Wigner's Theorem in s^{*} and $s_{n}(H)$ Spaces

Meimei Song, Shunxin Zhao*
Department of Mathematics, Tianjin University of Technology, Tianjin, China
Email: *zhaosx@163.com

How to cite this paper: Song, M.M. and Zhao, S.X. (2018) Wigner's Theorem in s^{*} and $\operatorname{sn}(H)$ Spaces. American Journal of Computational Mathematics, 8, 209-221. https://doi.org/10.4236/ajcm.2018.83017

Received: August 10, 2018
Accepted: September 4, 2018
Published: September 7, 2018

Copyright © 2018 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

Wigner theorem is the cornerstone of the mathematical formula of quantum mechanics, it has promoted the research of basic theory of quantum mechanics. In this article, we give a certain pair of functional equations between two real spaces s or two real spaces $s_{n}(H)$, that we called "phase isometry". It is obtained that all such solutions are phase equivalent to real linear isometries in the space s and the space $s_{n}(H)$.

Keywords

s Space, Wigner's Theorem, Phase Equivalent, Linear Isometry, $s_{n}(H)$ Space

Open Access

1. Introduction

Mazur and Ulam in [1] proved that every surjective isometry U between X and Y is a affine, also states that the mapping with $U(0)=0$, then U is linear. Let X and Y be normed spaces, if the mapping $V: X \rightarrow Y$ satisfying that
$\{\|V(x)-V(y)\|\}=\{\|x-y\|\} \quad(x, y \in X)$.
It was called isometry. About it's main properties in sequences spaces, Tingley, D, Ding Guanggui, Fu Xiaohong in [2] [3] [4] [5] [6] proved. So, we give a new definition that if there is a function $\varepsilon: X \rightarrow\{-1,1\}$ such that $J=\varepsilon V$ is a linear isometry. we can say the mapping $V: X \rightarrow Y$ is phase equivalent to J.

If the two spaces are Hilbert spaces, Rätz proved that the phase isometries $V: X \rightarrow Y$ are precisely the solutions of functional equation in [7]. If the two spaces are not inner product spaces, Huang and Tan [8] gave a partial answer about the real atomic L_{p} spaces with $p>0$. Jia and Tan [9] get the conclusion about the \mathcal{L}-type spaces. In [6], xiaohong Fu proved the problem of isometry extension in the s space detailedly.

In this artical, we mainly discuss that all mappings $V: s \rightarrow s$ or $s_{n}(H) \rightarrow s_{n}(H)$ also have the properties, that are solutions of the functional
equation

$$
\begin{equation*}
\{\|V(x)-V(y)\|,\|V(x)+V(y)\|\}=\{\|x-y\|,\|x+y\|\} \quad(x, y \in X) . \tag{1}
\end{equation*}
$$

All metric spaces mentioned in this artical are assumed to be real.

2. Results about s

First, let us introduction some concepts. The s space in [10], which consists of all scalar sequences and for each elements $x=\left\{\xi_{k}\right\}=\sum_{k} \xi_{k} e_{k}$, the F-norm of x is defined by $\|x\|=\sum_{n=1}^{\infty} \frac{1}{2^{k}} \frac{\left|\xi_{k}\right|}{1+\left|\xi_{k}\right|}$. Let $s_{(n)}$ denote the set of all elements of the form $x=\left\{\xi_{1}, \cdots, \xi_{n}\right\}$ with $\|x\|=\sum_{k=1}^{n} \frac{1}{2^{k}} \frac{\left|\xi_{k}\right|}{1+\left|\xi_{k}\right|}$. where $e_{k}=\left\{\xi_{k^{\prime}}: \xi_{k}=1, \xi_{k^{\prime}}=0, k^{\prime} \neq k\right.$, for all $\left.k^{\prime} \in \Gamma\right\}$. We denote the support of x by Γ_{x}, i.e.,

$$
\operatorname{supp}(x)=\Gamma_{x}=\left\{\gamma \in \Gamma: \xi_{\gamma} \neq 0\right\} .
$$

For all $x, y \in s$, if $\Gamma_{x} \cap \Gamma_{y}=\varnothing$, we say that x is orthogonal to y and write $x \perp y$.

Lemma 2.1. Let $S_{r_{0}}(s)$ be a sphere with radius r_{0} and center 0 in s. Suppose that $V_{0}: S_{r_{0}}(s) \rightarrow S_{r_{0}}(s)$ is a mapping satisfying Equation (1). Then for any $x, y \in S_{r_{0}}(s)$, we have

$$
x \perp y \Leftrightarrow V_{0}(x) \perp V_{0}(y)
$$

Proof: Necessity. Choosing $\forall x=\left\{\xi_{n}\right\}, y=\left\{\eta_{n}\right\} \in S_{r_{0}}(s)$ that satisfying $x \perp y$. We can suppose $V_{0}(x)=\left\{\xi_{n}^{\prime}\right\}, V_{0}(y)=\left\{\eta_{n}^{\prime}\right\}$. And we also have

$$
\left\{\left\|V_{0}(x)-V_{0}(y)\right\|,\left\|V_{0}(x)+V_{0}(y)\right\|\right\}=\{\|x-y\|,\|x+y\|\} .
$$

So

$$
\left\|V_{0}(x)-V_{0}(y)\right\|=\|x-y\|=\|x\|+\|y\|=2 r_{0}=\left\|V_{0}(x)\right\|+\left\|V_{0}(y)\right\|
$$

or

$$
\left\|V_{0}(x)-V_{0}(y)\right\|=\|x+y\|=\|x\|+\|y\|=2 r_{0}=\left\|V_{0}(x)\right\|+\left\|V_{0}(y)\right\|
$$

Thus

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|\xi_{n}^{\prime}-\eta_{n}^{\prime}\right|}{1+\left|\xi_{n}^{\prime}-\eta_{n}^{\prime}\right|}=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|\xi_{n}^{\prime}\right|}{1+\left|\xi_{n}^{\prime}\right|}+\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|\eta_{n}^{\prime}\right|}{1+\left|\eta_{n}^{\prime}\right|}
$$

That means

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left[\frac{\left|\xi_{n}^{\prime}-\eta_{n}^{\prime}\right|}{1+\left|\xi_{n}^{\prime}-\eta_{n}^{\prime}\right|}-\frac{\left|\xi_{n}^{\prime}\right|}{1+\left|\xi_{n}^{\prime}\right|}-\frac{\left|\eta_{n}^{\prime}\right|}{1+\left|\eta_{n}^{\prime}\right|}\right]=0 \tag{2}
\end{equation*}
$$

It is easy to know $f(x)=\frac{x}{1+x}$ is strictly increasing. And $\left|\xi_{n}^{\prime}-\eta_{n}^{\prime}\right| \leq\left|\xi_{n}^{\prime}\right|+\left|\eta_{n}^{\prime}\right|$. We can get the result $\xi_{n}^{\prime} \cdot \eta_{n}^{\prime}=0$.

For $\left\|V_{0}(x)+V_{0}(y)\right\|$, similarty to the above $\left(\left|\xi_{n}^{\prime}+\eta_{n}^{\prime}\right| \leq\left|\xi_{n}^{\prime}\right|+\left|\eta_{n}^{\prime}\right|\right)$. It is $V_{0}(x) \perp V_{0}(y)$. Sufficiency. For $V_{0}(x) \perp V_{0}(y)$, that is, $\xi_{n}^{\prime} \cdot \eta_{n}^{\prime}=0$, so (2) holds, and we have

$$
\|x-y\|=\left\|V_{0}(x)-V_{0}(y)\right\|=\left\|V_{0}(x)\right\|+\left\|V_{0}(y)\right\|=2 r_{0}
$$

so, it must have $\|x-y\|=\|x\|+\|y\|$.
or

$$
\|x-y\|=\left\|V_{0}(x)+V_{0}(y)\right\|=\left\|V_{0}(x)\right\|+\left\|V_{0}(y)\right\|=2 r_{0}
$$

as the same $\|x-y\|=\|x\|+\|y\|$. It follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|\xi_{n}-\eta_{n}\right|}{1+\left|\xi_{n}-\eta_{n}\right|}=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|\xi_{n}\right|}{1+\left|\xi_{n}\right|}+\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|\eta_{n}\right|}{1+\left|\eta_{n}\right|} \tag{3}
\end{equation*}
$$

Similarly to the proof of necessity, we get $x \perp y$.
Lemma 2.2. Let $S_{r_{0}}\left(s_{(n)}\right)$ be a sphere with radius r_{0} in the finite dimensional space $s_{(n)}$, where $r_{0}<\frac{1}{2^{n}}$. Suppose that $V_{0}: S_{r_{0}}\left(s_{(n)}\right) \rightarrow S_{r_{0}}\left(s_{(n)}\right)$ is an phase isometry. Let $\lambda_{k}=\frac{2^{k} r_{0}}{1-2^{k} r_{0}}(k \in \mathbb{N}, 1 \leq k \leq n)$, then there is a unique real θ with $|\theta|=1$, such that $V_{0}\left(\lambda_{k} e_{k}\right)=\theta \lambda_{k} e_{k}$.

Proof: We proof first that for any $k(1 \leq k \leq n)$, there is a unique $l(1 \leq l \leq n)$ and a unique real θ with $|\theta|=1$ such that $V_{0}\left(\lambda_{k} e_{k}\right)=\theta \lambda_{l} e_{l}$ (because the assumption of λ_{k} implies $\lambda_{k} e_{k} \in S_{r_{0}}\left(s_{(n)}\right)$). To this end, suppose on the contrary that $V_{0}\left(\lambda_{k_{0}} e_{k_{0}}\right)=\sum_{k=1}^{n} \eta_{k} e_{k}$ and $\eta_{k_{1}} \neq 0, \eta_{k_{2}} \neq 0$. In view of Lemma 1, we have

$$
\left[\operatorname{supp} V_{0}\left(\lambda_{k_{0}} e_{k_{0}}\right)\right] \cap\left[\operatorname{supp} V_{0}\left(\lambda_{k} e_{k}\right)\right]=\varnothing \quad \forall k \neq k_{0}, 1 \leq k \leq n
$$

Hence, by the "pigeon nest principle" (or Pigeonhole principle) there must exist $k_{i_{0}}\left(1 \leq k_{i_{0}} \leq n\right)$ such that $V_{0}\left(\lambda_{k_{i 0}} e_{k_{i 0}}\right)=\theta$, which leads to a contradiction.

Next, if $V_{0}\left(\lambda_{k} e_{k}\right)=\theta_{1} \lambda_{l} e_{l}, V_{0}\left(-\lambda_{k} e_{k}\right)=\theta_{2} \lambda_{p} e_{p}$, where $\left|\theta_{1}\right|=\left|\theta_{2}\right|=1$, then $l=p$ and $\theta_{2}=-\theta_{1}$. Indeed, if $l \neq p$, we have

$$
\left\|V\left(\lambda_{k} e_{k}\right)-V\left(-\lambda_{k} e_{k}\right)\right\|=\left\|2 \lambda_{k} e_{k}\right\|=\frac{1}{2^{k}} \frac{\left|2 \lambda_{k}\right|}{1+\left|2 \lambda_{k}\right|} \neq 2 r_{0}
$$

or

$$
\left\|V\left(\lambda_{k} e_{k}\right)-V\left(-\lambda_{k} e_{k}\right)\right\|=0
$$

and

$$
\begin{equation*}
\left\|V\left(\lambda_{k} e_{k}\right)-V\left(-\lambda_{k} e_{k}\right)\right\|=\left\|\theta_{1} \lambda_{l} e_{l}-\theta_{2} \lambda_{p} e_{p}\right\|=2 r_{0} \tag{4}
\end{equation*}
$$

a contradiction which implies $l=p$. From this $\theta_{1}=-\theta_{2}$ follows. Finally, there is a unique θ with $|\theta|=1$ such that $V_{0}\left(\lambda_{k} e_{k}\right)=\theta \lambda_{k} e_{k}$. Indeed, if $V_{0}\left(\lambda_{k} e_{k}\right)=\theta \lambda_{l} e_{l}$, by the result in the last step, we have $V_{0}\left(-\lambda_{k} e_{k}\right)=-\theta \lambda_{l} e_{l}$, thus

$$
\begin{aligned}
& \left\{\left\|V\left(\lambda_{k} e_{k}\right)+V\left(-\lambda_{k} e_{k}\right)\right\|,\left\|V\left(\lambda_{k} e_{k}\right)-V\left(-\lambda_{k} e_{k}\right)\right\|\right\} \\
& =\left\{\left\|2 \lambda_{k} e_{k}\right\|, 0\right\}=\left\{\frac{1}{2^{k}} \frac{\left|2 \lambda_{k}\right|}{1+\left|2 \lambda_{k}\right|}, 0\right\}
\end{aligned}
$$

and

$$
\begin{align*}
& \left\{\left\|V\left(\lambda_{k} e_{k}\right)+V\left(-\lambda_{k} e_{k}\right)\right\|,\left\|V\left(\lambda_{k} e_{k}\right)-V\left(-\lambda_{k} e_{k}\right)\right\|\right\} \\
& =\left\{\left\|2 \theta \lambda_{l} e_{l}\right\|, 0\right\}=\left\{\frac{1}{2^{l}} \frac{\left|2 \lambda_{l}\right|}{1+\left|2 \lambda_{l}\right|}, 0\right\} \tag{5}
\end{align*}
$$

So, we get

$$
\frac{1}{2^{k}} \frac{\left|2 \lambda_{k}\right|}{1+\left|2 \lambda_{k}\right|}=\frac{1}{2^{l}} \frac{\left|2 \lambda_{l}\right|}{1+\left|2 \lambda_{l}\right|}
$$

and we also have

$$
\frac{1}{2^{k}} \frac{\left|\lambda_{k}\right|}{1+\left|\lambda_{k}\right|}=\frac{1}{2^{l}} \frac{\left|\lambda_{l}\right|}{1+\left|\lambda_{l}\right|},\left(=r_{0}\right)
$$

through the two equalities of above

$$
\frac{\frac{1}{2^{k}} \frac{\left|2 \lambda_{k}\right|}{1+\left|2 \lambda_{k}\right|}}{\frac{1}{2^{k}} \frac{\left|\lambda_{k}\right|}{1+\left|\lambda_{k}\right|}}=\frac{\frac{1}{2^{l}} \frac{\left|2 \lambda_{l}\right|}{1+\left|2 \lambda_{l}\right|}}{\frac{1}{2^{l}} \frac{\left|\lambda_{l}\right|}{1+\left|\lambda_{l}\right|}}
$$

In the end,

$$
\begin{equation*}
\left|\lambda_{l}\right|=\left|\lambda_{k}\right| \tag{6}
\end{equation*}
$$

The proof is complete.
Lemma 2.3. Let $X=S_{r_{0}}\left(s_{(n)}\right)$ and $Y=S_{r_{0}}\left(s_{(n)}\right)$. Suppose that $V_{0}: X \rightarrow Y$ is a surjective mapping satisfying Equation (1) and λ_{k} as in Lemma 2.2. Then for any lement $x=\sum_{k} \xi_{k} e_{k} \in X$, we have $V_{0}(x)=\sum_{k} \eta_{k} e_{k}$, where $\left|\xi_{k}\right|=\left|\eta_{k}\right|$ for any $1 \leq k_{0} \leq n$.

Proof: Note that the defination of V_{0}, we can easily get $V_{0}(0)=0$. For any $0 \neq x \in X$, write $x=\sum_{k} \xi_{k} e_{k}$, where $\sum_{k} \frac{1}{2^{k}} \frac{\left|\xi_{k}\right|}{1+\left|\xi_{k}\right|}=r_{0}$. we can write $V_{0}(x)=\sum_{k} \eta_{k} e_{k}$, where $\sum_{k} \frac{1}{2^{k}} \frac{\left|\eta_{k}\right|}{1+\left|\eta_{k}\right|}=r_{0}$. we have

$$
\begin{aligned}
& \left\|V_{0}(x)+V_{0}\left(\lambda_{k_{0}} e_{k_{0}}\right)\right\|+\left\|V_{0}(x)-V_{0}\left(\lambda_{k_{0}} e_{k_{0}}\right)\right\| \\
& =\left\|x+\lambda_{k_{0}} e_{k_{0}}\right\|+\left\|x-\lambda_{k_{0}} e_{k_{0}}\right\| \\
& =\left\|\sum_{k \neq k_{0}} \xi_{k} e_{k}+\left(\xi_{k_{0}}+\lambda_{k_{0}}\right) e_{k_{0}}\right\|+\left\|\sum_{k \neq k_{0}} \xi_{k} e_{k}+\left(\xi_{k_{0}}-\lambda_{k_{0}}\right) e_{k_{0}}\right\| \\
& =r_{0}+\frac{1}{2^{k_{0}}} \frac{\left|\xi_{k_{0}}+\lambda_{k_{0}}\right|}{1+\xi_{k_{0}}+\lambda_{k_{0}}}-\frac{1}{2^{k_{0}}} \frac{\left|\xi_{k_{0}}\right|}{1+\left|\xi_{k_{0}}\right|}+r_{0}+\frac{1}{2^{k_{0}}} \frac{\left|\xi_{k_{0}}-\lambda_{k_{0}}\right|}{1+\xi_{k_{0}}-\lambda_{k_{0}}}-\frac{1}{2^{k_{0}}} \frac{\left|\xi_{k_{0}}\right|}{1+\left|\xi_{k_{0}}\right|} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \left\|V_{0}(x)+V_{0}\left(\lambda_{k_{0}} e_{k_{0}}\right)\right\|+\left\|V_{0}(x)-V_{0}\left(\lambda_{k_{0}} e_{k_{0}}\right)\right\| \\
& =\left\|\sum_{k=1}^{n} \eta_{k} e_{k}+\theta_{k_{0}} \lambda_{k_{0}} e_{k_{0}}\right\|+\left\|\sum_{k=1}^{n} \eta_{k} e_{k}-\theta_{k_{0}} \lambda_{k_{0}} e_{k_{0}}\right\| \\
& =\left\|\sum_{k \neq k_{0}} \eta_{k} e_{k}+\left(\eta_{k_{0}}+\theta_{k_{0}} \lambda_{k_{0}}\right) e_{k_{0}}\right\|+\left\|\sum_{k \neq k_{0}} \eta_{k} e_{k}+\left(\eta_{k_{0}}-\theta_{k_{0}} \lambda_{k_{0}}\right) e_{k_{0}}\right\| \\
& =r_{0}+\frac{1}{2^{k_{0}}} \frac{\left|\eta_{k_{0}}+\theta_{k_{0}} \lambda_{k_{0}}\right|}{1+\left|\eta_{k_{0}}+\theta_{k_{0}} \lambda_{k_{0}}\right|}-\frac{1}{2^{k_{0}}} \frac{\left|\eta_{k_{0}}\right|}{1+\left|\eta_{k_{0}}\right|}+r_{0}+\frac{1}{2^{k_{0}}} \frac{\left|\eta_{k_{0}}-\theta_{k_{0}} \lambda_{k_{0}}\right|}{1+\left|\eta_{k_{0}}-\theta_{k_{0}} \lambda_{k_{0}}\right|}-\frac{1}{2^{k_{0}}} \frac{\left|\eta_{k_{0}}\right|}{1+\left|\eta_{k_{0}}\right|} .
\end{aligned}
$$

Combiniing the two equations, we obtain that

$$
\begin{aligned}
& \frac{\left|\xi_{k_{0}}+\lambda_{k_{0}}\right|}{1+\left|\xi_{k_{0}}+\lambda_{k_{0}}\right|}-\frac{\left|2 \xi_{k_{0}}\right|}{1+\left|\xi_{k_{0}}\right|}+\frac{\left|\xi_{k_{0}}-\lambda_{k_{0}}\right|}{1+\left|\xi_{k_{0}}-\lambda_{k_{0}}\right|} \\
& =\frac{\left|\eta_{k_{0}}+\theta_{k_{0}} \lambda_{k_{0}}\right|}{1+\left|\eta_{k_{0}}+\theta_{k_{0}} \lambda_{k_{0}}\right|}-\frac{\left|2 \eta_{k_{0}}\right|}{1+\left|\eta_{k_{0}}\right|}+\frac{\left|\eta_{k_{0}}-\theta_{k_{0}} \lambda_{k_{0}}\right|}{1+\left|\eta_{k_{0}}-\theta_{k_{0}} \lambda_{k_{0}}\right|}
\end{aligned}
$$

As $\lambda_{k_{0}} \geq\left|\xi_{k_{0}}\right|$ and $\lambda_{k_{0}} \geq\left|\eta_{k_{0}}\right|$, we have

$$
\begin{aligned}
& \frac{\xi_{k_{0}}+\lambda_{k_{0}}}{1+\xi_{k_{0}}+\lambda_{k_{0}}}-\frac{2 \xi_{k_{0}}}{1+\xi_{k_{0}}}+\frac{\lambda_{k_{0}}-\xi_{k_{0}}}{1+\lambda_{k_{0}}-\xi_{k_{0}}} \\
& =\frac{\lambda_{k_{0}}+\theta_{k_{0}} \eta_{k_{0}}}{1+\lambda_{k_{0}}+\theta_{k_{0}} \eta_{k_{0}}}-\frac{2 \eta_{k_{0}}}{1+\eta_{k_{0}}}+\frac{\lambda_{k_{0}}-\theta_{k_{0}} \eta_{k_{0}}}{1+\lambda_{k_{0}}-\theta_{k_{0}} \eta_{k_{0}}}
\end{aligned}
$$

Therefore,

$$
\frac{\lambda_{k_{0}}+\lambda_{k_{0}}^{2}-\xi_{k_{0}}^{2}}{\left(1+\lambda_{k_{0}}\right)^{2}-\xi_{k_{0}}^{2}}+\frac{\eta_{k_{0}}}{1+\eta_{k_{0}}}-\frac{\xi_{k_{0}}}{1+\xi_{k_{0}}}=\frac{\lambda_{k_{0}}+\lambda_{k_{0}}^{2}-\eta_{k_{0}}^{2}}{\left(1+\lambda_{k_{0}}\right)^{2}-\eta_{k_{0}}^{2}}
$$

Analysis of the equation, according to the monotony of the function, that is

$$
\begin{equation*}
\left|\xi_{k}\right|=\left|\eta_{k}\right| \tag{7}
\end{equation*}
$$

The proof is complete.
The next result shows that a mapping satisfying functional Equation (1) has a property close to linearity.

Lemma 2.4. Let $X=s_{(n)}$ and $Y=s_{(n)}$. Suppose that $V: X \rightarrow Y$ is a surjective mapping satisfying Equation (1). there exist two real numbers α and β with absolute 1 such that

$$
V(x+y)=\alpha V(x)+\beta V(y)
$$

for all nonzero vectors x and y in X, x and y are orthogonal.
Proof: Let x and y be nonzero orthogonal vectors in X, we write $x=\sum_{k} \xi_{k} e_{k}$, $y=\sum_{k} \eta_{k} e_{k}$.

$$
\begin{gathered}
V(x)=\sum_{k} \xi_{k}^{\prime} e_{k}, \quad V(y)=\sum_{k} \eta_{k}^{\prime} e_{k} \\
V(x+y)=\sum_{k} \xi_{k}^{\prime \prime} e_{k}+\sum_{k} \eta_{k}^{\prime \prime} e_{k}
\end{gathered}
$$

where $\left|\xi_{k}^{\prime}\right|=\left|\xi_{k}^{\prime \prime}\right|=\left|\xi_{k}\right|$ and $\left|\eta_{k}^{\prime}\right|=\left|\eta_{k}^{\prime \prime}\right|=\left|\eta_{k}\right|$. We infer from Equation (1) that

$$
\begin{aligned}
& \{\|2 x\|+\|y\|,\|y\|\} \\
& =\{\|V(x+y)+V(x)\|,\|V(x+y)-V(x)\|\} \\
& =\left\{\left\|\sum_{k} \xi_{k}^{\prime \prime} e_{k}+\sum_{k} \eta_{k}^{\prime \prime} e_{k}+\sum_{k} \xi_{k}^{\prime} e_{k}\right\|,\left\|\sum_{k} \xi_{k}^{\prime \prime} e_{k}+\sum_{k} \eta_{k}^{\prime \prime} e_{k}+\sum_{k} \eta_{k}^{\prime} e_{k}\right\|\right\} \\
& =\left\{\frac{1}{2^{k}} \frac{\left|\xi_{k}^{\prime \prime}+\xi_{k}^{\prime}\right|}{1+\left|\xi_{k}^{\prime \prime}+\xi_{k}^{\prime}\right|}+\|y\|, \frac{1}{2^{k}} \frac{\left|\xi_{k}^{\prime \prime}-\xi_{k}^{\prime}\right|}{1+\left|\xi_{k}^{\prime \prime}-\xi_{k}^{\prime}\right|}+\|y\|\right\}
\end{aligned}
$$

Through the above equation we can get $\xi_{k}^{\prime \prime}+\xi_{k}^{\prime}=0$ or $\xi_{k}^{\prime \prime}-\xi_{k}^{\prime}=0$. This implies that $\sum_{k} \xi_{k}^{\prime \prime} e_{k}= \pm V(x)$, and similarly $\sum_{k} \eta_{k}^{\prime \prime} e_{k}= \pm V(y)$. The proof is complete.
Lemma 2.5. Let $X=s$ and $Y=s$. Suppose that $V: X \rightarrow Y$ is a surjective mapping satisfying Equation (1). Then V is injective and $V(-x)=-V(x)$ for all $x \in X$.

Proof: Suppose that V is surjective and $V(x)=V(y)$ for some $x, y \in X$. Putting $y=x$ in the Equation (1), this yields

$$
\{\|2 V(x)\|, 0\}=\{\|2 x\|, 0\}
$$

$V(x)=0$ if and only if $x=0$. Assume that $V(x)=V(y) \neq 0$ choose $z \in X$ such that $V(z)=-V(x)$, using the Equation (1) for x, y, z, we obtain

$$
\begin{aligned}
& \{\|x-y\|,\|x+y\|\}=\{\|V(x)+V(y)\|,\|V(x)-V(y)\|\}=\{\|2 V(x)\|, 0\} \\
& \{\|x-z\|,\|x+z\|\}=\{\|V(x)+V(z)\|,\|V(x)-V(z)\|\}=\{\|2 V(x)\|, 0\}
\end{aligned}
$$

This yields $y, z \in\{x,-x\}$. If $z=x$, then $V(x)=-V(x)=0$, which is a contradiction. So we obtain $z=-x$, and we must have $y=x$. For otherwise we get $y=z=-x$ and

$$
V(x)=V(y)=V(z)=-V(x)=0
$$

This lead to the contradiction that $V(x) \neq 0$.
Theorem 2.6. Let $X=s_{(n)}$ and $Y=s_{(n)}$. Suppose that $V: X \rightarrow Y$ is a surjective mapping satisfying Equation (1). Then V is phase equivalent to a linear isometry J.

Proof: Fix $\gamma_{0} \in \Gamma$, and let $Z=\left\{z \in X: z \perp e_{\gamma_{0}}\right\}$. By Lemma 2.4 we can write

$$
V\left(z+\lambda e_{\gamma_{0}}\right)=\alpha(z, \lambda) V(z)+\beta(z, \lambda) V\left(\lambda e_{\gamma_{0}}\right),|\alpha(z, \lambda)|=|\beta(z, \lambda)|=1
$$

for any $z \in Z$. Then, we can define a mapping $J: s_{(n)} \rightarrow s_{(n)}$ as follows:

$$
\begin{gathered}
J\left(z+\lambda e_{\gamma_{0}}\right)=\alpha(z, \lambda) \beta(z, \lambda) V(z)+V\left(\lambda e_{\gamma_{0}}\right) \\
J(\lambda z)=\alpha(z, \lambda) \beta(z, \lambda) V(\lambda z) \\
J\left(e_{\gamma_{0}}\right)=V\left(e_{\gamma_{0}}\right), \quad J\left(-e_{\gamma_{0}}\right)=-V\left(e_{\gamma_{0}}\right)
\end{gathered}
$$

for $\forall 0 \neq \lambda \in \mathbb{R}$. The J is phase equivalent to V. So it is easily to know that J satisfies functional Equation (1). For any $z \in Z$, and $\forall 0 \neq \lambda \in \mathbb{R}$,

$$
\begin{aligned}
& \left\{\|2 z\|+\frac{1}{2^{\gamma_{0}}} \frac{|1+\lambda|}{1+|1+\lambda|}, \frac{1}{2^{\gamma_{0}}} \frac{|1-\lambda|}{1+|1-\lambda|}\right\} \\
& =\left\{\left\|J\left(z+e_{\gamma_{0}}\right)+J\left(z+\lambda e_{\gamma_{0}}\right)\right\|,\left\|J\left(z+e_{\gamma_{0}}\right)-J\left(z+\lambda e_{\gamma_{0}}\right)\right\|\right\} \\
& =\left\{\left\|\alpha(z, 1) \beta(z, 1) V(z)+\alpha(z, \lambda) \beta(z, \lambda) V(z)+V\left(e_{\gamma_{0}}\right)+V\left(\lambda e_{\gamma_{0}}\right)\right\|,\right. \\
& =\left\{\|\alpha \alpha(z, 1) \beta(z, 1)+\alpha(z, \lambda) \beta(z, \lambda) \mid V(z)\|+\frac{1}{2^{\gamma_{0}}} \frac{|1+\lambda|}{1+|1+\lambda|},\right. \\
& \\
& \left.\|\alpha \alpha(z, 1) \beta(z, 1)-\alpha(z, \lambda) \beta(z, \lambda) \mid V(z)\|+\frac{1}{2^{\gamma_{0}}} \frac{|1+\lambda|}{1+|1+\lambda|}\right\}
\end{aligned}
$$

That means $\alpha(z, 1) \beta(z, 1)=\alpha(z, \lambda) \beta(z, \lambda)$,
$J\left(z+\lambda e_{\gamma_{0}}\right)=J(z)+V\left(\lambda e_{\gamma_{0}}\right)$ for any $z \in Z$, and $\forall 0 \neq \lambda \in \mathbb{R}$.
That yields

$$
\begin{aligned}
& \left\{\|J(z)+J(-z)\|,\left\|J(z)-J(-z)+2 V\left(e_{\gamma_{0}}\right)\right\|\right\} \\
& =\left\{\left\|J\left(z+e_{\gamma_{0}}\right)+J\left(-z-e_{\gamma_{0}}\right)\right\|,\left\|J\left(z+e_{\gamma_{0}}\right)-J\left(-z-e_{\gamma_{0}}\right)\right\|\right\} \\
& =\left\{0,\left\|2\left(z+e_{\gamma_{0}}\right)\right\|\right\}
\end{aligned}
$$

That means $J(-z)=-J(z)$. On the other hand,

$$
\begin{aligned}
& \left\{\left\|z_{1}+z_{2}\right\|+\frac{2}{3} \frac{1}{2^{\gamma_{0}}},\left\|z_{1}-z_{2}\right\|\right\} \\
& =\left\{\left\|J\left(z_{1}+e_{\gamma_{0}}\right)+J\left(z_{2}+e_{\gamma_{0}}\right)\right\|,\left\|J\left(z_{1}+e_{\gamma_{0}}\right)-J\left(z_{2}+e_{\gamma_{0}}\right)\right\|\right\} \\
& =\left\{\left\|J\left(z_{1}\right)+J\left(z_{2}\right)\right\|+\frac{2}{3} \frac{1}{2^{\gamma_{0}}},\left\|J\left(z_{1}\right)-J\left(z_{2}\right)\right\|\right\}
\end{aligned}
$$

for $\forall z_{1}, z_{2} \in Z$, It follows that $\|J(x)-J(y)\|=\|x-y\|$ for all $x, y \in X$, by assumed conditions, so J is a surjective isometry.

Theorem 2.7. Let $X=s$ and $Y=s$. Suppose that $V: X \rightarrow Y$ is a surjective mapping satisfying Equation (1). Then V is phase equivalent to a linear isometry J.

Proof: According to [10] Theorem 1, Theorem 2 the author presents some results of extension from some spheres in the finite dimensional spaces $s_{(n)}$. And also we have the above Theorem 2.6, so we can get the result easily.

3. Results about $\boldsymbol{s}_{n}(\boldsymbol{H})$

In this part, we mainly introduce the space $s_{n}(H)$, where H is a Hilbert space. In [11] mainly discussed the isometric extension in the space $s_{n}(H)$. For each element $x=\{x(k)\}$, the F-norm of x is defined by $\|x\|=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\|x(k)\|}{1+\|x(k)\|}$. Let $s_{n}(H)$ denote the set of all elements of the form $x=(x(1), \cdots, x(n))$ with
$\|x\|=\sum_{k=1}^{n} \frac{1}{2^{k}} \frac{\|x(k)\|}{1+\|x(k)\|}$. where $\quad x(i)(i=1, \cdots, n) \in H$.
Some notations used:

$$
e_{x(k)}=(0, \cdots, x(k), \cdots, 0) \in s_{n}(H), \text { where }\|x(k)\|=1
$$

Specially, when $\|x(k)\|=0$, we have $\frac{e_{\frac{x(k)}{}}^{\|x(k)\|}}{}=(0, \cdots, 0)$.
Next, we study the phase isometry between the space $s_{n}(H)$ to $s_{n}(H)$, that if V is a surjective phase isometry, then V is phase equivalent to a linear isometry J.

Lemma 3.1. If $x, y \in s_{n}(H)$, then

$$
\|x-y\|=\|x\|+\|y\| \text { if and only if suppx } \bigcap \text { suppy }=\varnothing
$$

where $\operatorname{supp} x=\{n: x(n) \neq 0, n \in \mathbb{N}\}$.
Proof: It has a detailed proof process in [11].
Lemma 3.2. Let $S_{r_{0}}\left(s_{n}(H)\right)$ be a sphere with radius r_{0} in the finite dimensional space $s_{n}(H)$, where $r_{0}<\frac{1}{2^{n}}$. Defined $V_{0}: S_{r_{0}}\left(s_{n}(H)\right) \rightarrow S_{r_{0}}\left(s_{n}(H)\right)$ is an phase isometry, then we can get

$$
x \perp y \Leftrightarrow V_{0}(x) \perp V_{0}(y) .
$$

Proof: " \Rightarrow " Take any two elements $x=\{x(i)\}, \quad y=\{y(i)\}$, let $V_{0}(x)=\left\{x^{\prime}(i)\right\}, \quad V_{0}(y)=\left\{y^{\prime}(i)\right\}$. Then we have

$$
2 r_{0}=\|x\|+\|y\|=\|x-y\|=\left\|V_{0}(x)-V_{0}(y)\right\|=\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left\|x^{\prime}(i)-y^{\prime}(i)\right\|}{1+\left\|x^{\prime}(i)-y^{\prime}(i)\right\|}
$$

or

$$
\begin{equation*}
2 r_{0}=\|x\|+\|y\|=\|x-y\|=\left\|V_{0}(x)+V_{0}(y)\right\|=\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left\|x^{\prime}(i)-y^{\prime}(i)\right\|}{1+\left\|x^{\prime}(i)-y^{\prime}(i)\right\|} \tag{8}
\end{equation*}
$$

at the same time, we have

$$
\begin{align*}
& \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left\|x^{\prime}(i)-y^{\prime}(i)\right\|}{1+\left\|x^{\prime}(i)-y^{\prime}(i)\right\|} \leq \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left\|x^{\prime}(i)\right\|}{1+\left\|x^{\prime}(i)\right\|}+\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left\|y^{\prime}(i)\right\|}{1+\left\|y^{\prime}(i)\right\|}=2 r_{0} \\
& \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left\|x^{\prime}(i)+y^{\prime}(i)\right\|}{1+\left\|x^{\prime}(i)+y^{\prime}(i)\right\|} \leq \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left\|x^{\prime}(i)\right\|}{1+\left\|x^{\prime}(i)\right\|}+\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left\|y^{\prime}(i)\right\|}{1+\left\|y^{\prime}(i)\right\|}=2 r_{0} \tag{9}
\end{align*}
$$

That means $\left\|V_{0}(x)-V_{0}(y)\right\|=\left\|V_{0}(x)+V_{0}(y)\right\|=\left\|V_{0}(x)\right\|+\left\|+V_{0}(y)\right\|$, it is $V_{0}(x) \perp V_{0}(y) . " \Leftarrow$ " The proof of sufficiency is similar to the Lemma 2.1.

Lemma 3.3. Let V_{0} be as in Lemma 3.2, $\lambda_{k}=\frac{2^{k} r_{0}}{1-2^{k} r_{0}}(k \in \mathbb{N}),(1 \leq k \leq n)$, and $e_{x(k)}=s_{n}(H) .(\|x(k)\|=1)$. Then there exists $x^{\prime}(k) \in H\left(\left\|x^{\prime}(k)\right\|=1\right)$, such that $V_{0}\left(\pm \lambda_{k} e_{x(k)}\right)= \pm \lambda_{k} e_{x^{\prime}(k)}$.

Proof: We prove first that, for any $k(1 \leq k \leq n)$, there exist $l(1 \leq l \leq n)$ and
$x^{\prime}(l)\left(\left\|x^{\prime}(l)\right\|=1\right)$ such that $V_{0}\left(\lambda_{k} e_{x(k)}\right)=\lambda_{l} e_{x^{\prime}(k)}$. And then prove $l=p$. It is the same an Lemma 2.2.

Finally, we assert that, there exists $x^{\prime}(k)$ such that $V_{0}\left(\pm \lambda_{k} e_{x(k)}\right)= \pm \lambda_{k} e_{x^{\prime}(k)}$. Indeed, if $V_{0}\left(\lambda_{k} e_{x(k)}\right)=\lambda_{l} e_{x^{\prime}(l)}$, by the result in the last step, we have

$$
V_{0}\left(-\lambda_{k} e_{x(k)}\right)=\lambda_{l} e_{x^{n}(l)}
$$

$$
\left\{0, \frac{1}{2^{k}} \frac{2 \lambda_{k}}{1+2 \lambda_{k}}\right\}
$$

$$
=\left\{\left\|V_{0}\left(\lambda_{k} e_{x(k)}\right)-V_{0}\left(-\lambda_{k} e_{x(k)}\right)\right\|,\left\|V_{0}\left(\lambda_{k} e_{x(k)}\right)+V_{0}\left(-\lambda_{k} e_{x(k)}\right)\right\|\right\}
$$

$$
=\left\{\left\|\lambda_{l} e_{x^{\prime}(l)}-\lambda_{l} e_{x^{\prime \prime}(l)}\right\|,\left\|\lambda_{l} e_{x^{\prime}(l)}-\lambda_{l} e_{x^{\prime \prime}(l)}\right\|\right\}
$$

$$
=\left\{\frac{1}{2^{l}} \frac{\lambda_{l}\left\|x^{\prime}(l)-x^{\prime \prime}(l)\right\|}{1+\lambda_{l}\left\|x^{\prime}(l)-x^{\prime \prime}(l)\right\|}, \frac{1}{2^{l}} \frac{\lambda_{l}\left\|x^{\prime}(l)+x^{\prime \prime}(l)\right\|}{1+\lambda_{l}\left\|x^{\prime}(l)+x^{\prime \prime}(l)\right\|}\right\}
$$

Therefore,

$$
\frac{1}{2^{k}} \frac{2 \lambda_{k}}{1+2 \lambda_{k}}=\frac{1}{2^{l}} \frac{\lambda_{l}\left\|x^{\prime}(l)-x^{\prime \prime}(l)\right\|}{1+\lambda_{l}\left\|x^{\prime}(l)-x^{\prime \prime}(l)\right\|} \leq \frac{1}{2^{l}} \frac{2 \lambda_{l}}{1+2 \lambda_{l}}
$$

or

$$
\begin{equation*}
\frac{1}{2^{k}} \frac{2 \lambda_{k}}{1+2 \lambda_{k}}=\frac{1}{2^{l}} \frac{\lambda_{l}\left\|x^{\prime}(l)+x^{\prime \prime}(l)\right\|}{1+\lambda_{l}\left\|x^{\prime}(l)+x^{\prime \prime}(l)\right\|} \leq \frac{1}{2^{l}} \frac{2 \lambda_{l}}{1+2 \lambda_{l}} \tag{10}
\end{equation*}
$$

So, we can get $k=l$. And $\left\|x^{\prime}(l)-x^{\prime \prime}(l)\right\|=\left\|x^{\prime}(l)+x^{\prime \prime}(l)\right\|=2$, that means $x^{\prime}(l)= \pm x^{\prime \prime}(l)$.

Lemma 3.4. Let $X=s_{n}(H)$ and $Y=s_{n}(H)$. Suppose that $V: X \rightarrow Y$ is a surjective mapping satisfying Equation (1). there exist two real numbers α and β with absolute 1 such that

$$
V(x+y)=\alpha V(x)+\beta V(y)
$$

for all nonzero vectors x and y in X, x and y are orthogonal. Proof: Let $x=\{x(i)\}$ and $y=\{y(i)\}$ be nonzero orthogonal vectors in X.

$$
\left.\begin{array}{c}
V\{x(i)\}=\sum_{i=1}^{n} \frac{\|x(i)\|}{\lambda_{i}} V\left(\lambda_{i} e_{x(i)}^{\|x(i)\|}\right.
\end{array}\right), \quad \begin{gathered}
V\{y(i)\}=\sum_{i=1}^{n} \frac{\|y(i)\|}{\mu_{i}} V\left(\mu_{i} e_{y(i)}^{\|y(i)\|}\right) \\
V\{x(i)+y(i)\}=\sum_{i=1}^{n} \frac{\left\|x^{\prime}(i)\right\|}{\lambda_{i}} V\left(\lambda_{i} e_{x^{\prime}(i)}^{\left\|x^{\prime}(i)\right\|}\right)+\sum_{i=1}^{n} \frac{\left\|y^{\prime}(i)\right\|}{\mu_{i}} V\left(\mu_{i} e_{\frac{y^{\prime}(i)}{\left\|y^{\prime}(i)\right\|}}\right)
\end{gathered}
$$

where $\left\|x^{\prime}(i)\right\|=\|x(i)\|$ and $\left\|y^{\prime}(i)\right\|=\|y(i)\|$. We infer from Equation (1) that

$$
\begin{aligned}
& \{\mid 2 x\|+\| y\|,\| y \|\} \\
& =\{\|V\{x(i)+y(i)\}+V\{x(i)\}\|\| \| V\{x(i)+y(i)\}+V\{y(i)\} \|\} \\
& =\left\{\sum_{i=1}^{n} \frac{\left\|x^{\prime}(i)\right\|}{\lambda_{i}} V\left(\lambda_{i} e^{x^{\prime}(i)} \frac{\left\|x^{\prime}(i)\right\|}{}\right)+\sum_{i=1}^{n} \frac{\left\|y^{\prime}(i)\right\|}{\mu_{i}} V\left(\mu_{i} e_{\frac{y^{\prime}(i)}{\left\|y^{\prime}(i)\right\|}}\right)+\sum_{i=1}^{n} \frac{\|x(i)\|}{\lambda_{i}} V\left(\lambda_{i} e^{\left.\frac{x(i)}{\|x(i)\|}\right)}\right)\right. \text {, } \\
& \left.\sum_{i=1}^{n} \frac{\left\|x^{\prime}(i)\right\|}{\lambda_{i}} V\left(\lambda_{i} e_{x^{\prime}(i)}^{\left\|x^{\prime}(i)\right\|}\right)+\sum_{i=1}^{n} \frac{\left\|y^{\prime}(i)\right\|}{\mu_{i}} V\left(\mu_{i} e_{y^{\prime}(i)}^{\left\|y^{\prime}(i)\right\|}\right)+\sum_{i=1}^{n} \frac{\|y(i)\|}{\mu_{i}} V\left(\mu_{i} e_{\frac{y}{}(i)}^{\|y(i)\|}\right)\right\} \\
& =\left\{\sum_{i=1}^{n} \frac{\left\|x^{\prime}(i)\right\|}{\lambda_{i}} V\left(\lambda_{i} e^{\frac{x^{\prime}(i)}{\left\|x^{\prime}(i)\right\|}}\right)+\sum_{i=1}^{n} \frac{\|x(i)\|}{\lambda_{i}} V\left(\begin{array}{l}
\left.\lambda_{i} e^{\frac{x(i)}{}} \frac{\|x(i)\|}{\|}\right)+\|\{y(i)\}\|, ~ \\
\end{array}\right)\right. \\
& \left.\sum_{i=1}^{n} \frac{\left\|x^{\prime}(i)\right\|}{\lambda_{i}} V\left(\lambda_{i} e^{\frac{x^{\prime}(i)}{\left\|x^{\prime}(i)\right\|}}\right)-\sum_{i=1}^{n} \frac{\|x(i)\|}{\lambda_{i}} V\left(\lambda_{i} e^{\left.\frac{x(i)}{\|x(i)\|}\right)}\right)+\|\{y(i)\}\|\right\}
\end{aligned}
$$

Through the above equation we can get $\left\|x^{\prime}(i)\right\|=\|x(i)\|$ or $\left\|x^{\prime}(i)\right\|=-\|x(i)\|$. The proof is complete.

Lemma 3.5. Let $X=s_{n}(H)$ and $Y=s_{n}(H)$. Suppose that $V: X \rightarrow Y$ is a surjective mapping satisfying Equation (1). Then V is injective and $V(-x)=-V(x)$ for all $x \in X$.

Proof: Suppose that V is surjective and $V(x)=V(y)$ for some $x, y \in X$. Putting $y=x$ in the Equation (1), this yields

$$
\{\|2 V(x)\|, 0\}=\{\|2 x\|, 0\}
$$

$V(x)=0$ if and only if $x=0$. Assume that $V(x)=V(y) \neq 0$ choose $z \in X$ such that $V(z)=-V(x)$, using the Equation (1) for x, y, z, we obtain

$$
\begin{aligned}
\{\|x+y\|,\|x-y\|\} & =\{\|V(x)+V(y)\|,\|V(x)-V(y)\|\}=\{\|2 V(x)\|, 0\} \\
\{\|x+z\|,\|x-z\|\} & =\{\|V(x)+V(z)\|,\|V(x)-V(z)\|\}=\{\|2 V(x)\|, 0\}
\end{aligned}
$$

This yields $y, z \in\{x,-x\}$. If $z=x$, then $V(x)=-V(x)=0$, which is a contradiction. So we obtain $z=-x$, and we must have $y=x$. For otherwise we get $y=z=-x$ and

$$
V(x)=V(y)=V(z)=-V(x)=0
$$

This lead to the contradiction that $V(x) \neq 0$.
Theorem 3.6. Let $X=s_{n}(H)$ and $Y=s_{n}(H)$. Suppose that $V: X \rightarrow Y$ is a surjective mapping satisfying Equation (1). Then V is phase equivalent to a linear isometry J.
 write

$$
V\left(z+\lambda e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)=\alpha(z, \lambda) V(z)+\beta(z, \lambda) V\left(\lambda e_{\left.\frac{x\left(\gamma_{0}\right)}{\left\|/ \gamma_{0}\right\|}\right)}\right),|\alpha(z, \lambda)|=|\beta(z, \lambda)|=1
$$

for any $z \in Z$. Then, we can define a mapping $J: s_{n}(H) \rightarrow s_{n}(H)$ as follows:

$$
\begin{gathered}
J\left(z+\lambda e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)=\alpha(z, \lambda) \beta(z, \lambda) V(z)+V\left(\lambda e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right) \\
J(\lambda z)=\alpha(z, \lambda) \beta(z, \lambda) V(\lambda z) \\
J\left(e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)=V\left(e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right), J\left(-e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)=-V\left(e_{\frac{x\left(\gamma_{0}\right)}{\left\|y_{0}\right\|}}\right)
\end{gathered}
$$

for $\forall 0 \neq \lambda \in \mathbb{R}$. The J is phase equivalent to V. So it is easily to know that J satisfies functional Equation (1). For any $z \in Z$, and $\forall 0 \neq \lambda \in \mathbb{R}$,

$$
\left.\left.\begin{array}{l}
\left\{\|2 z\|+\frac{1}{2^{\gamma_{0}}} \frac{|1+\lambda|}{1+|1+\lambda|}, \frac{1}{2^{\gamma_{0}}} \frac{|1-\lambda|}{1+|1-\lambda|}\right\} \\
=\left\{\left\|J\left(z+e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)+J\left(z+\lambda e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)\right\|,\left\|J\left(z+e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)-J\left(z+\lambda e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)\right\|\right\} \\
=\left\{\left\|\alpha(z, 1) \beta(z, 1) V(z)+\alpha(z, \lambda) \beta(z, \lambda) V(z)+V\left(e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)+V\left(\lambda e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)\right\|,\right. \\
=\left\{\|\alpha(z, 1) \beta(z, 1)+\alpha(z, \lambda) \beta(z, \lambda) \mid V(z)\|+\frac{1}{2^{\gamma_{0}}} \frac{|1+\lambda|}{1+|1+\lambda|},\right. \\
=\left\{\alpha(z, 1) \beta(z, 1) V(z)-\alpha(z, \lambda) \beta(z, \lambda) V(z)+V\left(e_{x\left(\gamma_{0}\right)}^{\left\|\gamma_{0}\right\|}\right.\right.
\end{array}\right)-V\left(\lambda e_{\left.\left.\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}\right) \|\right\}}\right) \|\right\}
$$

That means $\alpha(z, 1) \beta(z, 1)=\alpha(z, \lambda) \beta(z, \lambda)$, $J\left(z+\lambda e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)=J(z)+V\left(\lambda e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)$ for any $z \in Z$, and $\forall 0 \neq \lambda \in \mathbb{R}$.

That yields

$$
\begin{aligned}
& \left\{\|J(z)+J(-z)\|,\left\|J(z)-J(-z)+2 V\left(e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)\right\|\right\} \\
& =\left\{\left\|J\left(z+e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)+J\left(-z-e_{\left.\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}\right) \|}\right)\right\|,\left\|J\left(z+e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)-J\left(-z-e_{\left.\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}\right)}\right)\right\|\right\} \\
& =\left\{0, \| 2\left(z+e_{\left.\left.\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}\right) \|\right\}}\right.\right.
\end{aligned}
$$

That means $J(-z)=-J(z)$. On the other hand,

$$
\begin{aligned}
& \left\{\left\|z_{1}+z_{2}\right\|+\frac{2}{3} \frac{1}{2^{\gamma_{0}}},\left\|z_{1}-z_{2}\right\|\right\} \\
& =\left\{\left\|J\left(z_{1}+e_{\left.\frac{x\left(\gamma_{0}\right)}{\| \gamma_{0}}\right)}\right)+J\left(z_{2}+e_{\left.\frac{x\left(\gamma_{0}\right)}{\| \gamma_{0}}\right)}\right)\right\|,\left\|J\left(z_{1}+e_{\frac{x\left(\gamma_{0}\right)}{\left\|\gamma_{0}\right\|}}\right)-J\left(z_{2}+e_{\frac{x\left(\gamma_{0}\right)}{\left.\| \gamma_{0}\right)}}\right)\right\|\right\} \\
& =\left\{\left\|J\left(z_{1}\right)+J\left(z_{2}\right)\right\|+\frac{2}{3} \frac{1}{2^{\gamma_{0}}},\left\|J\left(z_{1}\right)-J\left(z_{2}\right)\right\|\right\}
\end{aligned}
$$

for $\forall z_{1}, z_{2} \in Z$, It follows that $\|J(x)-J(y)\|=\|x-y\|$ for all $x, y \in X$, by assumed conditions, so J is a surjective isometry. \square

4. Conclusion

Through the analysis of this article, we can get the conclusion that if a surjective mapping satisfying phase-isometry, then it can phase equivalent to a linear isometry in the space s and the space $s(H)$.

Acknowledgements

The author wish to express his appreciation to Professor Meimei Song for several valuable comments.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Mazur, S. and Ulam, S.M. (1932) Sur les transformations isométriques d'espaces vectoriels normés. Comptes Rendus de l'Académie des Sciences Paris, 194, 946-948.
[2] Tingley, D. (1987) Isometries of the Unit Sphere. Geometriae Dedicata, 22, 371-378. https://doi.org/10.1007/BF00147942
[3] Ding, G.G. (2003) On the Extension of Isometries between Unit Spheres of E and $C(\Omega)$. Acta Mathematica Scientia, New Series to Appear.
[4] Ding, G.G. (2002) The 1-Lipschitz Mapping between Unit Spheres of Two Hilbert Spaces Can Extended to a Real Linear Isometry of the Whole Space. Science in China Series $A, 45,479-483$. https://doi.org/10.1007/BF02872336
[5] Fu, X.H. (2002) A Note on the Isometric Extension of Unit Spheres in Hilbert Space. Acta Mathematica Scientia, No. 6, 1147-1148 (In Chinese).
[6] Fu, X.H. (2006) Isometries on the Space s^{*}. Acta Mathematica Scientia, 26B, 502-508. https://doi.org/10.1016/S0252-9602(06)60075-1
[7] Maksa, G. and Pales, Z. (2012) Wigner's Theorem Revisited. Mathematicae Debrecen, 81, 243-249. https://doi.org/10.5486/PMD.2012.5359
[8] Tan, D.N. (2017) Wigner's Theorem in Atomic L_{p}-Spaces ($p>0$). Publicationes Mathematicae Debrecen.
[9] Jia, W.K. and Tan, D.N. (2017) Wigner's Theorem in \mathcal{L}°-Type Spaces. Bulletin of the Australian Mathematical Society, 97, 279-284.
[10] Rudin, W. (1985) Functional Analysis. 8th Edition, McGraw-Hill Inc, New York.
[11] Fu, X.H. (2014) On Isometrie Extension in the Space $s_{n}(H)$. Journal of Function Spaces, 2014, 4.

