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Abstract 
In this paper, we provide a new approach to solve approximately a system of fractional differential 
equations (FDEs). We extend this approach for approximately solving a fractional-order differen-
tial equation model of HIV infection of CD4+T cells with therapy effect. The fractional derivative in 
our approach is in the sense of Riemann-Liouville. To solve the problem, we reduce the system of 
FDE to a discrete optimization problem. By obtaining the optimal solutions of new problem by mi-
nimization the total errors, we obtain the approximate solution of the original problem. The nu-
merical solutions obtained from the proposed approach indicate that our approximation is easy to 
implement and accurate when it is applied to a systems of FDEs. 
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1. Introduction 
In recent years, scientists have been interested in studying the fractional calculus and the FDEs in different fields 
of engineering, physics, mathematics, biology, finance, biomechanics and electrochemical processes (see [1]-[8], 
for more details). Also, it has been shown that modelling the behavior of many biological systems that governed 
by FDEs has more advantages than classical integer-order modelling [9]. Readers interested in FDEs are 
referred to [10]-[17]. Although great efforts have been made to find numerical and analytical techniques for 

http://www.scirp.org/journal/ajcm
http://dx.doi.org/10.4236/ajcm.2016.62015
http://dx.doi.org/10.4236/ajcm.2016.62015
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


S. S. Zeid et al. 
 

 
142 

solving FDE, for example, predictor-corrector method [18], the Adomian decomposition [19], the variational 
iteration method [20], collocation using spline functions [21] and matrix expression given by [22] [23], but most 
of these FDEs do not have analytic solutions. 

In this paper, at first, we approximate the fractional derivative by a finite difference method and then use the 
AVK approach [24] to obtain a new approximate solution for the FDEs. This approach substitutes the FDEs 
with an equivalent minimization problem in which the optimal solution of this problem is the approximate solu-
tion of the original FDE. Moreover, since the error of this approach is minimized, the approximate solutions are 
the best solutions for the original problem. We employ this approximation to get numerical solution of a system 
of FDEs which has been used for modelling HIV infection of CD4+T cells. 

The discussion of paper will be as follows: in the next section, we express the fractional HIV model and in-
troduce the notations that used in the rest of this paper. In Section 3, we design an efficient approach to approx-
imate the fractional derivative and use it in our numerical method for solving FDEs. Some numerical examples 
are displayed in Section 4. Finally, conclusions are included in the last section. 

2. The Problem 
Consider the following fractional-order differential equation model of HIV infection of CD4+T cells [25]:  

max

1 ,

,

,

T V

I I

b I V

T ID T s T rT k T
T

D I k VT I

D V N I k VT V

α

α

α

µ

µ

µ µ

  +
= − + − −  

 


′= −
 = − −

                                 (1) 

with the initial conditions ( ) 00T T= , ( )0 0I =  and ( )0 0V = , in which the parameter values reported by 
Table 1. 

Following Theorem 1 of [25], we note that (1) along with its initial conditions possesses a unique solution 
which is non-negative. Throughout this paper, we set Dα  ( 0 1α< < ) as the Riemann-Liouville derivative of 
order α  defined by [26]: 

( ) ( ) ( ) ( )
0

1 d d .
1 d

t
D f t t f

t
αα τ τ τ

α
−= −

Γ − ∫                                (2) 

The aim of this paper is to extend the application of the AVK approach to solve a fractional order model for 
this HIV infection model of CD4+T cells. So, in the next section, at first we convert the original FDE to an 
 

Table 1. Variables and parameters for HIV infection model.                                  

Parameter Value/unit 

Tµ  (Natural death rate of CD4+T) 10.02 day−  

Iµ  (Blanket death rate of infected CD4+T) 10.26 day−  

Vµ  (Death rate of free virus) 12.4 day−  

bµ  (Lytic death rate for infected cells) 10.24 day−  

Ik  (Rate CD4+T become infected with virus) 5 3 12.4 10 mm day− − −× ⋅  

Ik ′  (Rate infected cells become active) 5 3 12 10 mm day− − −× ⋅  

r (Rowth rate of CD4+T population) 10.03 day−  

N (Number of virions produced by infected CD4+T) Varies 

maxT  (Maximal population level of CD4+T) 31500 mm−  

s (Source term for uninfected CD4+T) 1 310 day mm− −⋅  

0T  (CD4+T population for HIV-negative persons) 31000 mm−  
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optimization problem based on minimization of error. By discretizing the new problem and approximating the 
Riemann-Liouville fractional derivative by a finite difference method, we obtaine the best approximate solution 
of the original FDE. 

3. AVK Approach for Solving Approximately FDEs 
Consider a general system of FDEs as follows: 

( ) ( )
( ) 0

, ,

0 ,

D x t g x t

x x

α =

=
                                          (3) 

where Dα  ( 0 1α< < ) is the Riemann-Liouville derivative of order α , g is an riemann integrable time 
varying function, [ ]: 0,1 ng A× →  , [ ]0,1t∈ ⊆   and A is a compact subset in n . Also  
( ) ( ) ( )( )1 , , nx t x t x t A= ∈  called the state variable. We want to obtain an approximate solution of problem 

(3). Therefore, we need the following definition. 
Definition 1. For problem (3) we define the following functional ( ).E  that is called the total error 

functional: 

( ) ( ) ( )1

0
, , , d ,E D x x t D x t g x t tα α= −∫                                 (4) 

where [ ]: 0,1E A× →   is a non-negative functional, .  is any norm in n  space, such as 
1.  where is 

defined as follows: 

( ) ( ) ( )( ) ( )11 1 1
, , .

n

n i
i

x t x t x t x t
=

= = ∑                               (5) 

Here, we convert the problem (4) to a nonlinear programming (NLP) as follow: 

( )
( )

( ) [ ]
0

min , ,

. 0 ,

, 0,1 .

E D x x t

s t x x

x t A

α
 =
 ∈ ×

                                     (6) 

Now, to reach the approximating solution for the original problem (3) it is sufficient to solve the minimization 
problem (6). Hence, we need the following mean theorem [27] and corollary. 

Theorem 1. Let h be a nonnegative continuous function on [ ],a b , the necessary and sufficient condition for 
d 0

b

a
h t =∫  is that 0h ≡ , on [ ],a b . 
Corollary 1. Necessary and sufficient condition for the trajectory ( )x t  to be a solution of system (3) is that 

the optimal solution of (6) has zero objective function. 

To develop the numerical solution of problem (6) approximately, we defined the grid size in time by 1t
m

δ =   

for some positive integer m, so the grid points in the time interval [ ]0,1  is given by kt k tδ= , 1, ,k m=  . In 
order to illustrate the numerical approach better, we introduce the following notations: 

( ) ( ), , , 1, , , 1, , .k k k
i i k i i kx x t g g x t i n k m= = = =   

By the above notations, problem (6) is now approximated by the following optimization problem: 

( ) ( ) ( )( )

( ) ( )
11 1

0 1

min , , d

. 0 , , , .

k

k

n m t
i it

i k
k n
i k k

J x t D x t g t x t t

s t x x x A t t t

α

−= =

−

 = −

 = ∈ ⊆ ∈ ⊆

∑∑∫
 

                       (7) 

By using the ending point in any subinterval for approximating integrals, problem (7) is now approximated by 
the following optimization problem: 

( )
1 1

1min , .
n m

k k
i i ix i k

J x t D x g
m

α

= =

= −∑∑                               (8) 
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Now, we approximate fractional derivative iD xα  as follows: 

( )
( )

( )0

1 d d .
1 d

t i
i

x
D x

t t
α

α

τ
τ

α τ
=
Γ − −∫                                 (9) 

Define ( ) ( ) ( )
0

d
t

iy t x t ατ τ τ−= −∫ . Then, Equation (9) yields to 

( ) ( )1 d .
1 diD x y t

t
α

α
=
Γ −

                                     (10) 

In order to better illustrate the numerical approach, we also introduce the following difference operator: 

( ) ( ) ( ) ( )( )d ( ) .
d

y t t y t
y t m y t t y t

t t
δ

δ
δ

+ −
≅ = + −                           (11) 

Then, 

( ) ( ) ( ) ( ) ( )( )0 0

d d d .
d

t t t
i iy t m x t t x t

t
δ α ατ δ τ τ τ τ τ
+ − −= + − − −∫ ∫                 (12) 

Hence tδ  or sampling time is very important, and must be chosen small, so the number of partitions is great. 
This is a trade off between sampling time and speed of problem solving. Using again trapezoidal rule in any 
subinterval for approximating integrals, except for the last interval that we use the midpoint approximation, and  

suppose h
ht
m

= , h
i i

hx x
m

 =  
 

 for 1, 2, ,h k=  . Therefore, 
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2 2k
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             (13) 

Thus, we simply get problem (8) in the following form: 

( ) ( ) ( )
1 11
2 2

1
1 1 1 1

1 1 1min ,
1 2i

n m k k k kh h k
i k h i k h i i ix i k h h

x t t x t t x x g
m m

α
α α

α

−− + −− −
+

= = = =

    − − − + − −     Γ −     
∑∑ ∑ ∑      (14) 

in which, 
1
2

2
k

i i k
tx x t δ±  = ± 

 
 for 1, 2, ,k m=  . 

We solved this optimization problem by linear programming (LP) formulation which is done in what follows. 
Lemma 1. Let pairs ( )* *,i iv u , 1, 2, ,i m=  , be the optimal solutions of the following LP problem: 

1
min

. , , 0, .

m

i
i

i i i i i i

v

s t v u v u v u I
=




 ≥ ≥ − ≥ ∈

∑  

where I is a compact set. Then *
iu , 1, 2, ,i m=  , is the optimal solution of the following NLP problem: 

1
.min

m

i
u I i

u
∈ =
∑  

Proof. Since, ( )* *,i iv u , 1, 2, ,i m=  , is the optimal solution of the LP problem, so they satisfy the con- 
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straints. Thus there is * *
i iv u≥  and * *

i iv u≥ −  for 1, 2, ,i m=  . Hence, * *
i iu v≤ , 1, 2, ,i m=  , and so  

* *
1 1

m m
i ii iu v

= =
≤∑ ∑ . Now, let there exist *

iu I∈ , 1, 2, ,i m=  , such that * *
1 1

m m
i ii iu u

= =
<∑ ∑ . Define, * *

i iv u=  

for 1, 2, ,i m=  . Then * *
i iv u≥  and * *

i iv u≥ − . Moreover, * *
1 1

m m
i ii iv u

= =
=∑ ∑  and hence 

* * * *

1 1 1 1
,

m m m m

i i i i
i i i i

v u u v
= = = =

= < <∑ ∑ ∑ ∑  

So * *
1 1

m m
i ii iv v

= =
<∑ ∑ , which is a contradiction. See [28] more details. 

Now, by lemma 1, problem (14) can be converted to the following equivalent LP problem: 

( )

( ) ( ) ( )

( ) ( ) ( )
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1 11
2 2

1
1 1

1 11
2 2

1
1 1

1min
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h h
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m

x t t x t t x x g
m

i n k

α
α α

α
α α

µ
α

µ α

µ α

= =

−− + −− −
+

= =

−− + −− −
+

= =

Γ −

  − + − − − + − ≤ Γ −       
  − − − + − − − ≤ −Γ −       

= =

∑∑

∑ ∑

∑ ∑

 1, 2, , .m

         (15) 

By obtaining the solution of this problem, we recognize the value of unknown admissible k
ix , 1, 2, ,i n=   

and 1, 2, ,k m=  . 

4. Numerical Examples 
In this section, we give some numerical examples and apply the method presented in the last sections for solving 
them. Moreover, we extend this approach for approximately solving a model of HIV infection of CD4+T cells 
with therapy effect including a system of FDEs. These test problems demonstrate the validity and efficiency of 
this approximation. 

Example 1. As first example, we compute ( )D x tα , with 1
2

α = , for ( ) 4x t t= . The exact formulas of the  

derivatives are derived from 

( ) ( )
( )

0.5 0.51
1 0.5

s ss
D t t

s
−Γ +

=
Γ + −

 

Figure 1 shows the results by using approximation (10)-(13) for 0.5α =  and various choices of m. 
Now, assume that ( )i kx t , 1, ,i n=  , 1, ,k m=   and ( )i kx t  are the approximated and exact solutions of 

system (3), respectively. We defined the absolute error of approximation as follow: 

( ) ( )( )1
max , 1, , , 1, 2, , .i k i kk

E x t x t i n k m= − = =                         (16) 

In this example, the maximum absolute errors computed by Equation (16) for 0.5α =  and various choices 
of m, has been shown in Table 2. 

Example 2. Consider the following initial value problem: 

( ) ( ) ( )

3
0.5 2 22 ,

2.5
D x t t x t t= − +

Γ
                              (17) 

with initial condition ( )0 0x = . 

We know that ( ) ( )

3
0.5 2 22

2.5
D t t=

Γ
. Therefore, the analytic solution for system (17) is ( ) 2x t t= . Now we  

expand the fractional derivative up to the problem (15). The solution is drawn in Figures 2-4 for m = 20, 50, 100 
and 0.1,0.5,0.99α = . 



S. S. Zeid et al. 
 

 
146 

 
Figure 1. Analytic solution and numerical approximation (10), with various choices 
of m and 0.5α = , for Example 1.                                                   

 
Table 2. Maximum absolute error for Example 1.                                        

K approE  

5 32.65757 10−×  

10 46.47115 10−×  

20 44.09595 10−×  

40 59.77932 10−×  

50 52.27352 10−×  

100 65.04375 10−×  

 
In the case of 0.1,0.5,0.99α = , the maximum absolute errors (16) with various choices of m is shown in 

Table 3. 
From numerical results we can indicate that the solution of FDE approaches to the solution of integer order 

differential equation, whenever α  approaches to its integer value. 
Example 3. Consider the following FDE: 

( ) ( ) ( ) ( )2 1 2
0

2 1 ,
3 2tD x t t t x t t tα α α

α α
− −= − − + −

Γ − Γ −
                (18) 

where 0 1α< ≤  and ( )0 0x = . 
The exact solution of this equation is ( ) 2x t t t= − . In Figure 5 & Figure 6, we compare the exact solution 

with the numerical approximation (15) for two values of m and 0.5α = . 
Table 4 shows the exact solution and the approximate solution for equation (18) by solving problem (15) for 

100m =  and 0.5,0.99α = . The results compare well with those obtained in [29]. 
Example 4. Now we want to solve the fractional-order differential equation model of HIV infection of CD4+T 

cells (1) For the parameter values given in Table 1. The system (1) can be expressed in a vector form as follows: 
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Figure 2. Exact and approximation solutions for problem in Example 2 with 0.1α =  
and different values of m.                                                        

 

 
Figure 3. Exact and approximation solutions for problem in Example 2 with 0.5α =  
and different values of m.                                                     

 
( ) ( )( ), ,D x t g t x tα =                                     (19) 

where ( ) ( ) ( ) ( )( ), ,x t T t I t V t=  is the state vector and 

( ) ( )00 ,0,0 .x T=                                         (20) 

For numerical simulations we assumed 350 days for treatment period. With the change of variables 350t τ= ,  
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Figure 4. Exact and approximation solutions for problem in Example 2 with 

0.99α =  and different values of m.                                           
 
Table 3. Maximum absolute error for different values of ,mα  for Example 2.                                          

m 0.1α =  0.5α =  0.99α =  

10 0.26227 42.61278 10−×  32.65757 10−×  

20 0.11574 42.14695 10−×  46.47115 10−×  

40 0.08285 41.99832 10−×  44.09595 10−×  

50 0.02621 41.55710 10−×  59.77932 10−×  

100 0.00748 41.16467 10−×  52.27352 10−×  

 
Table 4. Numerical values with 0.5,0.99α =  and 100m =  for Example 3.                                                

t ( )0.5approx α =  exactx  ( )0.99approx α =  exactx  

0.0 0.000000 0.000000 0.000000 0.000000 

0.1 −0.089978 −0.090000 −0.089586 −0.090000 

0.2 −0.159889 −0.160000 −0.159688 −0.160000 

0.3 −0.209891 −0.210000 −0.209707 −0.210000 

0.4 −0.239974 −0.240000 −0.239787 −0.240000 

0.5 −0.249896 −0.250000 −0.249738 −0.250000 

0.6 −0.239998 −0.240000 −0.239795 −0.240000 

0.7 −0.199879 −0.210000 −0.209830 −0.210000 

0.8 −0.160109 −0.160000 −0.159897 −0.160000 

0.9 −0.096390 −0.090000 −0.100098 −0.090000 
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Figure 5. Analytic solution and numerical approximation (15) for Example 3 for 40m = .                

 

 
Figure 6. Analytic solution and numerical approximation (15) for Example 3 for 100m = .           

 
we converted period [ ]0,350t∈  to [ ]0,1τ ∈ . Based on concepts was said in the previous section, the key to 
the derivation of the approach is to replace the system (19) by the following equivalent optimization problem: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

11 max

1

350 350
min 350 350 350 1 350

350 350 350 350

350 350 350 350 350 d ,

i

i

m

T V
k

I

b I V

T I
D T s T rT k T

T

D I k V T I

D V N I k V T V

τ α
τ

α

α

τ τ
τ µ τ τ τ

τ τ τ µ τ

τ µ τ τ τ µ τ τ

−=

 +  − − + − −  
 

′+ − −

+ − − − 


∑∫

     (21) 
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Table 5. Maximum absolute error for 100m =  and different values of α  for Example 4.                                  

P 0.5α =  0.6α =  0.7α =  0.8α =  0.9α =  

T 8.0224 5E −  1.0253 6E −  2.2102 7E −  2.8532 8E −  1.0929 9E −  

I 1.1031 5E −  1.9756 6E −  1.1102 8E −  2.4527 8E −  1.7608 9E −  

V 1.2226 5E −  2.7756 7E −  1.19553 7E −  2.6392 9E −  1.2079 9E −  

 
with the initial condition (20). To solve this optimization problem, by approximating integrals as before, we 
transformed (21) to a discretized problem in the following form: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 max

1

350 3501min 350 350 350 1 350

350 350 350 350

350 350 350 350 350 .

m
k k

k T k k V k
k

k k k I k

k b k I k k V k

T I
D T s T rT k T

m T

D I k V T I

D V N I k V T V

α

α

α

τ τ
τ µ τ τ τ

τ τ τ µ τ

τ µ τ τ τ µ τ

=

  + − − + − − 
 

′+ − −

+ − − − 


∑

     (22) 

In problem (21) and (22), the factor 350 is omitted because of having no effect on the solution of it. Then, the 
minimum problem (22) converted to a linear programming problem with the following change of variables: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

max

1

0

1min

350 350
. . 350 350 350 1 350 ,

350 350 350 350 ,

350 350 350 350 350 ,

0 , 0 0

m

k k k k k k
k

k k
k T k k V k k k

k k k I k k k

k b k I k k V k k k

u v r e w q
m

T I
s t D T s T rT k T u v

T

D I k V T I r e

D V N I k V T V w q

T T I V

α

α

α

τ τ
τ µ τ τ τ

τ τ τ µ τ

τ µ τ τ τ µ τ

=

+ + + + +

 +
− − + − − = − 

 
′− − = −

− − − = −

= = =

∑

0, , , , , , 0.k k k k k ku v r e w q ≥

     (23) 

Now, we approximate fractional derivatives from (10)-(13). Our approach introduces an approximate solution 
for the fractional HIV model based on minimization the total error. The maximum absolute errors (16) with m = 
100 and different values of α  that shown in Table 5, confirmed the efficacy of our approach in comparison 
with the result obtained by [25]. 

5. Conclusions 
In this paper, the finite difference method discrete time AVK approach has been successfully used for finding 
the solutions of a system of FDEs such as a model for HIV infection of CD4+T cells. Our approach introduces 
an approximate solution for the FDEs based on the minimization of the total error. In the suggested method, the 
original problem reduces to an optimization problem. By discretizing the new problem and solving it, we obtain 
the best approximate solution of the original problem. Results represent a unifying approach for numerical 
approximation of differential equations of fractional order. Since this method is not based on point to point error, 
but according to its results, it is clear that there is no difference between the exact and approximate solutions in 
point to point case. 

Three numerical examples are given and the results are compared with the exact solutions and with the other 
methods. It is shown that, as the order of fractional derivatives approaches to 1, the numerical solutions for the 
FDEs approach the clasicall solutions of the problem. Then we use this technique for finding approximate 
solutions of FDEs system of a model for HIV infection of CD4+T cells. The result demonstrates the validity of 
the approach. 
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