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Abstract 
The paper focuses on measuring self-similarity using few techniques by an index called Hurst in-
dex which is a self-similarity parameter. It has been evident that Internet traffic exhibits self-  
similarity. Motivated by this fact, real time web users at various centers considered here as traffic 
and it has been examined by various methods to test the self-similarity. The results from the expe-
riments carried out verify that the traffic examined in the present study is self similar using a new 
method based on some descriptive measures; for example percentiles have been applied to com-
pute Hurst parameter which gives intensity of the self-similarity. Numerical results and analysis 
we discussed and presented here play a significant role to improve the services at web centers in 
the view of quality of service (QOS). 

 
Keywords 
Long-Range Dependence, Self-Similarity, Poisson Process, Percentiles, Hurst Parameter 

 
 

1. Introduction 
At present one of the major issues to know various traffic flows is in self similar nature to study and design 
some performance metric as that of Ethernet traffic etc. Until recently Poison approach has been used to model 
the road traffic irrespective of traffic intensity [1]. This was similar to the practice in the cases of Ethernet, LAN, 
WAN, and WWW traffic. But seminal studies [2] [3] reveal that IP packet traffic in supposed networks tends to 
be bursty in nature on many time scales. This burstiness of traffic can be characterized mathematically as self- 
similar or long-range dependence (LRD). It is clear from the work agreed [4] that Poisson process could not 
emulate the self-similar network traffic. Markovian arrival process (MAP) emulating self-similar traffic is fitted 
over desired time scales by equating second-order statistics of the counts [5]-[9]. 
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The idea of this paper is, we examine whether web users traffic data has the self similar property. This is to 
enhancement earlier results using a real time data [10]. This kind of research is useful for future studies to know 
the performance metrics and continuous improvement of web centers at various private and in public sector or-
ganizations. The rest of the paper has been organized as follows: Definition of self-similarity or long range de-
pendence is given in Section II. Materials and methods are placed in Section III. In Section IV, Hurst parameter 
is computed using various methods. Finally, conclusions are given in Section V. 

2. Long-Range Dependence and Self-Similarity  
In this section we give a short description of the mathematical basis for second order self-similar processes 
(long-range dependence).  

Exact Second-Order Self-Similar Process 
The exact second-order self-similar process is defined as follows. Arrival instants are modeled as point process. 
Divide the time axis into disjoint intervals of unit length and let { }: 1, 2,tX X t= =   be the number of points 
(arrival) in the tht  interval. Let X be a second order stationary process with variance 2σ  and the autocorrela-
tion function ( ) , 0k kγ ≥  is given by 

( ) ( )
( )
,t t k

t

Cov X X
k

Var X
γ +=                                  (2.1) 

For each 1,2,3, ,m =   let a new time series ( )m
tX  is obtained averaging the original time series X over 

non-overlapping blocks of size m. That is  

( )
( 1)

1

1 , 1, 2,
m

m
t t m i

i
X X t
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=

= =∑                               (2.2) 

This new series ( )m
tX , for each m, is also a second order stationary process with autocorrelation function 

( )( )m kγ . 

Definition 1: The process “X” is said to be exactly second order self-similar with Hurst parameter 1
2

H β
= −   

and variance 2σ  if  

( ) ( ) ( )
2

2 21 2 1 , 1
2

H HHk k k k kσγ  = + − + + ∀ ≥                         (2.3) 

Definition 2: The process “X” is said to be asymptotically second order self-similar with Hurst parameter  

1
2

H β
= −  and variance 2σ  if  

( ) ( ) ( )
2

2 2( ) 1 2 1 , 1
2

H Hm H

m
k k k k kσγ

→∞
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In terms of variance, self-similar process is defined as follows: 

Definition 3: The process “X” is said to be exactly second order self-similar with Hurst parameter 1
2

H β
= −   

and variance 2σ  if  

( )( ) 2 , 1mVar X m mβσ −= ∀ ≥                                (2.5) 

Now we shall differentiate long range dependence (LRD) and short range dependence (SRD) processes. For 
0.5,H ≠  from the Equation (2.3), we can see that ( ) ( ) 2 22 1 Hk H H kγ −= −  as k →∞ , and we have  

( ) ( )~ , 2 1 .
k k

k c k c H Hβγ − = −∑ ∑                             (2.6) 

The series 
k

c k β−∑  is divergent if 0.5 1H< <  or 0 1β< <  otherwise they are convergent, being a posi-  
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tive term series. Accordingly the left hand series ( )
k

kγ∑  is divergent if 0.5 1H< <  or 0 1β< < , otherwise  

they are convergent. That is, for 0.5 1H< < , the autocorrelation functions decays slowly, that is hyperbolically. 
In this case, the process X is called Long Range Dependent (LRD). The process X is Short Range Dependent 
(SRD) if 0 0.5H< <  and the autocorrelation function is summable (finite). 

3. Materials and Methods  
As discussed in the introduction, we are primarily interested collecting data from various sources. Real time web 
users data has been considered. The sample number of users logged on to an Internet server each minute over 
100-minutes (see Appendix). In the study web users data can be treated as traffic and verify it is self-similar or 
not. 

4. Methods for Estimating Hurst Parameter of Self-Similar Process 
The intensity of self-similarity is given by Hurst parameter, H. The parameter H was named after the hydrologist 
H.E. Hurst who spent many years to investigate the problem of water storage and also to determine the level 
patterns of the Nile river. The parameter H has range 0.5 1H≤ ≤ . Estimation of H is a difficult task. Several 
methods are available to estimate degree of self-similarity in a time-series. We also present the three basic me-
thods to calculate the Hurst parameter: Periodogram analysis, Correlogram method, R/S analysis, Variance-time 
analysis etc. Here is a method based on percentiles is applied and validated with the said methods. 

4.1. Periodogram Analysis 
In the frequency domain, analysis of time series is merely the analysis of a stationary process by means of its 
spectral representation. The periodogram [11] is given by  

( )
21

0

1 e
2

N
k

N k
k

I X
N
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π

−

=

= ∑                                 (2.7) 

where λ  is the Fourier frequency, N is the number of terms in the time series and jX  is the data of the given 
series. To estimate H, first, one has to calculate this periodogram. Since ( )NI λ  is an good sample estimator of 
the spectral density, a series with long-range dependence should have a periodogram, which is proportional to 

1 2Hλ −  close to the origin. Then a regression of the logarithm of the periodogram on the logarithm of the fre-
quency λ should give a coefficient of 1 2H− . The slope of the fitted straight line is the estimate of 1 2H− . 
Using this method the H value is computed for the data given in section III. The obtained value of H in this case 
is 0.763.   

4.2. Correlogram Method 
In time series analysis [12], plot of ACF (autocorrelation function) is known as correlogram where the estimated 
correlation can be given in terms of auto-covariance function ( )kγ   

( ) ( )
( )0
k

k
γ

ρ
γ

=                                      (2.8) 

It has already been observed that slow decay of correlation, which is proportional to 2 2HK −  for 1 1
2

H< <   

indicates the long-memory process. Therefore, the plot of the sample autocorrelation should exhibit this property. 
A much better plot for the handling of long-range dependence is the plot of ACF in logarithmic scale. If the 
asymptotic decay of the correlation is hyperbolic, then the points in the plot should be approximately scattered 
around a straight line with a negative slope of 2 2H −  for the long memory processes but for short memory, 
the points should tend to diverse to minus infinity at an exponential rate. If the time series is long enough or if 
the series has strong long-range dependence, then this log-log correlogram is useful. Correlogram is useful as a 
preliminary heuristic approach to the data. Some pitfalls of sample correlation which are less known can be 
found in Mandelbrot [13]-[15]. Even though it is neither widely used nor attractive method for estimation, still H, 
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the self-similarity parameter, can be estimated by this method deriving an equation of the form  

( ) ( ) ˆ2 2ˆ ˆ2 1 Hk H H Kρ −= −                               (2.9) 

Using this method, the obtained value of H in this case is 0.79.   

4.3. Percentile Method 
In statistical methodologies, a percentile (or centile) is the value of a variable below which a certain percent of 
observations fall, like partition values of a process such as quartiles and deciles. There is no exact definition of 
percentile [16], however all definitions yield similar results when the number of observations is very large. One 
definition of percentile, often given in texts, is that the thP  percentile ( )1 100P≤ ≤  of N ordered values is 
obtained by first calculating the rank.  

* 1
100 2

P Nn = +                                    (2.10) 

Given data set or time series ( )( ), 0tt Z t ≥ . First we can find the percentiles ( ),  1, 2, ,100iP i =   for a given 
time series using   

* 1 ; 1,2, ,100.
100 2i
i NP i= + =                             (2.11) 

th
iP i=  percentile, this a special type of average such as partition values in descriptive statistics like quartiles

( )1 2 3, ,Q Q Q . Draw a scattered Plot percentile number against percentiles on log scales. A linear equation 
tZ t cβ= +  (say) is obtained with the slope ( )β . The Hurst parameter ( )H  is then computed by   

1
2

H β
= − .                                   (2.12)  

Using this method, the H value is computed for the data. The pertaining scattered data and trend line with the 
slope ( )0.476mβ = =  are depicted in Figure 1. The obtained value of H in this case is 0.762. One relevant 
paper [17], which explained how the 95-percentile depends on the aggregation window size, and how this phe-
nomenon justifies the mathematical definition of self similarity. The advantages of this method are: This method 
is matter of a simple empirical formula, unlike other two methods. Data however large it may be is divided into 
100 parts (partition values) and the plotting involves only 100 points (percentile versus percentile number). 

 

 
Figure 1. Percentile versus percentile number.                                                         
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4.4. Math Lab Implementation Code is Linked with the Percentile Method 

 

5. Some Conclusions 
In this paper, real time web user’s data has been considered as traffic from various web centers and it has been 
proved to be self-similar. Various methods to test the self-similarity have been used. The obtained values of 
Hurst parameter H are reasonably close to each other. This kind of research is useful for future studies to know 
the performance metrics at web centers. 
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Appendix 

The number of users logged on to an Internet server each minute over 100-minutes. 
 

Minute Web Users Minute Web Users Minute Web Users Minute Web Users 

1 88 26 139 51 172 76 91 

2 84 27 147 52 172 77 91 

3 85 28 150 53 174 78 94 

4 85 29 148 54 174 79 101 

5 84 30 145 55 169 80 110 

6 85 31 140 56 165 81 121 

7 83 32 134 57 156 82 135 

8 85 33 131 58 142 83 145 

9 88 34 131 59 131 84 149 

10 89 35 129 60 121 85 156 

11 91 36 126 61 112 86 155 

12 99 37 126 62 104 87 171 

13 104 38 132 63 102 88 175 

14 112 39 137 64 99 89 177 

15 126 40 140 65 99 90 182 

16 138 41 142 66 95 91 193 

17 146 42 150 67 98 92 204 

18 151 43 159 68 84 93 208 

19 150 44 167 69 84 94 210 

20 148 45 170 70 87 95 215 

21 147 46 171 71 89 96 222 

22 149 47 172 72 88 97 228 

23 143 48 172 73 85 98 226 

24 132 49 174 74 86 99 222 

25 131 50 175 75 89 100 220 
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