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Abstract 
In this paper, we presents some new exact solutions corresponding to three 
unsteady flow problems of a generalized Jeffrey fluid produced by a flat plate 
between two side walls perpendicular to the plate. The fractional calculus ap-
proach is used in the governing equations. The exact solutions are established 
by means of the Fourier sine transform and N-transform. The series solutions 
of velocity field and associated shear stress in terms of Fox H-function, satis-
fying all imposed initial and boundary conditions, have been obtained. The 
similar solutions for ordinary Jeffrey fluid, performing the same motion, ap-
pear as limiting case of the solutions are also obtained. Also, the obtained re-
sults are analyzed graphically through various pertinent parameters. 
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1. Introduction 

Impressive advancement has been made in examining streams of non-Newtonian 
fluids in the most recent couple of decades. Non-Newtonian fluids have both the 
properties of elasticity as well as viscosity. The examples of such fluids are very 
large but we give some of them like honey, toothpaste, ketchup, oils and paints 
etc. These fluids are widely used in our life and have many interesting applica-
tions. It has been proven by many researchers that such kinds of fluids are not 
only important to academia but also to industry such as polymer processing and 
making of food and paper.  

As we know that Newtonian fluids are modeled by a single equation, the flows 
of non-Newtonian fluids cannot be explained by a single constitutive model. In 
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general the rheological properties of fluids are specified by their so-called con-
stitutive equations. Exact recent solutions for constitutive equations of viscoelas-
tic fluids are given by Rajagopal and Bhatnagar [1], Tan and Masuoka [2] [3], 
Fetecau and C. Fetecau [4] [5], Khadrawi et al. [6], and Chen et al. [7] etc. 
Amongst non-Newtonian fluids the Jeffrey model is considered to be one of the 
simplest model which best explains the rheological effects of viscoelastic fluids. 
The Jeffrey model is a relatively simple linear model using the time derivatives 
instead of convected derivatives. 

Recently, the fractional derivative [8] [9] approach has proved to be an im-
portant tool for considering behaviors of such types of fluids. Many researchers 
investigated different problems using the fractional derivative technique for such 
fluids. In their work, integer order time derivatives in the constitutive models for 
generalized Jeffrey fluids were replaced by the Riemann-Liouville fractional de-
rivatives. A lot of work has been done on fractional derivatives during the last 
few years. Bagley [10] proved that fractional derivative models of viscoelastic 
type fluids were in harmony with the molecular theory and attains the fractional 
differential equation of order 1/2. Friedrich [11] developed the fractional deriva-
tive method into rheology to investigate various problems. Li and Jiang [12] em-
ploy the fractional calculus to examine the behavior of sesbania gum and Xan-
than gum in their experiments and attain adequate results. Moreover, here we 
mention some more contributions which regards with the generalized viscoelas-
tic type fluids [13]-[20]. 

In 2008, Zafar [21] developed a novel integral transform known as N-transform 
which is considered to be the generalization of famous Laplace transform as well 
as to Sumudu transform. Zafar applied the N-transform to a fluid problem suc-
cessfully and gets some interesting results. In 2012, Belgacem [22] explain the 
properties and applications of this new transform and give a second name to it, 
the Natural transform. The properties are found to be similar to that of Laplace 
transform. Researchers show less attention toward Natural transform, some re-
lated studies are [23] [24] [25]. 

Definition: Let ( )f t  is defined for all 0t ≥ . The N-transform of ( )f t  is 
the function ( ),f c s  defined by 

( ) ( )( ) ( ) ( )
0

, e d ,   , ,st
su c s N u t u ct t s c

∞ −= = ∈ −∞ ∞∫ . 

The Fox function, also referred as the Fox’s H-function, generalizes the Mel-
lin-Barnes function. The importance of the Fox function lies in the fact that it 
includes nearly all special functions occurring in applied mathematics and statis-
tics as special cases. In 1961, Fox defined the H-function as the Mellin-Barnes 
type path integral: 
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Researchers show less attention for the flows of Jeffrey fluids in which the 
fractional derivatives are appeared. We discuss three different problems related 
with fractional Jeffrey fluid. In the first problem we assume that the plate is 
jerked suddenly, in the second problem the plate is moving with uniform acce-
leration, and in the last problem the plate is moving with non-uniformly accele-
ration. In this paper we establish exact solutions for the velocity field and the 
associated shear stress corresponding to the unsteady flow of an incompressible 
generalized Jeffrey fluid between two side walls perpendicular to the plate. The 
obtained solutions, expressed under series form in terms of Fox H-functions 
[26], are established by means of Fourier sine and N-transforms. The similar so-
lutions for ordinary Jeffrey fluids can be obtained as limiting cases of general 
solutions. Finally, the influence of the fractional parameters on the motion of 
generalized Jeffrey fluids is underlined by graphical illustrations. 

2. Governing Equations 

For an incompressible and unsteady generalized Jeffrey fluid the Cauchy stress 
tensor is defined as [27] 

( ) ( ),   1 Dp
Dt

β
β

βλ µ θ
  

= − + + = + + ⋅     
T I S S A V A∇ ,         (1) 

where S is the extra stress tensor I is the indeterminate spherical stress, μ is the 
dynamic viscosity, T= +A L L  is the first Rivlin-Ericksen tensor, L is the veloc-
ity gradient, λ and θ are relaxation and retardation times, β is the fractional cal-
culus parameter such that 0 1≤ ≤β , tDβ  is the fractional differentiation oper-
ator of order β based on the Riemann-Liouville definition, defined as [8] [9] 

( ) ( )
( )

( )0

1 d d ,   0 1
1 d

t

t p

f
D f t p

p t t
β τ

τ
τ

= < <   Γ − −∫ ,           (2) 

where ( ).Γ  stands for gamma function. Model for ordinary Jeffrey fluid can be 
obtained by letting 1β = . For the following problem we consider the velocity 
field and an extra stress of the form  

( ) ( ) ( ), , , , ,   , ,y z t u y z t y z t= = =V V i S S ,             (3) 

where u is the velocity and i is the unit vector along the x-direction. The conti-
nuity equation for such flows is automatically satisfied. We take the extra stress S 
independent of x as the velocity field is independent of x. Also, at t = 0 the fluid 
being at rest is given by  

( ), ,0 0y z =S ,                         (4) 

therefore from Equations (1) and (2) it results that 0yy yz zz= = =S S S  and the 
relevant equations 

( ) ( )11 1 , ,y
D u y z t
Dt

β
β

βλ τ µ θ
 

+ = + ∂ 
 

,               (5) 

( ) ( )21 1 , , ,z
D u y z t
Dt

β
β

βλ τ µ θ
 

+ = + ∂ 
 

              (5a) 
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where 1 xySτ =  and 2 xzSτ =  are the tangential stresses. In the absence of body 
forces the balance of linear momentum becomes  

1 2 ,   0,y z x t y zp u p pτ τ ρ∂ + ∂ − ∂ = ∂ ∂ = ∂ =                (6) 

here x p∂  is the pressure gradient and ρ  represents the density of the fluid. 
Eliminating the shear stresses 1τ  and 2τ  between Equations (5) and (6) and 
neglecting the pressure gradient, the governing equation reduces to the follow-
ing form  

( ) ( ) ( ) ( )
2 2

2 21 , , 1 , , ,tu y z t v D u y z t
t y z

β βλ θ
 ∂ ∂ ∂

+ = + + ∂ ∂ ∂ 
       (7) 

where υ represents the kinematic viscosity.  

3. Statement of the Problem 

We take an unsteady generalized Jeffrey fluid saturating the space above a flat 
plate which is perpendicular to the y-axis and lies between two side walls per-
pendicular to the plate. At first the fluid as well as the plane wall is at rest and at 
time t = 0, the fluid is set into flow by translating the bottom wall in its own 
plane, with a time dependent velocity Vtm. Its velocity is of the form of Equation 
(3) and the governing equation is given by Equation (7). The associated initial 
and boundary conditions are 

( ) ( ), ,0 , ,0 0;   0,0tu y z u y z y z h= ∂ = > ≤ ≤  

( )0, , ;   0,0mu z t Vt t z h= > ≤ ≤                    (8) 

( ) ( ),0, , , 0;   , 0.u y t u y h t y t= = >  

The distance between the two side walls is represented by h. Moreover, the 
natural conditions 

( ) ( )y, , , , , 0 as , , 0.u y z t u y z t y h z h t∂ → →∞ − ≤ ≤ > .        (9) 

have to be also satisfied. They are consequences of the fact that the fluid will be at 
rest at infinity and there is no shear along y-axis. 

4. Calculation of the Velocity Field for the Impulsive Motion  
of Plate (m = 0) 

First we multiply both sides of Equation (7) by πsin n z
h

 
 
 

, and then integrate the  

obtained result from 0 to h with respect to z, we get the following differential eq-
uation 

( ) ( ) ( ) ( ) ( ) ( )
22

2

, , π1 1 , , 1 , ,n
t n t n

u y n t nv D u y n t v D u y n t
t hy

β β β βλ θ θ
∂ ∂  + = + − + ∂ ∂  

 (10) 

Applying the N-transform to Equation (10), we find that the image function 
( ), ,nu y n s  of ( ), ,nu y n t  is given by 
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( ) ( ) ( )
2

2
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, , , , 0,
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( )0, ,n
Vu n s
s

= , 

( )0, , 0 as nu n s y→ →∞ , 

where n
h

ξ π
= . The solution of above differential equation is in the following  

form 

( )2 1
exp .

1
n

scVu y
s scv

c

β
β

β

λ
ξ

θ

 
 

+ = − +  
+  

   

              (12) 

We will apply the inverse N-transform technique to obtain analytic solution 
for the velocity field but to avoid difficult calculations of residues and contour 
integrals, first we express Equation (12) in series form as 

( ) ( )
( ) ( )

( ) ( ) ( )
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=
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 Γ 
 

∑∑∑∑

   (13) 

We apply the inverse N-transform to Equation (13), to obtain 

( ) ( )

( ) ( )

( ) ( ) ( )
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=
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   (14) 

Taking the inverse finite Fourier sine transform to get the analytic solution of 
the velocity field 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

1 1 0 0 0 0
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∑ ∑ ∑∑∑∑

 (15) 

To write Equation (15) in a more compact form, we use the Fox H-function, 
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( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )
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To obtain (16), the following Fox H-function property is used: 
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            (17) 

5. Calculation of the Shear Stress for the Impulsive  
Motion of Plate 

To get the shear stress first we apply N-transform to Equations (5) and (5a), to 
obtain 

( ) ( )11 1 , ,y
s u y z s
c

β
β

βλ τ µ θ
 

+ = + ∂ 
 

,               (18) 

( ) ( )21 1 , ,z
s u y z s
c

β
β

βλ τ µ θ
 

+ = + ∂ 
 

.               (19) 

Taking inverse Fourier transform of Equation (12) to get ( ), ,u y z s  and then 
putting it into Equation (18), we obtain 
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∑

     (20) 

We express Equation (20) in series form in order to obtain a more suitable 
form of 1τ  

( ) ( )
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
2 2 .

1 2 2 1 2 1 2

x m y m z m

n n j m m

   Γ + Γ − Γ − Γ +    
    

Γ Γ − Γ Γ Γ Γ − Γ Γ −

 (21) 

Taking the inverse N-transform of (21), we obtain 
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( ) ( )
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Finally, using the Fox H-function we obtain the stress field as 
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           (23) 

In the similar fashion we can find ( )2 , ,y z tτ  from Equations (16) and (19). 

6. Velocity Field and Shear Stress of the Flow Due to  
Impulsive Accelerating Plate (m = 1) 

Following the procedure of the previous section, the expression for the velocity 
field is given by 
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∑ ∑∑∑
 (24) 

7. Velocity Field and Shear Stress of the Flow Due to  
Impulsive Accelerating Plate (m = 2) 

Adopting the methodology of the previous section, the resultant expression for 
the velocity field is given by 
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∑ ∑∑∑
 (25) 

8. Special Case 

By letting 1β =  in Equations (16), we get the velocity profile for an ordinary 
Jeffrey fluid induced by the impulsive motion of the plate 

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

1
1 0 0 0

12 π, , sin
! ! ! !

1 ,1 , 1 ,0 , 1 2,0 .1,3                 3,5 0,1 , 1 ,0 , 1 ,0 , 1 2,0 , ,1 .

j n p q j j n n

q n n
m j n q

y vV m zu y z t
h h j n q p

n q n n jtH
n n j n n

ξ
λ θ

θ

+ + + − −∞ ∞ ∞ ∞

− −
= = = =

− =  
 

 − − + − + ×  − + − −  

∑ ∑∑∑
  (26) 
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Similarly, we can get velocity field for an ordinary Jeffrey fluid due to impul-
sive accelerating plate and non-uniformly accelerating plate. 

9. Numerical Results and Discussion 

We have presented unsteady flows of a generalized Jeffrey fluid induced by im-
pulsive motion of the plate between two side walls perpendicular to the plate. 
Exact analytical solutions are established for such flow problem using Fourier 
sine and N-transforms technique. The obtained solutions are expressed in series 
form using Fox H-functions. Several graphs are presented here for the analysis 
of some important physical aspects of the obtained solutions. The corresponding 
solutions for ordinary Jeffrey fluid is also obtained as limiting case of our general 
solutions. The numerical results show the profiles of velocity and the adequate 
shear stress for the flow. We analyze these results by changing different parame-
ters of interest.  

The effects of fractional parameters β of the model are important for us to be 
discussed. In Figure 1 we depict the profiles of velocity and shear stress for three 
different values of β. It is observed from these figures that the flow velocity as 
well as the shear stress increases with increasing β, which corresponds to the 
shear thinning phenomenon. Figure 2 are sketched to show the velocity and the 
shear stress profiles at different values of λ. It is noticeable that velocity as well as 
the shear stress decreases by increasing λ. In order to study the effects of materi-
al parameter θ, we have plotted Figure 3, where it appears that the velocity is al-
so a strong function of the material parameter θ of Jeffrey fluid. It can be ob-
served that the increase of material parameter θ acts as an increase of the mag-
nitude of velocity components near the plate, and this again corresponds to the 
shear-thinning behavior of the examined non-Newtonian fluid. Figure 4 
presents, the velocity field and the shear stress profiles at different values of y. It  
 

  
Figure 1. Velocity u(y,z,t) and shear stress τ1(y,z,t) profiles given by Equations (16) and (23), K = 2, t = 4, h = 2, M = 0.3, θ = 3, ξ = 
1.2, λ = 6 and different values of β. 
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Figure 2. Velocity u(y,z,t) and shear stress τ1(y,z,t) profiles given by Equations (16) and (23), K = 2, t = 4, h = 2, M = 0.3, θ = 3, ξ = 
1.2, β = 0.6 and different values of λ. 

 

  
Figure 3. Velocity u(y,z,t) and shear stress τ1(y,z,t) profiles given by Equations (16) and (23), K = 2, t = 4, h = 2, M = 0.3, β = 0.6, ξ = 
1.2, λ = 6 and different values of θ. 

 
is noticeable that velocity and shear stress decreases by increasing y. Also, by in-
creasing y the velocity becomes steady, which shows that the boundary condi-
tion (9) is satisfied. 

10. Conclusion 

In this paper, a new transform is used to obtain some exact solutions regarding 
Jeffrey fluid model. The N-transform is actually a generalization of Laplace 
transform. Fractional differential equation is involved in the governing equation, 
which is solved for the velocity with the help of finite Fourier transform. The 
flow is set into motion with the help of flat plat which is lying between two per-
pendicular plates. The series solution of velocity field and the associated shear 
stress in terms of Fox H-functions, satisfying all imposed initial and boundary  
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Figure 4. Velocity u(y,z,t) and shear stress τ1(y,z,t) profiles given by Equations (16) and (23), K = 2, t = 4, h = 2, M = 0.3, θ = 3, ξ = 
1.2, λ = 6, β= 0.6 and different values of y. 

 
conditions have been obtained. The similar solutions for ordinary Jeffrey fluid, 
performing the same motion, appear as limiting case of the solutions are ob-
tained here. Also, the obtained results are analyzed graphically through various 
pertinent parameters. Furthermore, the obtained solutions satisfy the governing 
equations and all imposed initial and boundary conditions. 
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