomly gen-
erated instances (for each given values of N, M and K). Since the rotation angle (i.e., θ0) has positive effect to 
the performance of QEANS, we set θ0 ∈ {0.01π, 0.03π, 0.05π, 0.08π} in our experimental study to further test 
its influence to the algorithm. From Table 1, we can see that both the average total profit (i.e., B.P.) and the 
CPU time (i.e., CPU) increase with the problem size (i.e., the value of N and M). We also notice that the CPU 
times gaps of different rotation angle settings for each given value of N, M and K are generally small and in the 
range of 0 s - 6 s, which can be neglected. Besides, we can also see from Table 1 that our proposed QEANS 
with θ0 = 0.08π has a better performance than that with other rotation-angle settings, for almost all the tested in-
stances except for the one with setting N = 500, M = 15 and K = 10. Moreover, for random instance with N = 
500, M = 15 and K = 5, our algorithm with θ0 = 0.03π has a better solution quality than that with θ0 = 0.08π, 
please see the bold font in Table 1. Figure 1 illustrated the results curves of different parameter settings. From 
above descriptions, we can conclude that our proposed QEANS is effective for solving the studied optimization 
problem in terms of solution quality and computation time. 

 

 
Figure 1. Best solutions obtained with our proposed QEANS with different parameter settings. 

 
Table 1. Computational result on random instances with θ0 ∈ {0.01π, 0.03π, 0.05π, 0.08π}.                             

N, M, K 
θ0 = 0.01π θ0 = 0.03π θ0 = 0.05π θ0 = 0.08π 

B.P. CPU B.P. CPU B.P. CPU B.P. CPU 
N = 100, M = 15, K = 5 3828.8 46.2 s 3813.4 44.8 s 3864.2 45 s 3872.6 44.6 s 

N = 100, M = 15, K = 10 3585.6 52.2 s 3588.6 52 s 3585.4 53.4 s 3732.4 52 s 
N = 100, M = 20, K = 5 4427.8 56 s 4421.2 56 s 4554.4 56 s 4590.8 55.8 s 

N = 100, M = 20, K = 10 4142.8 65.8 s 4137.4 65.8 s 4182 68 s 4230.2 66 s 

N = 200, M = 15, K = 5 4192.2 101 s 4225.4 101.2 s 4237 102.4 s 4301 101 s 

N = 200, M = 15, K = 10 3885.2 114.6 s 3892.6 114 s 3934.2 114.2 s 3986 113.6 s 
N = 200, M = 20, K = 5 5244.8 123.6 s 5241.4 124 s 5246.4 122.2 s 5297.6 123.4 s 
N = 200, M = 20, K = 10 4808 141.8 s 4877.2 140.8 s 4823.4 140.4 s 4933.6 141 s 
N = 500, M = 15, K = 5 4436.4 357 s 4473.2 364 s 4472.2 368.4 s 4473.2 361.4 s 

N = 500, M = 15, K = 10 4065.6 396 s 4035.4 395.8 s 4137.8 399.2 s 4080.6 396 s 

N = 500, M = 20, K = 5 5683.2 422 s 5679 415.4 s 5711.2 424.6 s 5752.2 419.2 s 

N = 500, M = 20, K = 10 5129.6 470 s 5164.6 469 s 5193.4 475.8 s 5232.6 471.2 s 
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6. Conclusion 
This paper first formulated an integer programming model and then proposed a quantum-inspired evolutionary 
algorithm with neighborhood search (QEANS) for project portfolios optimization problem with limited re-
sources and bounded risks for each project portfolio. The objective of the studied problem is to maximize the 
total profit. Each decision variable is directly encoded by a Q-bit, which is updated by the quantum-rotation gate. 
To increase the diversity of the population, crossover and mutation operators were implemented into the proposed 
QEANS. To further improve the solution quality, a specific neighborhood search procedure was proposed. Com- 
putational results on randomly generated instances with different parameter settings showed that the proposed 
QEANS was effective for solving the studied problem in terms of solution quality and CPU time. Future re-
search directions include the extension of the proposed mathematical model and optimization algorithm to solve 
the problem with bi-objective or triple-objective, such as maximization of the total profits and minimization of 
the overall risks at the same time. 
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