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Abstract 
The present paper focuses an optimal policy of an inventory model for deteriorating items with 
generalized demand rate and deterioration rate. Shortages are allowed and partially backlogged. 
The salvage value is included into deteriorated units. The main objective of the model is to mi-
nimize the total cost by optimizing the value of the shortage point, cycle length and order quantity. 
A numerical example is carried out to illustrate the model and sensitivity analyses of major para-
meters are discussed. 
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1. Introduction 
In the recent three decades, rigorous researches have come to existence on inventory models for deteriorating 
items. Most of the physical goods deteriorate over time. Food items, fruits, vegetables suffer from depletion by 
direct spoilage while stored. Highly volatile liquids such as alcohol, gasoline and turpentine undergo physical 
depletion over time through the process of evaporation. Electronic goods, grains, photographic films and radioactive 
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substances deteriorate through a gradual loss of potential or utility with the passage of time. So decay or deteri-
oration of physical items in stock is a very realistic feature and inventory researchers felt the necessary to use 
this factor into consideration. Generally, deterioration is defined as the natural process that occurs in most of 
physical items those lose their characteristic over time. It violates the assumption that goods can be held infi-
nitely for future demand. The mathematical modeling on inventory control was started with the work of Harris 
[1], who studied the classical EOQ (Economic Order Quantity) model with his implicit assumption was the 
stocked items have infinite shelf lives. Researches in this area were started from fashion goods. Firstly, Whitin 
[2] studied the deterioration on fashion goods after their valid period. After, Ghare and Schrader [3] were the 
first two researchers who laid the foundation of modeling inventory system of deteriorating items with help of 
differential equation. They studied the classical inventory model without shortage considering the constant dete-
rioration rate. Shah and Jaiswal [4] and Aggarwal [5] developed an order level inventory models considering the 
constant deterioration rate. Another class of inventory models was developed on the assumptions of the time 
dependent deterioration rate. Firstly, Covert and Philip [6] developed an EOQ model for deteriorating items us-
ing a two-parameter Weibull distribution deterioration rate. Later, Philip [7] extended their model by consider-
ing the three-parameter Weibull distribution deterioration rate. Misra [8] first developed the production lot-size 
model by using both the constant and the two-parameter Weibull distribution deterioration. The review litera-
tures on inventory modeling were given in the articles of Raafat [9], Goyal and Giri [10], Li et al. [11] and 
Bakker et al. [12].  

Besides demand and deterioration rate, other factors like allowing shortages are important for modeling of in-
ventory. Shortages usually occur in two cases when the shortage items are totally backlogged and the other case 
when the items are partially backlogged. In the former case, the customers are not totally willing to accept the 
items while the latter case customers are only willing to accept the items which can be supplied by the whole 
sellers in the next period. Various types of inventory models with completely backlogging were discussed by 
Murdeshwar [13], Goyal et al. [14], Chakrabarti and Chaudhuri [15], Salmeh et al. [16], Zhou and Lau [17] and 
others.  

But, in real life situation, during the shortage period, the willingness of a customer to wait for items declines 
with the length of the waiting time. Backlogging happens due to the lack of raw materials or work in progress or 
the demand is uncertain. Chang and Dye [18] were the first who studied the backlogging rate that depends on 
the length of the waiting time. In the real life situations, for many stocks such as fashionable commodities and 
high-tech products, the longer the waiting time, the smaller would be the backlogging rate. Being the backlog-
ging rate as variable, it depends on the length of waiting time for the next replenishment. Many researchers like 
Papachristos and Skouri [19], Abad [20], Teng et al. [21], Sana [22], Roy et al. [23] and Singh and Pattnayak 
[24] studied their models with considering the partial backlogging rate.  

In the classical EOQ models, the demand rate of an item was assumed as constant. However, in the real mar-
ket situations, the demand rate of any item always acts as a dynamic state. In this context, Silver and Meal [25] 
first developed the modified EOQ model with varying demand. Many researchers like Donaldson [26], Dave 
and Patel [27], Giri et al. [28] and others worked in this direction. However, most of the above model mainly 
based on time-varying demands like linearly or exponential. Considering the quadratic demand as the next rea-
listic approach, Ghosh and Chaudhuri [29], Khanra et al. [30] and Singh and Pattnayak [31] developed their in-
ventory models for deteriorating items. Singh et al. [32] developed an EOQ model for deteriorating items under 
permissible delay in payment by considering stock dependent demand. 

Other category of inventory models was developed by considering the deterioration rate as the key factor. 
Ghare and Schrader [3], Shah and Jaiswal [4], Aggrawal [5] and Bhunia and Maiti [33] developed their models 
considering the deterioration as constant. Researchers like Covert and Philip [6], Mishra [8], Jalan et al. [34], 
Jain and Kumar [35] and Singh and Pattnayak [36] studied their models taking two-parameter Weibull distribu-
tion deterioration. In real life situation, the two-parameter Weibull distribution deterioration may not be useful 
because some items start deteriorating after a certain period while storing, but not at the initial stage. Generally, 
when the items are kept in stock, they do not start deteriorating as soon as they are received; instead, deteriora-
tion starts after some time. For such items three-parameter Weibull distribution deterioration rate is applicable to 
represent the time to deterioration. The location parameter is used to describe its shelf life. Philip [7], Chakra-
barti et al. [37] and Jain and Kumar [38] studied their models considering deterioration rate as three-parameter 
Weibull distribution to represent the time to deterioration. 

In real market situations, the sellers offer a reduced unit cost called the salvage value of the deteriorated items 
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to the customers to motivate to buy the deteriorated units. In this context, Jaggi and Aggarwal [39], Mishra and 
Shah [40] developed their models using salvage value one of costs. Recently, Annadurai [41] studied the inven-
tory model for deteriorating items with shortages and salvage value.  

In this study, an effort has been made to determine an optimal policy for deteriorating items considering qua-
dratic demand, three parameter Weibull distribution deterioration rate and salvage value. Shortages are permit-
ted to occur and partially backlogged. Among the different patterns of time varying demands, the most realistic 
approach is to consider the quadratic demand pattern because it represents both accelerated and retarded growth 
in demand. Quadratic demand is generally represented by ( ) 2 , 0, 0, 0R t a bt ct a b c= + + > ≠ ≠ . When 0c =  
and 0b c= = , it represents linear and constant demand rates respectively. In real market situations, deteriora-
tion starts after some time when the items are stocked. For such items, the three-parameter Weibull distribution 
deterioration can be used to represent the time to deterioration. It is generally represented by  
( ) ( ) ( ) ( ) ( )1 , 0 1 , 0 , 0 1Z t t βαβ γ α α β γ γ−= − < > < <  where , ,α β γ  and t are called scale parameter, shape 

parameter, location parameter and time of deterioration respectively. When 0γ =  and 1 & 0β γ= = , it 
represents the two-parameter Weibull and constant deterioration rate respectively.  

2. Assumptions  
The following assumptions are taken in developing the model. 

1) A single product is considered. 
2) Replenishment is instantaneous. 
3) The lead time is zero. 
4) The demand rate is deterministic and quadratic function of time. 
5) The deterioration rate is three-parameter Weibull distribution deterioration.  
6) The shortages are permitted and backlogged. It is assumed that the backlogging rate will be smaller when 

the waiting time is longer. 
7) During the planning horizon, there is no need to replace or repair the deteriorated units. 
8) The salvage value of the deteriorated units depends on the cost deterioration during the cycle time. 

3. Notations  
The following notations are taken in developing the model.  

1) T : The fixed length of each ordering cycle. 
2) 1t : The time when the inventory level reaches zero. 
3) ( )1I t : On-hand inventory at time t when 0t ≥ .  
4) ( )R t : The quadratic demand rate, i.e., ( ) 2 , 0, 0, 0R t a bt ct a b c= + + > ≠ ≠  where a, b and c are the ini-

tial demand rate, increasing demand rate and changing demand rate respectively. 
5) ( )tΖ : The three parameter Weibull distribution deterioration rate, i.e.,  
( ) ( ) 1 , 0 1, 0 & 0 1Z t t βαβ γ α β γ−= − < > < < . Here , &α β γ  are called the scale parameter, the shape pa-

rameter and the location parameter respectively. 

6) ( )B t : The backlogging rate, i.e., ( ) ( )
1 , 0

1
B T t

T t
δ

δ
− = >

+ −
 where δ  is called the backlogging pa-  

rameter.  
7) δ : The constant backlogging parameter where 0 1δ≤ ≤ .  
8) vχ : The salvage value parameter which is associated with deteriorated units during the cycle where 

0 1Cχ≤ ≤ . 
9) 0Q : The per cycle ordering quantity. 
10) oA : The ordering cost per order. 
11) hC : The inventory holding cost per unit. 
12) pC : The purchase cost per unit. 
13) bC : The shortage cost per unit. 
14) lC : The cost of lost sales per unit. 
15) ( )1,TRC t T : The total relevant cost per unit time. 
16) *T : The optimum length of ordering cycle. 
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17) *
1t : The optimal shortage point of time. 

18) *
0Q : The optimal order quantity. 

19) ( )*
1,TRC t T : The optimal total relevant cost. 

4. Model Formulation 
The inventory system goes as follow: at time 0t = , a lot size of certain units enter the system. In the interval 
[ ]10, t , the inventory level gradually decreases due to demand and partly due to deterioration and it vanishes at 
time 1t t= . Then, shortages are allowed to occur during the interval [ ]1,t T  and all the demand during the 
shortage period [ ]1,t T  is partially backlogged. Thus, the inventory level ( )I t  at any time t during the period 
[ ]10, t  can be represented by the differential equation 

( ) ( ) ( ) ( )1
1 1

d
, 0 .

d
I t

t I t R t t t
t

θ+ = − ≤ ≤  

Using the value of ( ) ( ) 1t t βθ αβ γ −= −  where 0 1, 0& 0 1α β γ< > < <  called the scale, shape and lo-  
cation parameter respectively and ( ) 2R t a bt ct= + +  where , & 0a b c > , the above equation is given by  

( ) ( ) ( ) ( )11 2
1 1

d
, 0 .

d
I t

t I t a bt ct t t
t

βαβ γ −+ − = − + + ≤ ≤                       (1) 

Equation (1) is a linear differential equation. The integrating factor (I.F.) is ( )e t βα γ− . 
The solution of Equation (1) with boundary condition ( )1 1 0I t =  is given by  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1 2 12 3
1 1 11 1

1 1

3 2 1 2 3
1 1 12

1 2 1

3

2 3 1 2 1

2
3 2 1 2 3

1 2 1

t t tbt ctI t at a b

t t t bt ctc at

t t t
a b

t
c

β β β

β β β

β β β

β

γ γ γ
α γ

β β β

γ γ γ
γ γ

β β β

γ γ γ
α γ

β β β

γ
β

+ + +

+ + +

+ + +

+

   − − −  = + + + + +  + + +   
 − − −   + + + − + +   + + +   

  − − −  − + +  + + +  

−
+

+
( ) ( ) ( )

2 1
2

12 e , 0 ,
3 2 1

tt t
t t

β
β β

α γγ γ
γ γ

β β

+ +
− −

 − −  + + ≤ ≤ + +  

            (2) 

(by neglecting the higher power of α  as 0 1α<  ). 
The maximum positive inventory level for each cycle can be obtained by putting ( )1 0 MI I=  in Equation (2) 

is given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 2 12 3
1 1 11 1

1 1

3 2 1
1 1 12

1 2 1

3 2

0
2 3 1 2 1

2 e
3 2 1

1 2 1

2
3

M
t t tbt ctI I at a b

t t t
c

a b

c

β

β β β

β β β
α γ

β β β

β β

γ γ γ
α γ

β β β

γ γ γ
γ γ

β β β

γ γ γ
α γ

β β β

γ γ
γ

β β

+ + +

+ + +
− −

+ + +

+ +

   − − −  = = + + + + +  + + +   
 − − −  + + +  + + +  

  − − −  − + +  + + +  

− −
+ +

+
( ) ( )

1
2 e .

2 1
β

β
α γγ

γ
β

+
− −

 −  +  + +  

           (3) 

At time 1t , the inventory level achieves zero, then shortage is allowed to occur during the shortage interval 
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[ ]1,t T . During this interval, the inventory level depends on demand and a fraction of demand is backlogged at  

the rate ( ) ( )
1

1
B T t

T tδ
− =

+ −
. Thus, the behavior of the inventory system at any time t can be represented by  

the differential equation 

( ) ( ) ( )2
1

d
, .

d
I t

R t B t t t T
t

= − ≤ ≤  

Using the value of ( ) 2R t a bt ct= + +  where , & 0a b c >  and ( ) ( )
1

1
B T t

T tδ
− =

+ −
 where 0δ > , the  

above equation is given by 

( ) ( )
( )

2
2

1
d

, .
d 1

a bt ctI t
t t T

t T tδ

− + +
= ≤ ≤

+ −
                             (4) 

The solution of Equation (4) with boundary condition ( )2 1 0I t =  is given by 

( ) ( ) ( ){ } ( )( ) ( )( ){ }

( ){ }( ) ( ) ( ){ }

22
2 13

2 2 2
1 1 1 1 1

1 1 1 ln 1 ln 1

2 1 2 2 2 , .
2

I t a b T c T T t T t

cb c T t t t t Tt t Tt t t t T

δ δ δ δ δ δ
δ

δ δ δ δ δ

= + + + + + − − + −
− + + − + − + − + + − ≤ ≤

       (5) 

The maximum back order units are given by  

( ) ( ) ( ){ } ( ){ }

( ){ }( ) ( ) ( ){ }

22
2 13

22
1 1 1

1 1 1 ln 1

2 1 2 .
2

BI I T a b T c T T t

cb c T t T t T t T

δ δ δ δ δ
δ

δ δ δ δ δ

= − = + + + + + −
+ + + − + − − − 

            (6) 

Hence, the order size during the time interval [ ]0,T  is given by 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 2 12 3
1 1 11 1

0 1

3 2 1
1 1 12

1 2 1

3

2 3 1 2 1

2 e
3 2 1

1 2 1

2
3

M B
t t tbt ctQ I I at a b

t t t
c

a b

c

β

β β β

β β β
α γ

β β β

β β
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α γ

β β β

γ γ γ
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β β β
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α γ

β β β
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γ

β

+ + +

+ + +
− −

+ + +

+ +

   − − −  = + = + + + + +  + + +   
 − − −  + + +  + + +  

  − − −  − + +  + + +  

− −
+ +

+
( ) ( )

( ) ( ){ } ( ){ }

( ){ }( ) ( ) ( ){ }

2 1
2

22
13

22
1 1 1

e
2 1

1 1 1 ln 1

2 1 2 .
2

a b T c T T t

cb c T t T t T t T

β
β

α γγ
γ

β β

δ δ δ δ δ
δ

δ δ δ δ δ

+
− −

 −  +  + +  

+ + + + + + −
+ + + − + − − − 

          (7) 

Now, the total relevant cost of the model is expressed as the difference of the sum of the cost of ordering, cost 
of carrying inventory, cost of deterioration, cost of shortage due to backlogging and cost of opportunity due to 
lost sales and salvage value of the deteriorated items. 

Now, the per order cost of ordering cost is 

0.CO A=                                          (8) 

The cost of carrying inventory is 
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( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1
0

1 2 12 3
1 1 11 1

1 1

3 2 1
1 1 12

1 1 2 3
1 1 1

1

d

2 3 1 2 1

2
3 2 1

1 1 2 3

t

h

h
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c
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=
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 − + + −  + +   

∫
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3

h
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β β β

γ γ γ γ γ γ
α γ

β β β

γ γ γ γ γ γ
γ γ
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γ γ γ γ
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β

+ + + + + +
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+ + 
 

   − − − − − − − − −   + + +   + + +   
 − − − − − − − − −
 + + +
 + + + 

− − − − − −
+ +

+
( ) ( )

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

2 1 1
13

2 2 3 3 2 2
1 1 1 1 1 1

4 4 3 3 2 2
1 1 1 1 1 12

2 1

2 1 3 2 2 1

2
4 3 3 2 2 1

h

t

t t t t t t
C a b

t t t t t t
c

β β β

β β β β β β

β β β β β β

γ γ
γ

β β

γ γ γ γ γ γ
α γ

β β β β β β
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γ γ
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+ + + + + +

+ + + + + +

− − − + + + 
  − − − − − − − − −
  − + +

 + + + + + +  
 − − − − − − − − −
 + + +

 + + + + + + 
,


          (9) 

(by neglecting the higher power of α  as 0 1α<  ). 
The cost of deterioration is 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
1

1 1
0 0

2 3
1 11 1

1 1

1 1 2 2
1 1 1

1 1 3
1 1 12

d d

2 3

2
1 2 2

2
1 3

t t

p p

p

p

CD C Z t I t t C t I t t

bt ctC at t

t t tbC a

t t tc

β

β β

β β β β β β

β β β β β

αβ γ

α γ γ

γ γ γ γ γ γ
αβ γ

β β β

γ γ γ γ γ
γ γ

β β

−

+ +

+ + + +

+ + +

= = −

   = + + − − −    
   − − − − − − − − −  − + +  

+ +     
− − − − − − − − −+ + +

+ 

∫ ∫

( )

( ) ( ) ( ) ( ) ( ) ( )

3

2 2 1 1
1 1 12 3

3

3 3 ,
2 1

t t t

β

β β β β β β

γ
β

γ γ γ γ γ γ
γ γ γ

β β β

+

+ + + +




+
− − − − − − − − − + + + 

+ + 

         (10) 

(by neglecting the higher power of α  as 0 1α<  ). 
The cost of shortage due to backlogging 

( ){ } ( ) ( ){ } ( )( ){ }

( ) ( ){ } ( ) ( )
1

22
2 1 13

2 3
2 1 1

1

d 1 1 ln 1

2 1 .
2 2 2 3

T
b

b
t

C
CSB C I t t a b T c T T t T t

t T t TcT t b c T c

δ δ δ δ
δ

δ δ δ δ δ


= − = + + + + − + + −


 − − − − + + + + 
  

∫
         (11) 
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The cost of opportunity due to lost sales 

( ) ( ){ }

( ) ( )

( ) ( ) ( )

( ) ( ){ } ( ){ }

( ) ( ){ } ( ) ( ){ }

1

1

2

2 3
1 1

1

22
13

22
1 1 1

1 d

11 d
1

2 3

1 1 1 ln 1

2 1 2 .
2

T

l
t

T

l
t

l

COLS C R t B T t t

C a bt ct t
T t

b T t c T t
C a T t

a b T c T T t

cT t b c T T t T t

δ

δ δ δ δ δ
δ

δ δ δ δ δ

 = − − 

   = + + −  + −    
 − −

= − + +


 − + + + + + −  


− − + + + − + − 



∫

∫

               (12) 

The salvage value of deteriorated items per unit time 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
1

1 1
0 0

2 3
1 11 1

1 1

1 1 2 2
1 1 1

1 1 3
1 1 12

d d

2 3

2
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2
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t t
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v

v

SV Z t I t t t I t t

bt ctat t

t t tba

t t tc

β

β β

β β β β β β

β β β β β

χ χ αβ γ

αχ γ γ

γ γ γ γ γ γ
αβχ γ

β β β

γ γ γ γ γ
γ γ

β β

−

+ +

+ + + +

+ + +

= = −

   = + + − − −    
   − − − − − − − − −  − + +  + +     

− − − − − − − − −+ + ++ 

∫ ∫

( )

( ) ( ) ( ) ( ) ( ) ( )

3

2 2 1 1
1 1 12 3

3

3 3
2 1

t t t

β

β β β β β β

γ
β

γ γ γ γ γ γ
γ γ γ

β β β

+

+ + + +


 +

− − − − − − − − − + + + + + 

         (13) 

Thus, from the above arguments, the total annual cost per unit time for the retailer is 

( ) [ ]1
1, .TRC t T CO CCI CD CSB COLS SV
T

= + + + + −                       (14) 

The objective of the model is to minimize the total relevant cost per unit time ( )1,TRC t T . The necessary  
conditions for minimizing the total relevant cost per unit time are 

( )( ) ( )( )2 2
1 1

2 2
1

, ,
0 & 0.

TRC t T TRC t T
t T

∂ ∂
= =

∂ ∂
                           (15) 

Equation (15) implies  

( )( ) ( ) ( ){ } ( ) ( ){ }( )

( ) ( ){ } ( )
( ) ( ){ }( ) ( ){ }

( ) ( ){ } ( ) ( ){ } ( ){ }

2
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1 1 1 1 1 1 12
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1

22 2
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1

,
1

1
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1
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1

h

b

l
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β β βαα γ γ γ
β

δ δ δ δ δ δ δ
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δδ

∂  
= + + + − − − − − + + +∂  
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( ) ( ) ( ){ }2
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βα χ α γ

 
 
  

+ − + + + − =

 (16) 
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and  

( )( ) ( ) ( ){ } ( )
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( ) ( ){ } ( ){ }

( ) ( ){ } ( )
( ){ } ( ){ } ( ){ }

2
21 12

2 2
1

21
1 1

2
1 1 1

22 2
2

1

1

,
1 1

1

ln 1
2 1

2 1

1 11 1
1

2 1 ln 1 2 1

b

l

TRC t T T tC a b T c T
T tT T

T t
b c T T t c T t

T t b c T c T t T t

C a bT cT a b T c T
T T t

b c T T t b c T

δ δ δ δ
δδ

δ
δ δ δ

δ

δ δ δ

δ δ δ δ
δδ

δ δ δ δ δ

∂  −
= + + + + + −∂ 

 + − + + + + − − − − 
  


− − + + + − + − 


 

+ + + − + + + +  + − 
+ + + − − + +

( ) ( ){ }1 12 1 0.c T t c T tδ δ


− − + + − =


        (17) 

The solutions of (16) and (17) will give the optimal shortage point *
1t  and the optimal cycle time *T . The 

values of *
1t  and *T  so obtained, the optimal value of the total relevant cost per unit time ( )*

1,TRC t T  is 
determined by equation (14) provided they satisfy the sufficient conditions for minimizing ( )1,TRC t T  are 

( )( )2
1

2
1

,
0,

TRC t T
t

∂
<

∂
 

                                  (18) 

( )( )2
1

2

,
0

TRC t T
T

∂
<

∂
                                   (19) 

and  

( )( ) ( )( ) ( )( ) 22 2 2
1 1

2 2
11

, , ,
0,bTRC t T TRC t T TRC t T

t Tt T
 ∂ ∂ ∂

⋅ − <  ∂ ∂∂ ∂  
                   (20) 

at *
1 1t t=  and *T T= . 

If the solutions obtained from (16) and (17) do not satisfy the sufficient conditions (18), (19) and (20), the op-
timal solution is infeasible. In that case, either the values of parameters are consistent or there is some error in 
their estimations.  

After obtaining the optimal values of *
1t  and *T , the optimal order quantity *

0Q  and the optimal total re-
levant cost ( )*

1,TRC t T  can be obtained from Equations (7) and (14) respectively. 

5. Numerical Examples 
Example 1. Let us consider the following parametric values of the inventory system as: 0 240A = , 1200a = , 

120b = , 60c = , 0.002α = , 2β = , 0.4γ = , 16hC = , 100pC = , 28lC = , 0.1vχ =  & 0.6δ =  in ap-
propriate units.  

Solving the simultaneous Equations (16) and (17), the optimal shortage period and optimal cycle length are 
obtained as *

1 0.136036t =  and * 0.181471T =  unit time respectively. Now substituting the pair *
1t  and *T  

in Equations (7) and (14), we get the optimal order quantity *
0 219.103Q =  and average total relevant cost per 

unit time ( )*
1, 2634.49TRC t T Rs= ⋅ . 

6. Sensitivity Analysis 
We study the effects of changes in the parameters of the model such as 0A , a , b , c , α , β , γ , hC , pC , 

lC , vχ  and δ  on the optimal shortage point, the optimal length of the cycle, the optimal order quantity and 
the average total relevant cost per unit time. The sensitivity analysis is performed by changing each of the para-
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meters by −50%, −25%, +25% and +50% taking one parameter at a time while keeping others unchanged. The 
results are illustrated in Table 1 from Example-1.  
 
Table 1. Sensitivity analysis.                                                                                        

Parameter Change in 
parameter 

*
1t  *T  *

0Q  ( )*
1 ,TRC t T  

% Change in 
( )*

1 ,TRC t T  

0A  

+50 
+25 
−25 
−50 

0.166023 
0.151813 
0.118055 
0.0966262 

0.221828 
0.202687 
0.157334 
0.12863 

268.222 
244.906 
189.797 
155.015 

3229.52 
2946.85 
2280.32 
1860.71 

+0.225862 
+0.118566 
−0.134436 
−0.293711 

a  
+50 
+25 
−25 
−50 

0.111726 
0.122117 
0.156034 
0.188205 

0.148849 
0.162782 
0.208371 
0.251768 

268.567 
245.092 
189.562 
154.426 

3219.38 
2941.3 
2287.82 
1880.56 

+0.222013 
+0.116459 
−0.131589 
−0.286143 

b  

+50 
+25 
−25 
−50 

  


 0.136386 
0.13674 



 


 0.18194 
0.182416

 



 


 219.179 
219.259

 



 


 2631.04 
2627.58

 



 


 −0.00130955 
−0.0026229

 

c  
+50 
+25 
−25 
−50 

0.135974 
0.136005 


 
  

0.181387 
0.181429 


 
  

219.06 
219.082 


 
  

2634.9 
2634.7 


 
  

+0.000155628 
+0.0000797118 



 
  

α  
+50 
+25 
−25 
−50 

0.136379 
0.136208 
0.135866 
0.135695 

0.181733 
0.181602 
0.18134 
0.181209 

219.418 
219.261 
218.945 
218.788 

2630.08 
2632.28 
2636.69 
2638.89 

−0.00167395 
−0.000838872 
+0.000835076 
+0.00167015 

β  

+50 
+25 
−25 
−50 

0.135028 
Complex no. 
Complex no. 

0.134304 

0.180706 
Complex no. 
Complex no. 

0.18012 

218.183 


 


 217.475
 

2647.96 


 


 2655.55
 

+0.00511294 


 


 +0.00799396
 

γ  
+50 
+25 
−25 
−50 

0.136467 
0.136251 
0.135822 
0.135609 

0.181811 
0.181641 
0.181301 
0.181133 

219.513 
219.308 
218.898 
218.695 

2629.51 
2632.0 
2636.97 
2639.45 

−0.00189031 
−0.000945154 
+0.000941359 
+0.00188272 

hC  

+50 
+25 
−25 
−50 

0.104755 
0.11807 

0.162146 
0.205308 

0.157596 
0.167553 
0.202547 
0.239134 

189.677 
201.953 
245.073 
290.215 

3041.32 
2857.33 
2355.91 
1989.44 

+0.154425 
+0.0845856 
−0.105743 
−0.244848 

pC  

+50 
+25 
−25 
−50 

0.136375 
0.136206 
0.135868 
0.135699 

0.18173 
0.1816 

0.181341 
0.181213 

219.422 
219.262 
218.943 
218.785 

2630.1 
2632.3 
2636.68 
2638.86 

−0.00166636 
−0.00083128 
+0.00083128 
+0.00165877 

bC  

+50 
+25 
−25 
−50 

0.140474 
0.13852 

0.132776 
0.128302 

0.175595 
0.178133 
0.186057 
0.192758 

212.21 
215.195 
224.442 
232.186 

2720.32 
2682.51 
2571.47 
2485.05 

+0.0325794 
+0.0182274 
−0.0239211 
−0.0567245 

lC  

+50 
+25 
−25 
−50 

0.138628 
0.137418 
0.134443 
0.132586 

0.17799 
0.179597 
0.183682 
0.186332 

215.027 
216.911 
221.681 
224.761 

2684.61 
2661.21 
2603.69 
2567.8 

+0.0190246 
+0.0101424 
−0.0116911 
−0.0253142 

vχ  

+50 
+25 
−25 
−50 

0.136036 
0.136036 
0.136036 
0.136037 

0.18147 
0.181471 
0.181471 
0.181471 

219.102 
219.103 
219.103 
219.103 

2634.49 
2634.49 
2634.49 
2634.48 

0 
0 
0 

63.7958 10−− ×  

δ  

+50 
+25 
−25 
−50 

0.138506 
0.137349 
0.134532 
0.132791 

0.178301 
0.179775 
0.183443 
0.185768 

215.117 
216.963 
221.612 
224.597 

2682.29 
2659.9 
2605.38 
2571.68 

+0.0181439 
+0.00964513 
−0.0110496 
−0.0238414 

Here “ ” indicates the infeasible solution. 
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1) *
1t , *T , *

0Q  & ( )*
1,TRC t T  increase with increase in the value of the parameter 0A . Here *

1t , *T , 
*
0Q  & ( )*

1,TRC t T  are all highly sensitive to changes in 0A . 
2) *

1t  & *T  decrease while *
0Q  & ( )*

1,TRC t T  increase with increase in the value of the parameter a . 
Here *

1t , *T , *
0Q  & ( )*

1,TRC t T  are all moderately sensitive to changes in a . 
3) *

1t , *T  & *
0Q  decrease while ( )*

1,TRC t T  increases with increase in the value of the parameter b  
for the first two values. Here *

1t , *T , *
0Q  & ( )*

1,TRC t T  are all lowly sensitive to changes in b . 
4) *

1t , *T  & *
0Q  decrease while ( )*

1,TRC t T  increases with increase in the value of the parameter c  for 
the first two values. Here *

1t , *T , *
0Q  & ( )*

1,TRC t T  are all lowly sensitive to changes in b . 
5) *

1t , *T  & *
0Q  increase while ( )*

1,TRC t T  decreases with increase in the value of the parameter α
 for the last two values. Here *

1t , *T , *
0Q  & ( )*

1,TRC t T  are all lowly sensitive to changes in α . 
6) *

1t , *T  & *
0Q  increase while ( )*

1,TRC t T  decreases with increase in the value of the parameter β  
for the first and last values only. Here *

1t , *T , *
0Q  & ( )*

1,TRC t T  are all lowly sensitive to changes in β . 
7) *

1t , *T  & *
0Q  increase while ( )*

1,TRC t T  decreases with increase in the value of the parameter γ  
for the last two values. Here *

1t , *T , *
0Q  & ( )*

1,TRC t T  are all lowly sensitive to changes in γ . 
8) *

1t , *T  & *
0Q  decrease while ( )*

1,TRC t T  increases with increase in the value of the parameter hC  
for the last two values. Here *

1t , *T , *
0Q  & ( )*

1,TRC t T  are all highly sensitive to changes in hC . 
9) *

1t , *T  & *
0Q  increase while ( )*

1,TRC t T  decreases with increase in the value of the parameter pC
 for the last two values. Here *

1t , *T , *
0Q  & ( )*

1,TRC t T  are all lowly sensitive to changes in pC . 
10) *

1t  & ( )*
1,TRC t T  increase while *T  & *

0Q  decrease with increase in the value of the parameter 
bC

 
for the last two values. Here *

1t , *T , *
0Q  & ( )*

1,TRC t T  are all moderately sensitive to changes in bC . 
11) *

1t  & ( )*
1,TRC t T  increase while *T  & *

0Q  decrease with increase in the value of the parameter lC
 for the last two values. Here *

1t , *T , *
0Q  & ( )*

1,TRC t T  are all moderately sensitive to changes in lC . 
12) *

1t , *T  & *
0Q  decrease while ( )*

1,TRC t T  increases with increase in the value of the parameter vχ  for the last two values. Here *
1t , *T , *

0Q  & ( )*
1,TRC t T  are all lowly sensitive to changes in vχ . 

13) *
1t  & ( )*

1,TRC t T  increase while *T  & *
0Q  decrease with increase in the value of the parameter δ

 for the last two values. Here *
1t , *T , *

0Q  & ( )*
1,TRC t T  are all lowly sensitive to changes in δ . 

7. Conclusions  
In the present paper, an optimal policy for deteriorating items is derived considering quadratic demand rate, a 
three-parameter Weibull distribution deterioration rate and salvage value. Shortages are permitted and partially 
backlogged. The backlogging rate is dependent on the waiting time for the next replenishment. Quadratic de-
mand is appropriate for the seasonal fashion items, cosmetic and high-tech products. As deterioration rate starts 
after some time when the items are stocked. Therefore, a three-parameter Weibull distribution deterioration rate 
is considered for developing the model. For selling the deteriorated units, salvage value is required for the de-
termination of optimal total cost. Finally, optimal order quantity per cycle and optimal total relevant cost is de-
rived. Shortages are not permitted and partially backlogged. As the rate of deterioration of most items increases 
with time or age, i.e., the longer the item remains unused, the higher would be its failure rate. Moreover, the lo-
cation parameter illustrates the shelf-life of the item in the stock. Therefore, the three-parameter Weibull distri-
bution deterioration is suitable for items with any initial value of the rate of deterioration and for items, which 
start deteriorating only after a certain period of time. 

The proposed model can be extended in numerous ways. Firstly, we may extend demand rate to stock depen-
dent demand rate. Secondly, it may be extended to stochastic demand pattern. Finally, we could also extend the 
model by incorporating quantity discounts, inflation, a finite rate of replenishment and permissible delay in 
payments etc. 
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