
American Journal of Computational Mathematics, 2015, 5, 345-386 
Published Online September 2015 in SciRes. http://www.scirp.org/journal/ajcm 
http://dx.doi.org/10.4236/ajcm.2015.53032   

How to cite this paper: Surana, K.S., Knight, J. and Reddy, J.N. (2015) Nonlinear Waves in Solid Continua with Finite Defor-
mation. American Journal of Computational Mathematics, 5, 345-386. http://dx.doi.org/10.4236/ajcm.2015.53032  

 
 

Nonlinear Waves in Solid Continua with  
Finite Deformation 
K. S. Surana1, J. Knight1, J. N. Reddy2  
1Department of Mechanical Engineering, University of Kansas, Lawrence, KS, USA  
2Department of Mechanical Engineering, Texas A & M University, College Station, TX, USA  
Email: kssurana@ku.edu, jknight@ku.edu, jnreddy@tamu.edu  
 
Received 28 July 2015; accepted 7 September 2015; published 11 September 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This work considers initiation of nonlinear waves, their propagation, reflection, and their interac-
tions in thermoelastic solids and thermoviscoelastic solids with and without memory. The con-
servation and balance laws constituting the mathematical models as well as the constitutive theo-
ries are derived for finite deformation and finite strain using second Piola-Kirchoff stress tensor 
and Green’s strain tensor and their material derivatives [1]. Fourier heat conduction law with 
constant conductivity is used as the constitutive theory for heat vector. Numerical studies are 
performed using space-time variationally consistent finite element formulations derived using 
space-time residual functionals and the non-linear equations resulting from the first variation of 
the residual functional are solved using Newton’s Linear Method with line search. Space-time local 
approximations are considered in higher order scalar product spaces that permit desired order of 
global differentiability in space and time. Computed results for non-linear wave propagation, ref-
lection, and interaction are compared with linear wave propagation to demonstrate significant 
differences between the two, the importance of the nonlinear wave propagation over linear wave 
propagation as well as to illustrate the meritorious features of the mathematical models and the 
space-time variationally consistent space-time finite element process with time marching in ob-
taining the numerical solutions of the evolutions. 
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1. Literature Review, Outline, and Significance  
The subject of nonlinear wave propagation in which nonlinearity primarily arises due to consideration of finite 
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deformation and finite strain is an area of significant interest due to the introduction of polymeric solids and 
their abundant use in industrial applications. Polymers can undergo finite deformation, finite strain, have a dis-
sipation mechanism, and exhibit rheological behavior. Thus, the deformation physics in such materials is quite 
complex. Development of mathematical models for finite deformation and finite strain for solid continua in La-
grangian description using conservation and balance laws resulting in initial value problems (IVP) and time ac-
curate numerical simulations of the evolution described by the IVPs is the main objective of this research. 

A review of the published works related to the research presented here is given in the following. In the pub-
lished works cited and discussed here we address four basic questions: 1) what is the source of nonlinearity, 2) 
type of material considered (elastic, viscoelastic, etc.), 3) constitutive theories, 4) methodology or approach used 
to obtain numerical solution of the resulting mathematical model. In reference [2] conservation and balance laws 
are considered and some aspects of the constitutive theories are also discussed with the main objective of ob-
taining simplified mathematical models with various assumptions that would permit theoretical or semianalyti-
cal solutions. Many specialized forms of the 1D and 2D wave equations and their possible solutions are dis-
cussed. Reference [3] considers solids under high-pressure shock compression. This book presents many aspects 
of mechanics, physics, and chemistry in such deformation. Plasticity or irreversible deformation processes are a 
central point of focus in this reference. The material in the book is largely devoted to experiments, design of ex-
periments, and analysis of experimental data. Experimentally focused work on “nonlinear phenomena in the 
propagation of elastic waves in solids” is also presented in reference [4]. The authors consider Green’s strain 
and many applications to different and unique materials. Precise mathematical models used, the constitutive 
theories considered and their derivations are not given. In reference [5], the authors consider a one degree of 
freedom oscillator subjected to an external force and a restoring viscoelastic force with memory based on a 
phenomenological approach. Such models are not valid in the thermodynamic sense and their extension to R2 
and R3 is not possible [1]. Finite amplitude waves in isotropic elastic plates are considered by Lima and Hamil-
ton [6]. A perturbation technique with semianalytical solution is used to obtain the solutions of the governing 
equation of equilibrium in Lagrangian description. Periodic harmonic solutions are presented. In reference [7], 
thermoelastic small-amplitude wave propagation in nonlinear elastic media is considered. Helmholtz free energy 
density is expressed as a nonlinear function of the principal stretches and is used to derive the constitutive equa-
tion for stress. For thermoelastic material based on reference [1], this approach of deriving constitutive theory is 
unfounded. This approach is applied to layered structures. Lima and Hamilton [8] presented a study of finite 
amplitude waves in isotropic elastic waveguides with arbitrary cross-sectional area using perturbation and modal 
analysis techniques to obtain the solutions of nonlinear equations of motion for harmonic motion. The second 
Piola-Kirchoff stress tensor is expressed as a quadratic function of the Green’s strain tensor using a special form 
given in references [9] [10]. A study of nonlinear deformation waves in solids and dispersion due to microstruc-
tures using Mindlin type model is considered in reference [11]. Finite volume method is used to study propaga-
tion and interaction of one-dimensional waves. Nonlinear transient thermal stresses and elastic wave propaga-
tion studies in thick temperature-gradient dependent FGM cylinder using a second-order point-collocation me-
thod are presented in reference [12]. In reference [13], numerical simulations of linear and nonlinear waves in 
hypoelastic solids are presented using conservation element and solution element method (CESE). These inves-
tigations are hypothetical as the constitutive theories for hypoelastic solids are hypothetical since these constitu-
tive theories cannot describe the constitution of solids. Numerical simulations of nonlinear elastic wave propa-
gation in piecewise homogeneous media are considered in reference [14]. Wave reflection, transmission, and 
interaction of waves are not clearly demonstrated primarily due to complexity of the properties of the domain. 
Vibrations and wave propagation in thick FGM cylinders with temperature dependent material properties are 
investigated in reference [15]. A nodal discontinuous Galerkin finite element method is considered for nonlinear 
elastic wave propagation in reference [16]. Nonlinear transient stress wave propagation in thick FGM cylinder 
using a unified generalized thermoelasticity theory is considered in reference [17]. Nonlinear constitutive model 
for axisymmetric bending of annular graphene-like nanoplates with gradient elasticity enhancement effects is 
considered in reference [18]. In reference [19], nonlinear semianalytical finite-element algorithm for the analysis 
of internal resonance conditions in complex wave guides is considered. Linear stress waves in elastic medium 
for infinitesimal deformation linear elasticity have been studied by Surana et al. [20]. 

From the brief literature review presented here we note the following. 1) The mathematical models resulting 
from conservation and balance laws are not explicitly defined and stated in most cases. 2) The constitutive theo-
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ries for thermoelastic and thermoviscoelastic materials with and without memory and the basis for their deriva-
tions are mostly absent. In many instances phenomenological approach is used. 3) A mix of various space-time 
decoupled methods based on finite volume, finite element approaches for discretization in space followed by 
some time integration scheme is used to obtain evolutions described by the IVPs. In many instances semi-ana- 
lytical approaches are considered for highly simplified mathematical models that lack the desired physics. 4) In 
the model problems considered and the numerical studies presented for them, the complexity of the physics of 
the model problem rarely permits the assessment of the importance of nonlinearity when compared to the cor-
responding solutions from the linear models. 5) The issue of time accuracy of numerical solutions is never ad-
dressed in any of the references. This is of utmost significance as only with the correct time evolution can we 
assess the importance and significance of the nonlinear wave propagation. 

The outline of the work presented in the paper is given in the following. General considerations and scope of 
study are contained in Section 2. The mathematical models in R3 (3D) are presented in Section 3. The mathe-
matical models in R1 (1D) are given in Section 4. The dimensionless forms of the mathematical models in R1 are 
presented in Section 4.4. The computational framework, the space-time finite element formulations based on 
space-time residual functional and the time marching procedure for computing evolutions are presented in Sec-
tion 5. Descriptions of model problems, schematics, loadings, boundary conditions and the material coefficients 
are given in Sections 6, 6.1, and 6.2. Computations of evolutions, convergence of the solutions, converged nu-
merical results for the three types of solid continua considered here are presented in Section 6.3. Summary of the 
work and the conclusions drawn from the work presented in this paper are given in Section 7. 

There are many important and meritorious aspects of the present work compared to the published works. 
Conservation and balance laws including constitutive theories are presented in R3 and R1 for finite deformation 
and finite strain in Lagrangian description for thermoelastic and thermoviscoelastic solids with and without 
memory using second Piola-Kirchoff stress tensor and Green’s strain tensor as conjugate pair. Dimensionless 
forms of the mathematical models in R1 are used for presenting linear as well as nonlinear wave initiation, 
propagation, reflection and subsequent propagation. Some of the significant aspects of the present work are: 1) 
demonstration of the fact that nonlinear waves result in shock formation and complex thermal field due to dissi-
pation. 2) Wave amplitude decay and base elongation due to dissipation are clearly demonstrated for linear as 
well as nonlinear waves in case of solid continua with damping. 3) Rheological behavior due to memory is 
demonstrated for thermoviscoelastic solid continua with memory. 4) The finite element formulations used based 
on space-time couple approach are shown to be free of inherent numerical dispersion. 5) Computations of evolu-
tions for large values of time are presented to illustrate various aspects of linear and nonlinear wave propagation. 
6) It is clearly shown that extremely low values of space-time residuals obtained for all numerical computations 
confirm time accuracy (i.e. proximity of the computed solutions to the theoretical solutions) of the results pre-
sented in the paper.  

2. Considerations in the Present Study and the Scope of Work   
The work presented here considers nonlinear wave propagation, reflection and interaction in thermoelastic solid 
continua and thermoviscoelastic solid continua with and without memory. The mathematical models in Lagran-
gian description consist of conservation and balance laws and the appropriate constitutive theories for stress 
tensor and heat vector [1]. The primary source of nonlinearity is due to finite deformation and finite strain. The 
contravariant second Piola-Kirchoff stress tensor and Green’s strain are used as conjugate pairs in the deriva-
tions of the balance laws and the constitutive theories. The solid continua are assumed compressible thus per-
mitting finite deformation and associated changes in density. For thermoelastic solid, rate constitutive theory of 
order zero is used in which the contravariant second Piola-Kirchoff stress is a linear function of the Green’s 
strain tensor. The work presented here only considers thermal affects due to rate of entropy production asso-
ciated with rate of dissipation due to rate of mechanical work, thus for thermoelastic solids, the energy equation 
and entropy inequality resulting from the first and second law of thermodynamics are not required. In the case of 
thermoviscoelastic solids with and without memory, the second Piola-Kirchoff stress tensor is decomposed into 
equilibrium stress tensor and deviatoric stress tensor. The constitutive theory for the second Piola-Kirchoff equi-
librium stress tensor is derived in terms of thermodynamic pressure. The constitutive theory for deviatoric 
second Piola-Kirchoff stress tensor for thermoviscoelastic solids without memory is considered as a first order 
rate theory [1] in which the deviatoric second Piola-Kirchoff stress tensor is a linear function of the Green’s 
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strain tensor and its material derivative. In the case of thermoviscoelastic solids with memory, the constitutive 
theory for deviatoric second Piola-Kirchoff stress tensor is a first order rate theory in deviatoric second Piola- 
Kirchoff stress tensor as well as Green’s strain tensor. 

The mathematical models are non-dimensionalized for use in the computational framework. Explicit forms of 
the mathematical models are presented in R1. These models are used to study one dimensional nonlinear wave 
propagation, reflection, and interaction in the three types of solid continua considered here. Linear forms of 
these mathematical models based on small-strain small-deformation assumptions are also considered in the nu-
merical studies. The evolutions of the nonlinear and linear waves are compared to demonstrate the differences 
between the two. Ramp and pulse stress loadings and pulse velocity loading are considered in the numerical stu-
dies. 

The dimensionless form of the mathematical models in R1 are utilized to construct the space-time coupled fi-
nite element processes for an increment of time (giving a space-time strip) based on space-time residual func- 
tionals that are space-time variationally consistent, hence the computations during the entire evolution remain 
unconditionally stable. Evolutions are computed by time marching using the space-time strip. The space-time 
local approximations for the dependent variables over a space-time element are considered in higher order scalar 
product spaces that permit higher order global differentiability of the space-time approximations over a discreti-
zation of the strip as well as at the inter-strip boundaries. The minimally conforming spaces ensure the space- 
time integrals over discretization of a space-time strip are in the Riemann sense. This feature enables computa-
tions of time accurate evolutions.  

3. Mathematical Models in R3 

In this section we present mathematical models for thermoelastic and thermoviscoelastic solids with and without 
memory consisting of conservation and balance laws and the constitutive theories. The mathematical models are 
first presented in R3. These are then followed by explicit forms of the mathematical models in R1 for 1-D wave 
propagation including their dimensionless forms. Finite deformation and finite strain are considered in the ma-
thematical models. Contravariant second Piola-Kirchoff stress and Green’s strain tensor are used as conjugate 
pairs [1]. Solid continua are considered compressible. In the mathematical models, the energy equation is only 
considered if the rate of mechanical work results in entropy production. The mathematical models are consi-
dered in Lagrangian description.  

3.1. Thermoelastic Solid Continua in R3 

In such solid continua the deformation process is reversible; hence rate of mechanical work does not result in 
rate of entropy production. Thus, the specific internal energy in the absence of strain energy is not affected by 
the rate of work. As a consequence, mechanical deformation and thermal effects remain uncoupled; hence the 
thermal behavior can be studied independent of the mechanical deformation. Since in the present work we only 
consider thermal effects due to rate of entropy production resulting from the rate of work, for thermoelastic sol-
ids the mathematical model only consists of conservation of mass, balance of linear momenta, and balance of 
angular momenta. The energy equation in this case is a linear (or nonlinear) diffusion equation and entropy in-
equality contains no dissipation terms but forms the basis for deriving constitutive theory for the heat vector ap-
pearing in the energy equation. The constitutive theory for the contravariant second Piola-Kirchoff stress  

[ ]( )0σ  is based on [ ]0σ  and Green’s strain tensor [ ]( )0ε  as conjugagte pair and is derived using strain energy  
density function or theory of generators and invariants (see reference [1] for details). Thus for compressible 
thermoelastic solids, the mathematical model consists of continuity equation (conservation of mass), momentum 
equations (balance of linear momenta), balance of angular momenta, and the constitutive theory for the stress 
tensor. In the absence of body forces, we can have the following in Lagrangian description [1]. In the  
constitutive equation for [ ]0σ  we assume [ ]0σ  as a linear function of [ ]0ε .  

( )0 , ; continuity equationJ tρ ρ= x                            (3.1) 

{ } [ ] [ ] { }
T0

0 0; momentum equationv Jρ σ  − ∇ =   
                      (3.2) 
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[ ] [ ] T0 0 ; balance of angular momentaσ σ   =                       (3.3) 

[ ]
[ ] [ ]( )[ ]

[ ]{ } [ ] [ ]{ }

0
0 0

0
0

2

or constitutive theory

tr I

D

σ µ ε λ ε

σ ε

     = +     

=

                 (3.4) 

In which  

[ ] { }
{ }

{ }
{ } [ ]x u

J I
x x

    ∂ ∂
= = +    

∂ ∂        
                          (3.5) 

{ } { }v u=                                   (3.6) 

[ ]{ } [ ] [ ] [ ] [ ] [ ] [ ]

[ ]{ } [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )

T0 0 0 0 0 0 0
11 22 33 23 31 12

T

0 0 0 0 0 0 011 22 33 23 31 12

σ σ σ σ σ σ σ

ε ε ε ε ε ε ε

 =  

 =   

               (3.7) 

[ ] [ ] [ ] [ ]( )T
0

1
2

J J Iε  = −                              (3.8) 

2 ; , ; 2 , 4,5,6

0; , 4,5,6 and
ii ij ii

ij

D D i j D i

D i j i j

µ λ λ µ= + = ≠ = =

= = ≠
                 (3.9) 

The i i ix x u= +  are coordinates of a material point ( ),P x t  in the current configuration, iu  are displace-
ments in the ix  directions and iv  are the corresponding velocities. The density in the reference configuration 
( )0t =  is given by 0ρ  and ( ), tρ x  is the density of the material point ( ),P x t  in the current configuration 
at time t. Subscripts 1, 2, and 3 in (3.7) refer to 1x , 2x , and 3x  axes of a fixed x-frame. A dot ( )⋅  on the 
quantity implies material derivative. Equation (3.6) can be substituted into (3.2) thereby eliminating v  as a 
dependent variable. The contravariant second Piola-Kirchoff stress tensor is symmetric (3.3). Thus the mathe-
matical model reduces to  

( )0 ,J tρ ρ= x                                (3.10) 

{ } [ ] [ ] { }
T0

0 0u Jρ σ  − ∇ =   
                         (3.11) 

[ ]{ } [ ] [ ]{ }0
0Dσ ε=                               (3.12) 

in which [ ]0ε 
   and [ ]D  are defined by (3.8) and (3.9). Material coefficients are λ  and µ . When the iu ,  

hence [ ]J , are known, the density, ρ  in the current configuration, is deterministic from (3.10). Thus, for  
thermoelastic compressible solid continua, ( ), tρ x  is not a dependent variable in the mathematical model. Eq-
uations (3.11) and (3.12) are nine partial differential equations in three displacements iu  and six stresses  

[ ] [ ]( )0 0
ij jiσ σ= , hence the mathematical model has closure. Equations (3.10)-(3.12) and [ ]0ε 

   defined by 8 is the  

final form of the mathematical model for thermoelastic solids in R3 in which (3.10) only needs to be used to de-
termine ( ),x tρ  once [ ]J  is known in the current configuration.  

3.2. Thermoviscoelastic Solid Continua without Memory in R3 
In such solid continua the deformation process is not reversible due to rate of mechanical work resulting in en-
tropy production (dissipation) which affects the specific internal energy. Hence, in such solid continua, the ma-
terial exhibits elasticity as well as dissipation mechanism but has no memory (or rheology). In such solid conti-
nua, the mechanical deformation and thermal effects are coupled implying that the energy equation resulting 
from the first law of thermodynamics is an integral part of the complete mathematical model. Entropy  
inequality resulting from the second law of thermodynamics along with decomposition of [ ]0σ  into equilibrium 
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[ ]( )0
eσ  and deviatoric [ ]( )0

dσ  contravariant second Piola-Kirchoff stress tensor provides mechanism for de- 
riving constitutive theory for heat vector and [ ]( )0

eσ  and additionally requiress that rate of work due to  
[ ]( )0

dσ  be positive. The constitutive theory for [ ]0
dσ  is derived using the theory of generators and invariants  

[1]. The complete mathematical model for thermoviscoelastic solid continua without memory consists of con-
servation of mass, balance of linear momenta, balance of angular momenta, which are the same as in the case of 
thermoelastic solids (Equations (3.1)-(3.3)). Additionally, the energy equation and constitutive theories for  

[ ]0
eσ , [ ]0

dσ , and heat vector q  are needed. The complete mathematical model is given in the following in 
Lagrangian description for compressible matter (in the absence of body forces). The constitutive theory used for 

[ ]0
dσ  is a simple first order linear rate theory in which [ ]0

dσ  is a linear function of [ ]0ε  and [ ]0ε  (material  
derivative of [ ]0ε ). The constitutive theory for { }q  is simple Fourier heat conduction law [1]. The constitutive  

theory for [ ]0
eσ  is in terms of thermodynamic pressure [1]. 

( )0 , ; continuityJ tρ ρ= x                               (3.13) 

{ } [ ] [ ] { }
T0

0 0; balance of linear momentau Jρ σ  − ∇ =   
                  (3.14) 

[ ] [ ] T0 0 ; balance of angular momentaσ σ   =                         (3.15) 

{ } { } [ ]
[ ]

T TT 0
0 0 0; energy equatione q trρ σ ε    + ∇ − =     

                 (3.16) 

[ ] [ ] [ ]

[ ] [ ] [ ]
[ ]

[ ] [ ]( )[ ] [ ] [ ]( )[ ]
[ ]{ } [ ] [ ]{ } [ ] [ ]{ }

0 0 0

T 10

0
1 10 0 0 0

0
0 0

2 2

or

e d

e

d

d

p J J J

tr I tr I

D B

σ σ σ

σ

σ µ ε λ ε µ ε λ ε

σ ε ε

−

     = +     
  = − 

         = + + +         

= +

 

 

 



 

              (3.17) 

1 1 1 1

2 ; , ; 2 , , 4,5,6

0; , 4,5,6 and

2 ; , ; 2 , , 4,5,6

0, , 4,5,6 and

ii ij ii

ij

ii ij ii

ij

D D i j D i j

D i j i j

B B i j B i j

B i j i j

µ λ λ µ

µ λ λ µ

= + = ≠ = =

= = ≠

= + = ≠ = =

= = ≠

   

 



   

 



                    (3.18) 

and  
{ } { }; Fourier heat conduction lawq k θ= − ∇                    (3.19) 

Here 1µ


 and 1λ  are material coefficients related to dissipation, k  is thermal conductivity, θ  is absolute 
temperature, and e  is specific internal energy. The compressive thermodynamic pressure, p  in (3.17) is as-
sumed positive. Equation of state, ( ),p p ρ θ=  is known for each specific solid continua under consideration.  

3.3. Thermoviscoelastic Solids with Memory in R3  
In such solid continua the deformation process is also not reversible. In these solids the rate of mechanical work 
also results in rate of entropy production (dissipation). Additionally, such solids exhibit rheological behavior, i.e. 
memory. Due to rate of entropy production, the thermal and mechanical effects are coupled; hence the energy 
equation is an integral part of the complete mathematical model. Entropy inequality resulting from the second 
law of thermodynamics along with the stress decomposition [ ] [ ] [ ]0 0 0

e d= +σ σ σ  provides mechanism for de-
riving constitutive theories for [ ]0

eσ  and heat vector and additionally requires that rate of work due to [ ]0
dσ  

be positive. The constitutive theory for [ ]0
dσ  is derived using theory of generators and invariants [1]. The 

complete mathematical model for thermoviscoelastic solids with memory, in Lagrangian description, consists of 
continuity equation, momentum equations, energy equation, and constitutive theories for [ ]0

eσ , [ ]0
dσ , and q . 

Constitutive theories used here are first order linear rate theories in [ ]0
dσ  and [ ]0ε , i.e. material derivative of  
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[ ]0
dσ  is a linear function of [ ]0ε , [ ]0ε , and [ ]0σ . This constitutive theory permits dissipation as well as rheol- 

ogy. Constitutive theory used for q  is a simple Fourier heat conduction law. The constitutive theory for [ ]0
eσ  

is in terms of thermodynamic pressure ( ),p ρ θ . The complete mathematical model is given in the  
following (in the absence of body forces). 

( )0 , ; continuityJ tρ ρ= x                               (3.20) 

{ } [ ] [ ] { }
T0

0 0; balance of linear momentau Jρ σ  − ∇ =   
                   (3.21) 

[ ] [ ] T0 0 ; balance of angular momentaσ σ   =                             (3.22) 

{ } { } [ ]
[ ]

T TT 0
0 0 0; energy equatione q trρ σ ε    + ∇ − =     

                    (3.23) 

[ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ]( )[ ]

[ ] [ ]( )[ ] [ ] [ ]( )[ ]
[ ]{ } [ ] [ ]{ } [ ] [ ]{ } [ ] [ ]{ }

0 0 0

T 10

1 0 0
1 2

1 2 1 2
0 0 1 10 0 1 1

1 0
0 10 1or

e d

e

d d d

d d

p J J J

c c tr I

a a tr I a a tr I

c a a

σ σ σ

σ

σ σ σ

ε ε ε ε

σ σ ε ε

−

     = +     
  = − 

     + +     

       = + + +       

+ = +
  

                   (3.24) 

where coefficients of [ ]c


, [ ]0a


, and [ ]1a


 are functions of ( )1 2,c c , ( )1 2
0 0,a a , and ( )1 2

1 1,a a  and are defined  

in the same manner as coefficients of [ ]D  in (3.18). Additionally, q  is defined as  
{ } { }; Fourier heat conduction lawq k θ= − ∇                     (3.25) 

We consider compressive thermodynamic pressure to be positive, hence the negative sign in the constitutive 
theory for [ ]0

eσ . Here also, ( ),p p ρ θ=  is an equation of state and is known for a material under considera- 
tion. The constitutive theory for [ ]0

dσ  (last equation in (3.24)) can also be written (similar to thermoviscoelastic  
solid continua without memory) in the following form if we neglect [ ]( )0

dtr σ 
   in equation three in (3.24),  

divide throughout by 1c , and define 
1

1
c

 as λ .  

[ ]{ } [ ]{ } [ ] [ ]{ } [ ]{ }0 1 1
1 0 0 1d d a aσ λ σ ε ε + = +                            (3.26) 

in which  

[ ] [ ] [ ] [ ]{ }0 0 1 1
1 1

1 1,a a a
c c

ε= =


                               (3.27) 

Equation (3.26) is the final form used in the present work to obtain its equivalent form in R1. 
Remarks: 
Even though the model problems considered in the present work are wave propagation studies in R1, the ma-

thematical models in R3 are necessary to demonstrate the presence of all relevant terms, many of which drop out 
in R1 as in R1 there is no concept of the other two dimensions.  

4. Mathematical Models in R1 

In this section explicit forms of the mathematical models for 1D wave propagation in R1 for thermoelastic and 
thermoviscoelastic solid continua with and without memory are presented. These models are derived using the 
mathematical models presented in Section 3 for the three dimensional case, i.e. in R3, hence they hold for finite 
deformation and finite strain. We assume directions 1 and 1x  to be the same as x . Displacement 1u  in 1x  
(or x ) direction is denoted by u  and the velocity 1v  by v . Details of the mathematical models based on 
conservation and balance laws and the constitutive theories for the three types of material behaviors considered 
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are given in the following (in the absence of body forces).  

4.1. Thermoelastic Solid Matter (Compressible): R1 

For 1D wave propagation in R1 the mathematical models of Section 3.1 in R3 reduce to  

( )

[ ]

[ ]

0

2
0

0 2

2
0

1 ,

1 0

1
2

xx

xx

uf x t
x

u uf
x xt
u uE f
x x

ρ ρ

ρ σ

σ

∂ = + ∂ 
∂ ∂  ∂  − + =  ∂ ∂∂   

 ∂ ∂ = +   ∂ ∂  

                             (4.1) 

in which 0f =  for small deformation and small strain and 1f =  for finite deformation and finite strain. This 
is a mathematical model in dependent variable u  and [ ]0

xxσ . E is material coefficient in the reference configu-
ration. 

Alternate form of the mathematical model using v  

It is some times more convenient to introduce velocity uv
t

∂
=
∂

 as a dependent variable in the mathematical  

model. This form of the mathematical model is specially helpful in studies in which velocity needs to be speci- 

fied as a boundary condition or initial condition. Thus, using velocity uv
t

∂
=
∂

 as a dependent variable Equation 

(4.1) becomes  

( )

[ ]

[ ]

0

0
0

2
0

1 ,

1 0

1
2

xx

xx

uf x t
x

v uf
t x x

u uE f
x x

uv
t

ρ ρ
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 ∂ ∂ = +   ∂ ∂  
∂

=
∂

                              (4.2) 

This mathematical model contains dependent variables u , [ ]0
xxσ , and v .  

4.2. Thermoviscoelastic Solids without Memory in R1 
Using equations in Section 3.2, we can obtain the following in R1. We consider 0 0p pe c c

t
θθ ∂

= =
∂



 .  
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∂ ∂
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∂ ∂
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= −
∂









                         (4.3) 

in which ( ),p ρ θ  is thermodynamic pressure defined by the equation of state, thus [ ]0
e xxσ  is defined in terms  
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of known ( ),p ρ θ  in (4.3). Equations (4.3) are five partial differential equations in u , [ ]0
d xxσ , [ ]( )0 xx

ε , q , and  

θ , hence the mathematical model has closure. Material coefficients d E  and d c  are related to elasticity and 
dissipation respectively and are defined in the reference configuration. 

Remarks 
For solid matter the equation of state is rather involved [1] even though there is no particular problem in in-

corporating it in (4.3). Since the main objective of this research is the study of linear and nonlinear wave pro-  
pagation, the constitutive theory for [ ]0

e xxσ  is modified by considering the solid continua to be incompressible 
just for the purposes of establishing the constitutive theory for the equilibrium stress [ ]0

e xxσ . The same assump-  
tion is applied to linear and nonlinear wave propagation so that the comparisons of linear and nonlinear wave 
propagation studies remain meaningful. This is obviously an assumption that will undoubtedly influence the 
model behavior, the extent of which is believed to be not serious. There is further work in progress that incorpo-
rates actual equations of state for ( ),p ρ θ  for compressible solid matter. This work is expected to provide 
quantitative measures of the deviations in true behavior of wave propagation due to incompressibility assump-
tion for the constitutive theory for equilibrium stress. For incompressible matter, equilibrium stress is mean 
normal stress. Following [1], for incompressible solid matter we have the following in R1  

[ ] [ ] [ ] [ ] [ ] [ ]0 0 0 0 0 01 3 2; ;
2 2 3e xx d xx xx d xx d xx xxσ σ σ σ σ σ= = =                          (4.4) 

Using (4.4), [ ]0
e xxσ  in (4.3) can be expressed either in terms of [ ]0

d xxσ  or [ ]0
xxσ  and the resulting mathematical  

model can likewise be expressed either in terms of [ ]0
xxσ  or [ ]0

d xxσ . In the following, we choose [ ]0
xxσ  so that  

this mathematical model contains the same stress measure as in case of thermoelastic solids 4.1.  
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∂ ∂  ∂  − + =  ∂ ∂∂   

= + = =

∂ ∂ = +  ∂ ∂ 
∂ ∂

+ − =
∂ ∂
∂

= −
∂



 



                      (4.5) 

The factor of 2
3

 in the dissipation term, in the energy equation, is due to incompressibility assumption in the  

constitutive theory. Here also 0f =  for small deformation and small strain and 1f =  for finite deformation 
and finite strain. Absolute temperature is given by θ . Thus, we have five partial differential equations (not 

including continuity) in five dependent variables u , [ ]0
xxσ , [ ]( )0 xx

ε , q , and θ , thus the mathematical model  

has closure. Material coefficients E  and c  define the modulus of elasticity and dissipation coefficient re- 

spectively. An alternate form of (4.5) can be derived by using uv
t

∂
=
∂

 as additional equation in (4.5) and by re-

placing 
2

2

u
t

∂
∂

 in the second equation in (4.5) by v
t
∂
∂

. This model contains v  as an additional variable (com- 

pared to (4.5)) but also contains additional equation uv
t

∂
=
∂

, hence has closure.  

4.3. Thermoviscoelastic Solids with Memory in R1 
Using the mathematical model of Section 3.3 (in R3) we can obtain the explicit form of the equations in the ma-
thematical model in R1. In this case also we employ Equation (4.4). The final form of the equations for the  
mathematical model in R1 is given in the following (in terms of [ ]0

xxσ ).  
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( )
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                  (4.6) 

Here 3
2

dE E=


 and 3
2

dc c=


 are elastic and dissipation material coefficients and λ  is relaxation time.  

This model has five equations and five dependent variables (same as for thermoviscoelastic solids without 
memory). Similar to Section 4.2, here also, we can derive an alternate form of (4.6) by using velocity v  as a  

dependent variable. Here also 0f =  for small deformation and 1f =  for finite deformation. The factor of 2
3

 

in the energy equation is due to incompressibility assumption in the constitutive theory.  

4.4. Dimensionless Form of the Mathematical Models in R1  
We present the dimensionless forms of the mathematical models given in Sections 4.1-4.3 by choosing appro-
priate reference quantities. We consider the mathematical models derived in Sections 4.1-4.3 and introduce  
hat ( )  i.e. x  changes to x̂ , t  to t̂ , θ  to θ̂ , etc. This implies that all quantities with hat have their usual  
dimensions or units in terms of force ( )F̂ , length ( )L̂ , and time ( )t̂ . Next we choose a reference value of 
force ( )0F , length ( )0L , and time ( )0t  which would yield dimensionless force ( )F , length ( )L , and time  

( )t , the quantities without hat ( ) , as 
0

F̂
F

F
= , 

0

L̂
L

L
= , and 

0

t̂
t

t
= . This is a general process of non- 

dimensionalizing. Additionally, we may have to choose other reference quantities too, for example, 0θ  for  

temperature θ̂  so that we can obtain dimensionless temperature 
0

θ̂
θ

θ
= . For wave propagation the reference  

speed of sound is a good choice for reference velocity ( )0v . If we choose 0L  as reference length then with 0v   

and 0L , reference time 0
0

0

L
t

v
= , i.e. 0t  cannot be independent of 0L  and 0v . We consider the following ref-

erence quantities, the resulting dimensionless variables, and the dimensionless parameters. 
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  alues of density and specific heat

                  (4.7) 
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Using (4.7), the mathematical models in Sections 4.1-4.3 can be nondimensionalized.  

4.4.1. Thermoelastic Solids: R1 
The dimensionless forms are the same as in Section 4.1, Equations (4.1) and (4.2), with and without velocity as 
a dependent variable respectively, hence they are not repeated here for the sake of brevity.  

4.4.2. Thermoviscoelastic Solids without Memory: R1 
The mathematical model in Section 4.2 (Equations (4.5)) can be nondimensionalized using (4.7). The resulting 
dimensionless forms of the equations are  
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∂

                    (4.8) 

The dimensionless modulus of elasticity is given by E  and c  is the dimensionless dissipation coefficient. 
For small deformation and finite deformation we use 0f =  and 1f =  respectively. In (4.8), we can also in- 

troduce velocity, v , as an additional dependent variable with the additional equation uv
t

∂
=
∂

 and 
2

2

u
t

∂
∂

 re- 

placed by v
t
∂
∂

.  

4.4.3. Thermoviscoelastic Solids with Memory: R1 
The mathematical model in Section 4.3 (Equation (4.6)) can be nondimensionalized using (4.7). The resulting 
dimensionless form of the equations are 
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                    (4.9) 



K. S. Surana et al. 
 

 
356 

where Deborah number 
o

De
t
λ

= .  

5. Computational Framework for Numerical Simulation of Evolution 
The mathematical models described in Sections 3 and 4 are a system of nonlinear partial differential equations 
(for finite strain measures) describing evolutions i.e. these are initial value problems (IVPs). Even in R1, the eq-
uations are complex enough not to permit theoretical or analytical solutions. In the present work, we consider a 
space-time coupled finite element formulation based on space-time residual functional for an increment of time 
with time marching for computing evolutions. The space-time local approximations are considered in higher or-
der scalar product spaces that permit higher order global differentiability in space and time. Details of 
space-time coupled methods for IVPs, time marching, higher order global differentiability approximation spaces, 
space-time variationally consistent integral forms etc. can be found in references [21]-[30]. In the following we 
present a summary.  

5.1. Space-Time Finite Element Formulation Based on Residual Functional and  
the Solution Procedure 

For the sake of simplicity, we consider mathematical models in R1 describing one-dimensional wave propaga-
tion in thermoelastic and thermoviscoelastic media with and without memory. This choice is due to simplicity of 
physics so that the significant and subtle features of linear and non-linear wave propagation can be clearly dem-
onstrated. Thus the mathematical models in Section 4 (R1) contain x  and t  as independent coordinates. All 
three mathematical modes in Section 4 can be arranged in the following compact form. 

( ) ( ) ( )0 , 0, 0,xt x tx t L τ− = ∀ ∈Ω = Ω ×Ω = ×A fφ                        (5.1) 

or 
( )0; 1,2, , ,i i i xtA f i m x tφ − = = ∀ ∈Ω

                           (5.2) 

Equations (5.1) or (5.2) are a system of m  partial differential equations. In (5.1), matrix A contains the dif-
ferential operators, φ  is a vector of dependent variables, and f  is a vector containing nonhomogeneous  
terms. In (5.1), xtΩ  is the open space-time domain such that xt xtΩ = Ω Γ , xtΩ  being closure of xtΩ  and Γ  
being the closed boundary of xtΩ . Additionally, the following holds (Figure 1), x x xΩ = Ω Γ  and t t tΩ = Ω Γ  

such that x tΓ = Γ Γ . For simplicity, we consider 
4

1
i

i=
Γ = Γ


 as shown in Figure 1(a). Figure 1(b) shows a  

subdivision of the space-time domain xtΩ  into space-time strips such that 

( ) [ ] [ ]1, 0, ,n n n
xt xt xt x t n n

n
x t L t t−Ω = Ω ∀ ∈ Ω = Ω × Ω = ×



                   (5.3) 

The nth space-time strip, with domain n
xtΩ , is from time 1nt −  to nt  over the spatial domain [ ]0, L . The 

time interval t∆  for the strips need not be uniform (but assume so here for simplicity). Consider the nth space- 
time strip n

xtΩ  and its discretization Tn
xtΩ  into space-time elements 

Tn e
xt xt

e
Ω = Ω



                                      (5.4) 

in which e
xtΩ  is the space-time domain of a space-time element, e (Figure 1(c)), a nine node space-time p-ver- 

sion element. Consider the nth space-time strip with its space-time domain n
xtΩ  and its discretization Tn

xtΩ . 
Let ; 1, 2, ,n

i h i mφ = 
 be the approximations of ; 1, 2, ,i i mφ =   over Tn

xtΩ  and let n e
i hφ  be the local ap-

proximation of iφ  over a space-time element e
xtΩ  such that 

; 1, 2, ,n n e
i h i h

e
i mφ φ= = 



                                (5.5) 

If we substitute n
i hφ  in (5.2), then we obtain the residual functions (equations), 1, 2, ,iE i m= =  , for the nth 

space-time strip. 

( ) ; 1, 2, ,n
i i i h iE A f i mφ= − =                                  (5.6) 
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(a) 

   
(b)                                                     (c) 

Figure 1. Space-time domain, space-time strips, and discretization for nth space-time strip. (a) Space-time domain; (b) 
Space-time strips ; 1,2, , ,k T

xt k nΩ =   ; (c) Discretization for nth space-time strip.                                     
 

On the other hand, if we substitute n e
i hφ  in (5.2), we obtain residual equations, e

iE , for a space-time element e. 

( ) ; 1, 2, ,e n e
i i i h iE A f i mφ= − =                              (5.7) 

We consider the space-time finite element method based on residual functional (space-time least squares me-
thod). See references [21]-[30] for more details. Let n I  be the residual functional for the discretization of the 
nth space-time strip defined by the sum of the scalar products of iE  with itself over Tn

xtΩ . 

( ) T
1

, n
xt

m
n

i i
i

I E E
Ω

=

= ∑                                  (5.8) 

Since ( ) T, n
xti iE E

Ω
 is a functional, (5.8) can be written in terms of the sum of element residuals, i.e. 

( ) ( )T, ,n ext xt

n e e e
i i i i

i e i e
I E E E E I

Ω Ω

 = = = 
 

∑ ∑ ∑ ∑                       (5.9) 

Based on the calculus of variations [21], an extremum of the functional n I  is also a solution of the asso-
ciated Euler’s equations (partial differential equations in the mathematical models). An extremum of n I  re-
quires that we set its first variation, ( )n Iδ , to zero, a necessary condition, provided n I  is differentiable in its 
arguments. 

( ) ( ) { } { }2 , 2 2 0e
xt

n e e e e
i i

e e i e
I I E E g gδ δ δ

Ω

 = = = = = 
 

∑ ∑ ∑ ∑                 (5.10) 

Thus, { } 0g =  is a necessary condition for an extremum of functional n I . The sufficient condition, or ex-
tremum principle, is given by 
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( ) ( ) ( )( )2 22 , ,e e
xt xt

n e e e e
i i i i

e i
I E E E Eδ δ δ δ

Ω Ω

 = + 
 

∑ ∑                      (5.11) 

In (5.11), ( )2 0, 0, 0n Iδ > = < , ensures a minimum, a saddle point, or a maximum, respectively, of n I  for 
the solution n

i hφ  obtained from (5.10). Equation (5.11) is clearly not an extremum principle. Following 
[21]-[30], we approximate (5.11) to obtain a unique extremum principle. 

( ) ( )2 2 , 0e
xt

n e e
i i

e i
I E Eδ δ δ

Ω

 ≅ > 
 

∑ ∑                           (5.12) 

This is a unique extremum principle (see reference [21] for details). Since some of the equations in the ma-
thematical model are nonlinear, some e

iE  are nonlinear functions of the dependent variables. That is { }g  in  
(5.10) is a nonlinear function. Consider the local approximations ( ),n e k p e

i n n xtV Hφ ∈ ⊂ Ω  in which ( )1 2,k k k= , 1k   

and 2k  being the orders of the scalar product space ( ),k p e
xtH Ω  in space and time. Consider the local ap-

proximations of iφ  over e
xtΩ  

{ }; 1, 2, ,n e i e
i h iN i mφ δ = =                               (5.13) 

in which iN    are space-time local approximation functions and { }e
iδ  are nodal degrees of freedom for a  

dependent variable iφ . Let { } { } { } { }T T T T

1 2, , ,e e e e
mδ δ δ δ =   

  be the total degrees of freedom for all of  

the dependent variables iφ  for an element, e. Therefore, the total degrees of freedom { }δ  for the discretiza-
tion Tn

xtΩ  can be written as 

{ } { }e

e
δ δ=


                                    (5.14) 

With (5.13) and (5.14), { }g  in (5.10) is a nonlinear function of { }δ , hence the necessary condition 
{ } 0g =  must be satisfied iteratively. We consider Newton’s linear method. Let { }0δ  be an assumed solution 
(a starting solution), then 

{ }( ){ }0 0g δ ≠                                     (5.15) 

Let { }δ∆  be a change in { }0δ  such that 

{ } { }( ){ }0 0g δ δ+ ∆ =                                (5.16) 

We expand { }g  in (5.16) in a Taylor series about { }0δ  and retain only up to linear terms in { }δ∆ . 

{ } { }( ){ } { }( ){ } { }
{ } { }

{ }
0

0 0 0
g

g g
δ

δ δ δ δ
δ

∂
+ ∆ ≅ + ∆ =

∂
                (5.17) 

Then  

{ } { }
{ } { }

{ }( ){ }
0

1

0

g
g

δ

δ δ
δ

−
 ∂

∆ = −  
∂  

                           (5.18) 

An improved solution, { }δ , is obtained using 

{ } { } { } { }( ) { }( )0 0; 0 2 such that n nI Iδ δ α δ α δ δ= + ∆ ≤ ≤ ≤                (5.19) 

Use of α  in (5.19) is called line search [21]-[30]. Using { }δ  in (5.19), we check if the absolute value of 
each component of { }( ){ }g δ  is less than or equal to ∆ , (generally 610−  or lower) a preset tolerance for 
computed zero. If this condition is satisfied by { }δ  in (5.19), then we have a converged solution { }δ  from 
Newton’s linear method, otherwise we set { }0δ  to be { }δ  and repeat (another iteration) the calculations de-
scribed above. It is worth noting that 
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{ }
{ }

21
2

g
Iδ

δ
∂

=
∂

                                (5.20) 

which when approximated using (5.12) gives a positive definite coefficient matrix due to the fact that 2 0Iδ > . 
Thus, we can rewrite (5.18) as 

{ }
{ }

{ }( ){ }
0

12
0

1
2

I g
δ

δ δ δ
−

 ∆ = −                             (5.21) 

( )2 , e
xt

e e e
i i

e i e
I E E Kδ δ δ

Ω

   = =    
∑ ∑ ∑                      (5.22) 

in which eK    is the element coefficient matrix and 2 Iδ    in (5.19) are the assembled element equations for 
the discretization Tn

xtΩ . Likewise, the following holds 

{ } { } { } ( ); ,e e e e
i i

e i
g g g E Eδ= =∑ ∑                         (5.23) 

5.2. Time Marching Procedure: Computations of Evolution  
We initiate computations with the first space-time strip shown in Figure 2 with boundary conditions on two 
boundaries (for example) and initial conditions at time 0t = , the boundary at t t= ∆  being the open boundary 
where nothing is known about the solution. With proper choice of discretization, p-level, and minimally con-
forming space choice [21]-[30], the integrated sum of squares of the residuals 1 I  for the first space-time strip 
are achieved to be less than or equal to ( )610O − . With the minimally conforming choice of k , the orders 1k  
and 2k  of the approximation space in space and time, the space-time integrals are Riemann over Tn

xtΩ , hence 
1 I  of the order of ( )610O −  or lower indicates that the GDEs are satisfied accurately in the pointwise sense 
over 1 T

xtΩ  [21]-[30]. Upon obtaining an accurate solution for 1 T
xtΩ  the computations are initiated for  

2 T
xtΩ  keeping the same p-levels, same values of k, and the same discretization as used for 1 T

xtΩ . For the second 
space-time strip, 2 T

xtΩ , ICs at t t= ∆  are from the computed solution at t t= ∆  for 1 T
xtΩ . This process is  

continued till the desired time t τ=  is reached. The benefits of space-time coupled finite element process 
based on residual functional and the computations of evolutions using space-time strip with time marching are 
well documented in references [21]-[30].  

6. Model Problems 
We consider one-dimensional axial wave propagation in thermoelastic solid continua and thermoviscoelastic 
solid continua with and without memory. In all three mathematical models (Section 4.4) Green’s strain tensor is 
used as a measure of finite strain and the second Piola-Kirchoff stress tensor as energy conjugate stress measure. 
Figure 3(a) shows a schematic of the dimensionless rod of length one unit. The fixed end at 0x =  is also the  

 

 
Figure 2. First two space-time strips with BCs and ICs.       
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(a) 

   
(b)                                (c)                               (d) 

Figure 3. Problem schematic, stress pulse, stress ramp, and velocity pulse loading. (a) Schematic; (b) Stress pulse loading: 
L1; (c) Stress ramp loading: L2; (d) Velocity pulse loading: L3.                                                     

 
origin of the x-frame. The dimensionless axial rod is of unit length. The right end of the rod (at 1.0x = ) is sub-
jected to three different types of loading.  

6.1. Loadings  
We consider three different types of loads applied to the end of the rod at 1.0x = . 

Loading L1:  
This loading consists of a stress pulse [ ] ( )0

xx tσ  of maximum amplitude 1σ± , positive for tensile loading and 
negative for compressive loading applied over a time interval of 2 t∆ . In Figure 3(b), [ ] ( )0

xx tσ  is continuous 
with continuous first time derivative for 0 2t t≤ ≤ ∆  and is defined using the following.  
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∂
= = =

∂
∂

= ∆ = ± =
∂

∂
= ∆ = =

∂
≥ ∆ =

                             (6.1) 

The stress pulse [ ] ( )0
xx tσ  described by (6.1) has support of 2 t∆  with maximum amplitude of 1σ±  at 

t t= ∆  such that for 0 2t t≤ ≤ ∆  [ ] ( )0
xx tσ  is a cubic function of time t  and [ ] ( )0 0xx tσ =  for 2t t≥ ∆ . 

Loading L2:  
This loading consists of stress [ ] ( )0

xx tσ  defined as a ramp function over a time interval of t∆  with maximum 
value of 1σ± . Positive and negative signs correspond to tension and compression respectively. The ramp 

[ ] ( )0
xx tσ  is continuous with continuous first derivative for 0 t t≤ ≤ ∆  and remains 1σ±  (constant magnitude) 

for t t≥ ∆ .  

[ ] ( )
[ ]

[ ] ( )
[ ]

[ ] ( )

0
0

0
0 0

1 1

at 0; 0, 0

at ; , 0 for ;
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The ramp [ ] ( )0
xx tσ  described by (6.2) is a stress loading with maximum value of 1σ±  such that for 

0 t t≤ ≤ ∆ , [ ] ( )0
xx tσ  is a cubic function of t with zero time derivatives at 0t =  and at t t= ∆  and a constant 

value of 1σ±  for t t≥ ∆ . Figure 3(c) shows a schematic of this loading. 
Loading L3:  
This loading (Figure 3(d)) consists of a velocity pulse, ( )v t , of maximum amplitude 1v± , positive for ten-

sile loading and negative for compressive loading applied over a time interval of 2 t∆ . Similar to loading L1, 
we can define ( )v t  as follows.  

( ) ( )

( ) ( )

( ) ( )

( )

1

at 0; 0, 0

at ; , 0

at 2 ; 0, 0

for 2 ; 0

v t
t v t

t
v t

t t v t v
t

v t
t t v t

t
t t v t

∂
= = =

∂
∂

= ∆ = ± =
∂

∂
= ∆ = =

∂
≥ ∆ =

                                (6.3) 

The velocity ( )v t  described by (6.3) is a velocity pulse of support 2 t∆  with maximum amplitude of 1v±  
at t t= ∆ . For 0 2t t≤ ≤ ∆  ( )v t  is a cubic function of t  and ( ) 0v t =  for 2t t≥ ∆ .  

6.2. Material Coefficients, Reference Quantities and Dimensionless Parameters 
We define the material coefficients for thermoelastic sold continua and the thermoviscoelastic solid continua 
with and without memory, choice of reference quantities, and the resulting dimensionless material coefficients 
and the dimensionless variables and the parameters. The basic material is hard rubber or polymer which we 
would treat as thermoelastic, thermoviscoelastic without memory as well as with memory. 

Thermoelastic Solid Continua (TE) 

3

kgˆ 1850
m

ρ =  

7
2

Nˆ 1.49 10
m

E = ×  

If we choose 0 3

kg1850
m

ρ =  and 7
0 2

N1.49 10
m

E = ×  as reference values, then the dimensionless density 

0
0

ˆ
1ρρ

ρ
= =


 and the dimensionless modulus of elasticity 
0

ˆ
1EE

E
= = . 

Thermoviscoelastic Solid without Memory (TVE) 

3

kg Jˆ ˆ1850 ; 1650
kg Km pcρ = =

⋅
  

7
2

W Nˆ ˆ0.235 ; 1.49 10
m K m

k E= = ×
⋅

  

0 01 m; 300 KL θ= =   

reference speed of sound  

0

ˆ m89.7444
ˆ s
Ev
ρ

= =   

reference time 
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0
0

0

0.0111 s
L

t
v

= =   

2

2
0

ˆ ˆˆ ˆ
ˆ
Ev Eρ ρ
ρ

 
 = =
 
 

 

characteristic kinetic energy. 
If we choose  

0 0
ˆˆ , E Eρ ρ= = , and 0 ˆp pc c= , then 0

0

ˆ
1ρρ

ρ
= =


 and 
0

ˆ
1EE

E
= =  and 0

0

ˆ
1p

p
p

c
c

c
= =


. 

Thermoviscoelastic Solid with Memory (TVEM) 
The material coefficients, reference quantities, and dimensionless quantities and parameters for TVE hold  

here. Additionally for this solid continua we have Deborah number, De , defined by 
0

De
t
λ

= . Numerical val- 

ues of De  used in the evolution computations are given with the details of studies.  

6.3. Computations of Evolutions: Numerical Results  
In the following sections we report numerical studies for loading L1 and L2 for TE, TVE, and TVEM solid con-
tinua. Evolution in each case is computed using space-time strip with time marching until the desired value of 
time is reached. The choice of h , p , and k  defining the scalar product space ( ),p k e

xtH Ω  containing  
space-time local approximation function is important. Since all three mathematical models (dimensionless forms 
given by (4.1), (4.8), and (4.9)) are a system of first order partial differential equations in space coordinate x  
and time t , the choice of ( ) ( )1 2, 2, 2k k k= =  in space and time ensures that the local approximations are of 
class 11C  in space and time. Here the space-time integrals over Tn

xtΩ , discretization of thn  space-time strip 
n

xtΩ  are always Riemann. We consider a sixteen element uniform discretization of n
xtΩ  giving rise to a spa-

tial discretization length of 1/16. With 1E = , 0 1ρ = , the dimensionless wave speed is one, thus with 0.1t∆ = , 
the wave would be over a spatial domain of 0.1 which is spanned by approximately one and a half space-time 
element. Hence, at the onset, the sixteen element uniform spatial discretization ( )1 16eh =  appears to be rea-
sonable. With ( ) ( )1 2, 2, 2k k k= =  and 1 16eh = , we need to conduct a p-convergence study to establish at 
what p-levels this choice of eh  is adequate to yield values of the residual functional for the space-time strip low 
enough for the computed solution to be considered accurate or time accurate. For this purpose, we consider the  
first space-time strip with loading L2 and 1 0.01σ = ±  and 1 0.1σ = ±  at 1.0x =  and 0.1t∆ = . The p-levels 
in space and time, ( )1 2,p p , are increased uniformly ( )1 2p p p= =  from 3 to 11 in increments of 2. For each 
p-level, a solution is computed using a tolerance 610−∆ =  for , 1, 2,ig i≤ ∆ = 

 in Newton’s linear method 
with line search. The behavior of the residual function I for 1 T

xtΩ  is examined as a function of the  
degrees of freedom for TE, TVE solids and for TVEM. Plots of residual function I versus degrees of freedom for 
TE, TVE, and TVEM for both linear and nonlinear cases corresponding to infintesimal (linear) and finite strain 
formulations (nonlinear) are given in Figure 4. In the mathematical models, 0f =  is used for the linear case in 
which there is no non-linearity in any of the equations in the mathematical model. When 1f =  (nonlinear  

case), the strain measure is Green’s strain and ( ) ( )0,x t xρ ρ≠ , instead ( )0 1 ,u x t
x

ρ ρ∂ = + ∂ 
 holds due to the  

continuity equation. From the graphs in Figure 4, we note that: 1) in all three cases (TE, TVE, and TVEM) the  
residual I is of the order of ( )1210O −  or lower for 1 2 9p p p= = =  or greater confirming that 1 16eh = , 

1 2 2k k= = , and 1 2 9p p= =  are sufficient for accurate solution for the first space-time strip. For the second 
space-time strip, ICs at t t= ∆  are obtained from the solution for the first space-time strip at t t= ∆ . For these  
choices of h, p, and k, the evolution is expected to stay accurate as long as I of the order of ( )1210O −  or lower 
is achieved. This in fact is the assurance of good accuracy of the computed evolution. 2) Even though the slopes 
of the I vs dof graphs vary slightly in Figure 4(b) and Figure 4(c), for all practical purposes the change is not 
significant, hence we can conclude that the rate of convergence (in the asymptotic range) is almost the same in 
each plot of I shown in Figures 4(a)-(c).  
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       (a)                                      (b)                                   (c) 

Figure 4. Convergence of residual functional I: I versus dof. (a) TE; (b) TVE; (c) TVEM.                                                      

6.3.1. Linear and Nonlinear Waves in TE Solid Continua  
In this section, we present computed evolutions for TE solid continua for linear and nonlinear cases. In linear 
wave propagation with infintesimal deformation, there is no change in density and the stress [ ] ( )0 0

xx xx xxσ σ σ= =  

and is a linear function of u
x
∂
∂

, and 1u
x
∂
∂
 , hence ( )0 ,x tρ ρ=  holds during evolution. When considering  

compressive [ ]0
xxσ  at 1x = , for nonlinear case, caution should be exercised regarding the magnitude of 1σ−  

as for this case for some value of 1σ−  the stiffness due to [ ]0
xxσ  will become equal to the nonlinear stiffness of 

the rod causing instability, hence failure of computations [31]-[33]. This will occur at the fixed end during ref-
lection when the magnitude of the stress momentarily jumps (double in linear case). In the present studies for TE 
solid continua, we choose 1 0.01σ = ±  for loading L1 as well as loading L2, well below the stress value that 
causes instability. In all computations, constant 0.1t∆ =  is maintained. 

Loading L1  
(a) Compressive 
We consider a compressive stress pulse with 1 0.01σ = − . When 0f =  i.e. linear case, the stress pulse 

propagates without amplitude decay and base elongation as expected due to reversibility of the deformation 
process. Figures 5(a)-(f) show stress wave propagation over 0 1x≤ ≤  for 5 , 9 , 11 , 17t t t t t= ∆ ∆ ∆ ∆ , and 23 t∆ . 
At 11t t= ∆ , the stress pulse is reflecting from the impermeable boundary at 0x = . Exploded view of the pulse 
reflection at 0x =  for 11t t= ∆  is shown in Figure 5(d). Upon reflection, the reflected pulse propagates back 
toward the right end of the rod ( )1.0x =  and reflects from the free boundary at 1.0x = . This reflected stress 
pulse now propagates toward the left end of the rod (Figure 14(f) at 23t t= ∆ ). We observe that the amplitude 
of the stress pulse and its base are maintained during propagation and repeated reflections as expected. 

When 1f = , nonlinear wave propagation, the material experiences compression, hence increase in density in 
the deformed portions of the rod which results in reduced wave speed. From Figures 5(a)-(f), we note that the 
nonlinear wave also maintains its support and its amplitude during propagation and reflections, but lags the li-
near case due to reduced wave speed compared to linear case. 

Figures 6(a)-(f) show plots of velocity v over 0 1x≤ ≤  for the same values of time as in Figures 5(a)-(f) for 
the compressive pulse. Here also we observe the same features for v versus x for various values of time as in 
Figures 5(a)-(f), namely, the velocity pulse remains unchanged during evolution and the nonlinear velocity  
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 5. Evolution of [ ]0
xxσ  along the length of the rod: TE, L1, Δt = 0.1, σ1 = −0.01. (a) t = 5Δt; (b) t = 9Δt; (c) Reflection, 

t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                                 
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 6. Evolution of [ ]0
xxσ  along the length of the rod: TE, L1, Δt = 0.1, σ1 = −0.01. (a) t = 5Δt; (b) t = 9Δt; (c) Reflection, 

t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                                    
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wave lags the linear case. Most dramatic is the reflection of the velocity wave shown in Figure 6(c) and its ex-
ploded view in Figure 6(d). Dramatically different behaviors for linear and nonlinear waves are clearly ob-
served, yet upon further evolution, the wave shape is recovered (Figure 6(e) for 17t t= ∆ ). 

(b) Tensile 
In this study, we choose a tensile stress pulse with 1 0.01σ =  applied at 1.0x = . Computed evolutions for 

linear and nonlinear cases are shown in Figures 7(a)-(f) for the same values of time, t, as used in Figures 
5(a)-(f). For both linear and nonlinear cases ( 0f =  and 1f = ), the wave shape is preserved during propaga-
tion and the reflections from the boundaries at 0x =  and 1x =  take place as expected. When 1f =  (nonli-
near tensile wave), then the material density reduces due to elongation, hence increasing the local wave speed. 
Thus, in Figures 7(a)-(f) we observe that the nonlinear wave leads the linear wave throughout the evolution. 
The velocity pulse evolution for this case is similar to compressive case (except the signs). The significantly 
different behaviors of linear and nonlinear velocity pulses at reflection from the boundardy at 0x =  is ob-
served here also. This is quite similar to the reflection shown in Figure 6(c) and Figure 6(d), hence not re-
peated. 

Loading L2  
(a) Compressive 
In this study, we consider loading L2 with 1 0.01σ = − , a ramp loading over 0 t t≤ ≤ ∆  that is of class 1C  

in time. Here also we consider 0f =  (linear wave) as well as 1f =  (nonlinear case). When 0f = , the mag-
nitude of 1σ  remains constant and its support t∆ , also remains constant i.e. no amplitude decay and base 
elongation. Figures 8(a)-(f) show propagation of stress wave over 0 1x≤ ≤  for 5 , 9 , 11 , 17 , and 23t t t t t t= ∆ ∆ ∆ ∆ ∆ . 
At 11t t= ∆ , the stress wave is reflecting from the impermeable boundary at 0x = . Exploded view of reflec-
tion at 11t t= ∆  is shown in Figure 8(d). Upon reflection, the reflected stress wave propagates back toward the 
right end boundary at 1.0x =  and reflects from the free boundary at 1.0x = . The reflected stress wave now 
propagates back toward the left end of the rod at 0.0x =  (Figure 8(f) at 23t t= ∆ ). We observe that the am-
plitude of the stress wave and its support (base) are maintained during propagation and after reflection as ex-
pected in the thermoelastic solid continua. When 1f = , the waves are nonlinear compressive as the mathemat-
ical model consists of nonlinear partial differential equations. Due to compression, the density increases in the 
deformed portion of the medium, hence the wave speed is reduced. From Figures 8(a)-(f), we note that the non-
linear stress wave also maintains the amplitude and the support during evolution but lags the linear case due to 
reduced wave speed compared to linear case. The velocity evolution shows similar features as the stress waves, 
but drastically different behaviors for linear and nonlinear case when reflecting from the impermeable boundary 
at 0x =  (similar to Figure 6(c) and Figure 6(d)) but are not reported here for the sake of brevity.  

(b) Tensile 
In this study, we consider tensile stress loading with 1 0.01σ =  applied at 1.0x =  over t∆ . Computed 

evolutions for linear and nonlinear cases are shown in Figures 9(a)-(f) for the same values of time t as used in 
Figures 8(a)-(f). For both linear ( )0f =  and nonlinear ( )1f =  cases the wave shape is preserved during 
evolution i.e. propagation and reflections. For nonlinear tensile stress wave, the material density reduces locally 
during deformation (due to elongation) which results in increasing local wave speed. Hence, in Figures 9(a)-(f) 
we observe that the nonlinear wave leads the linear wave throughout the evolution. The results for the evolution 
of velocity are not presented for brevity. 

6.3.2. Linear and Nonlinear Waves in TVE Solid Continua 
In this section, we consider linear and nonlinear waves in TVE solid continua. These solids have elasticity, me-
chanism of dissipation i.e. conversion of mechanical energy into entropy production which results in heat, hence 
influences specific internal energy. The dissipation mechanism is obviously present in linear (small strain) as 
well as nonlinear cases (Green’s strain). For linear case, ( )0f = , here also (as in the case of TE solid  

continua, Section 6.3.1) 1u
x
∂
∂
 , hence ( )0 ,x tρ ρ=  holds during evolution i.e. no change in density hence  

constant wave speed during evolution. In the case of TVE solid continua, we can take more liberty with the 
magnitude of stress 1σ  due to not being restricted by the instability issues. We consider dimensionless damp-
ing coefficient 0.006c =  in all numerical studies presented in this section. 
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 7. Evolution of [ ]0
xxσ  along the length of the rod: TE, L1, Δt = 0.1, σ1 = −0.01. (a) t = 5Δt; (b) t = 9Δt; (c) Reflection, 

t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                                  
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 8. Evolution of [ ]0
xxσ  along the length of the rod: TE, L2, Δt = 0.1, σ1 = −0.01. (a) t = 5Δt; (b) t = 9Δt; (c) Reflection, 

t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                                  
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 9. Evolution of [ ]0
xxσ  along the length of the rod: TE, L2, Δt = 0.1, σ1 = −0.01. (a) t = 5Δt; (b) t = 9Δt; (c) Reflection, 

t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                                   
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Loading L1  
(a) Compressive 
Evolutions are computed for compressive pulse of 1 0.1σ = −  over 0 2t t≤ ≤ ∆ . Figures 10(a)-(f) show 

evolutions of linear and nonlinear waves for 5 , 9 , 11 , 17t t t t t= ∆ ∆ ∆ ∆ , and 23 t∆ . In both linear and nonlinear 
waves, the amplitudes of the waves progressively decays and the support elongates as the evolution proceeds. At 

17t t= ∆  (Figure 10(e)) the peak value is only 40% of the peak of the original wave initiated at the com-
mencement of the evolution. Due to local increase in density for the nonlinear case, the evolution for the nonli-
near wave lags the evolution for the linear case. Nonlinear wave evolution consistently exhibits lower peak 
stress values compared to linear case. Since in TVE solid continua, there is entropy production due to rate of 
mechanical work, hence heat generation due to mechanical work, this would result in temperature changes along 
the length of the rod during evolution. In the studies conducted here, the initial dimensionless temperature at 
time 0t =  is considered to be 1 i.e. 1θ =  is used as initial condition. Figures 11(a)-(f) show temperature 
distributions along the rod for the same values of time as in Figure 10. Figure 11(d) is an exploded view of 
Figure 11(c). We observe that the nonlinear case lags the linear case, lower peak values for nonlinear case and 
quite complex temperature distribution along 0 1x≤ ≤  after wave reflection from 0.0x =  boundary (Figure 
11(e) and Figure 11(f)). 

(b) Tensile 
When 1 0.1σ =  for loading L1, we have a tensile pulse. Computed evolutions for same values of time t as in 

the case of compressive loading are shown in Figures 12(a)-(f). Due to dissipation, the wave peaks are reduced 
for both linear and nonlinear cases. The nonlinear wave peak values are slightly higher than those of the corres-
ponding linear waves. Whereas in the case of compression, the peaks of linear waves are higher than those of 
nonlinear waves. The evolution of linear waves lags the evolution of nonlinear waves due to a decrease in den-
sity (because of tension), hence increased wave speed in the locally deformed region of 0 1x≤ ≤  occupied by 
the wave. Reflection of the wave at 0.0x =  (Figure 12(c) and Figure 12(d) at 11t t= ∆ ) and from the 

1.0x =  boundary (Figure 12(f) at 23t t= ∆ ) are smooth and present no problems. Evolution of temperature is 
shown in Figures 13(a)-(f). Evolution of temperature for the nonlinear wave leads the linear wave. This is con-
sistent with the evolution of stress wave in Figures 12(a)-(f). Overall, we observe higher temperature peaks in 
this case compared to compressive wave. Complex temperature distribution in Figure 13(e) and Figure 13(f) 
after reflection are simulated accurately (I of the order of ( )1310O −  or lower for each space-time strip). 

Loading L2: Tensile 
In this case we consider tensile ramp loading with 1 0.4σ = . We consider such high values of 1σ  to demon-

strate more clearly the shock formation in case of nonlinear waves. In tension, such high values of 1σ  can be 
used as in tension we do not have the problem of instability. Dimensionless damping coefficient c  is chosen to 
be 0.006, same as in loading L1. Because of high value of 1σ , large elongation and significant progressive re-
duction in density will occur. This results in substantial and progressively increased wave speed. As a conse-
quence, the waves behind the waves are moving at faster speeds resulting in “piling up” of the waves which ul-
timately results in a sharp front referred to as a shock. Figures 14(a)-(f) show evolution of stress for both linear 
and nonlinear cases at times 5 , 7 , 11 , 13t t t t t= ∆ ∆ ∆ ∆ , and 18 t∆ . From Figure 14(a), we note that even at 

5t t= ∆ , the nonlinear wave has steepened significantly compared to linear wave confirming shock formation. 
Comparing evolutions of the linear and the nonlinear waves in Figure 14(a) and Figure 14(b) for 5t t= ∆  and 
at 7t t= ∆ , we note that between time 5t t= ∆  to time 7t t= ∆ , the right portion of the wave is travelling faster 
than the lower left portion of the wave resulting in further steepening of the nonlinear wave in Figure 14(b). 
Reflection in Figure 14(c) and Figure 14(d) are smooth and present no problem. The nonlinear waves are tra-
velling much faster than the linear waves, hence the nonlinear waves are always ahead of the linear waves 
throughout the evolution. This is dramatically illustrated in Figure 14(e) and Figure 14(f). The evolution of the 
temperature for the same time values as in Figures 14(a)-(f) is shown in Figures 15(a)-(f). Shock formation in 
the temperature evolution and its speed of propagation are similar to the stress wave evolutions shown in Fig-
ures 14(a)-(f). Due to the nature of the applied stress wave (ramp), the influence of dissipation can only be ob-
served in the temperature evolution and not the stress evolution. Without dissipation, there would have been no 
change in temperature along the length of the rod. 

6.3.3. Linear and Nonlinear Waves in TVEM 
Loading L1: Compressive and Tensile 
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 10. Evolution of [ ]0
xxσ  along the length of the rod: TVE, L1, Δt = 0.1, σ1 = −0.1. (a) t = 5Δt; (b) t = 9Δt; (c) Reflec-

tion, t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                           



K. S. Surana et al. 
 

 
372 

 
(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 11. Evolution of temperature θ along the length of the rod: TVE, L1, Δt = 0.1, σ1 = −0.1. (a) t = 5Δt; (b) t = 9Δt; (c) 
Reflection, t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                           
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 12. Evolution of [ ]0
xxσ  along the length of the rod: TVE, L1, Δt = 0.1, σ1 = 0.1. (a) t = 5Δt; (b) t = 9Δt; (c) Reflection, 

t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                                   
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 13. Evolution of temperature θ along the length of the rod: TVE, L1, Δt = 0.1, σ1 = 0.1. (a) t = 5Δt; (b) t = 9Δt; (c) 
Reflection, t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                          
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 14. Evolution of [ ]0
xxσ  along the length of the rod: TVE, L2, Δt = 0.1, σ1 = 0.4. (a) t = 5Δt; (b) t = 9Δt; (c) Reflection, 

t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                                   
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 15. Evolution of temperature θ along the length of the rod: TVE, L2, Δt = 0.1, σ1 = 0.4. (a) t = 5Δt; (b) t = 9Δt; (c) 
Reflection, t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                           
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TVEM are solid continua with dissipation and memory (rheology). If the damping coefficient is same in TVE 
and TVEM, then the dissipation remains the same in both. Thus for the same damping coefficient in TVE and 
TVEM, the only difference in the behavior of stress wave in TVEM compared to TVE solid is due to rheology 
i.e. stress relaxation. Thus, in this study the most meaningful illustration is the comparison of nonlinear stress 
waves for TVE and TVEM. We choose 0.006c =  in both TVE and TVEM and 0.002De =  for TVEM. The 
studies are conducted for loading L1 with 1 0.1σ = ±  i.e. a compressive and tensile pulse loading. Figures 
16(a)-(f) show plots of the stress pulse propagation and reflection for TVE solid continua and TVEM for 

1 0.1σ = −  at times 5 , 9 , 11 ,17t t t t t= ∆ ∆ ∆ ∆ , and 23 t∆ . 
Due to damping, the wave magnitudes progressively diminish along with base elongation as evolution 

proceeds. For TVEM, the peak values of pulse are consistently higher due to rheology, i.e. stress relaxation. In 
this case, the relaxation time (De) controls the relaxed state and hence additional time is required to achieve the 
same lower peak values as for TVE solid continua. For example, in Figure 16(a), Figure 16 (b), Figure 16 (e), 
and Figure 16(f), the peaks corresponding to TVEM (dashed line) will achieve the same lower values as the 
corresponding peaks for TVE solid continua (solid lines) if more time was allowed to elapse. Secondly, we note 
that the supports of the stress waves for TVEM are shorter than those of the corresponding TVE solid continua. 

Similar results are presented in Figures 17(a)-(f) for 1 0.1σ =  i.e. tensile wave. The behavior of the stress 
wave in TVE solid continua and TVEM is similar to what has been described for compressive stress wave. 

Loading L2: Tensile 
For loading L2, we consider 0.006c = , 0.001De =  and 1 0.4σ =  (tension). Computed evolution for li-

near and nonlinear cases are shown in Figures 18(a)-(f) for stress and Figures 19(a)-(f) for temperature. We 
observe behavior similar to L2 tensile loading for TVE Figures 14(a)-(f) and Figures 15(a)-(f). Steepening of 
nonlinear wave and formation of stress and temperature shocks is clearly observed in Figure 18(a) and Figure 
18(b) and Figure 19(a) and Figure 19(b). 

6.3.4. Evolution for Large Values of Time: Tensile 
In the studies presented here, we consider loading L2 for TVE and also for TVEM. We choose 1 0.4σ =  (ten-
sile [ ]0

xxσ ), damping coefficient 0.006c = , 0.1t∆ = , 1 2 2k k= = , 9p =  for the same descritiztion for a 
space-time strip as used in earlier studies for both TVE solid continua and TVEM. Evolution is computed for 
4000 time steps i.e. 400 units of time that corresponds to 4.44 seconds as 0t  in this case is 0.0111 seconds. 

Figure 20 shows plots of displacement u  at 1.0x =  versus time t  for 0 400t≤ ≤  for TVE solid conti-
nua for 0f =  (linear case) and 1f =  (nonlinear case). Similar plots for linear and nonlinear cases for TVEM 
at 0.001De =  are shown in Figure 21. From Figure 20 and Figure 21, we observe that linear and nonlinear 
responses are drastically different for TVE as well as for TVEM in terms of peak negative and positive dis-
placement values and mean values of displacements. The residual functional I values for each space-time strip 
are ( )710O −  or lower confirming the time accuracy of the evolution. A similar study for TE solid continua 
further confirms that the computations are almost free of numerical dispersion (as the peaks are maintained and 
the base does not elongate). Thus, the results reported for TVE solid continua and TVEM are free of numerical 
dispersion. Upon further evolution, the stationary states for TVE solid continua and TVEM evolution 

studies are obtained. The displacement values ( )1.0

s
x

u
=

 corresponding to the stationary states are 

TVE Solid Continua:  

( )
=1.0

0.3999 linears
x

u =  

( )
1.0

0.3416 nonlinears
x

u
=

=  

TVEM Solid Continua:  

( )
1.0

0.3999 linears
x

u
=

=  

( )
1.0

0.3416 nonlinears
x

u
=

=  

These values of displacements at 1.0x =  are almost the same as the mean values of the displacements in  
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 16. Comparison evolution of [ ]0
xxσ  along the length of the rod: L1, Δt = 0.1, σ1 = −0.1. (a) t = 5Δt; (b) t = 9Δt; (c) 

Reflection, t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                                   
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 17. Comparison evolution of [ ]0
xxσ  along the length of the rod: L1, Δt = 0.1, σ1 = 0.1. (a) t = 5Δt; (b) t = 9Δt; (c) Ref-

lection, t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                          
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 18. Evolution of [ ]0
xxσ  along the length of the rod: TVEM, L2, Δt = 0.1, σ1 = 0.4. (a) t = 5Δt; (b) t = 9Δt; (c) Reflec-

tion, t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                            
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(a)                                                       (b) 

 
(c)                                                       (d) 

 
(e)                                                       (f) 

Figure 19. Evolution of temperature θ along the length of the rod: TVEM, L2, Δt = 0.1, σ1 = 0.4. (a) t = 5Δt; (b) t = 9Δt; (c) 
Reflection, t = 11Δt; (d) Details of reflection, t = 11Δt; (e) t = 17Δt; (f) t = 23Δt.                                           
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Figure 20. Displacement μ at x = 1:0: TVE, L2, Δt = 0.1, σ1

 = 0.4.                                                    
 

 
Figure 21. Displacement μ at x = 1:0: TVEM, L2, Δt = 0.1, σ1

 = 0.4.                                                    
 

Figure 20 and Figure 21. We observe that: 1) displacement ( )1.0

s
x

u
=

 for the nonlinear case is lower than  

linear case as expected due to increase of stiffness caused by tensile stress field which results in lower values of 
displacement. This holds true in Figure 20 and Figure 21 as well during the evolution. 2) In the case of TVEM,  
the displacement values for 

1.0

s
x

u
=

 are exactly the same as those for TVE solid continua. This is due to the fact  

that upon complete stress relaxation the TVEM behavior is the same as the behavior of TVE solid continua. 
However, the peak values in Figure 21 for linear as well as nonlinear cases are not the same as the corres-
ponding values in Figure 20. Figure 22 shows plots of peak positive displacement of the free end  
( )1.0xu

=
 as a function of time t for TVE solid continua and TVEM for both linear and nonlinear cases. The  

differences in the displacement values for TVE solid continua and TVEM solid continua for linear case 
( )0f =  are obviously due to rheology in TVEM. The same is true for TVE solid continua and TVEM for the 
nonlinear case. Drastically different values of displacements at 1.0x =  for linear and nonlinear cases for both 
TVEM and TVE solid continua are quite obvious from Figure 22 as well as Figure 20 and Figure 21. 

Remarks 
Numerical studies were also conducted for loading L3 consisting of a velocity pulse. We note that if a veloci-

ty pulse of the same signature as generated by the loading L1 is applied at 1.0x = , then the resulting stress 
pulse is the same as loading L1. Hence, the numerical solutions for the velocity pulse are intrinsically contained 
in the stress pulse loading. The value of Deborah number used here is quite small, hence the influence of rheol-
ogy is not as pronounced as it would be for higher Deborah numbers.  
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Figure 22. Peak positive displacement of free end ( )1.0x
u

=
: TVE and TVEM, L2, Δt = 0.1, σ1

 = 0.4.                      

7. Summary and Conclusions 
In this paper, initiation, propagation, reflection, and the interaction of one-dimensional nonlinear waves in ther-
moelastic solid continua and thermoviscoelastic solid continua with and without memory have been presented. 
The mathematical models are first presented in R3 and then specialized for R1 for 1D wave propagation. The 
second Piola-Kirchoff stress and Green’s strain tensors are used as conjugate pairs in the conservation and bal-
ance laws. The constitutive theory for the second Piola-Kirchoff stress tensor is a linear function of Green’s 
strain tensor for TE. For TVE and TVEM, the constitutive theories are linear in strain tensor, its material deriva-
tive, and the material derivative of the second Piola-Kirchoff stress tensor. The constitutive theory used for heat 
vector is simple Fourier heat conduction law with constant thermal conductivity. The mathematical models for 
the nonlinear case consider the solid continua to be compressible. The mathematical models permit linear as 
well as nonlinear wave propagation studies. In the case of linear waves, the Green’s strain tensor becomes linea-
rized small strain tensor and the second Piola-Kirchoff stress tensor is simply Cauchy stress tensor. For linear 
wave propagation the solid matter is incompressible. 

In the case of thermoelastic solid continua, the rate of mechanical work does not result in rate of entropy pro-
duction, hence the energy equation can be decoupled from the rest of the mathematical model. In this case, de-
formation i.e. wave propagation and thermal effect can be studied separately. For thermoviscoelastic solid con-
tinua with and without memory, the rate of mechanical work results in entropy production; hence in these solid 
continua energy equation is integral part of the mathematical models. The present work is based on some as-
sumptions in order to simplify the mathematical model.    

1) The equilibrium second Piola-Kirchoff stress is expressed as a function of thermodynamic pressure (equa-
tion of state) and [ ]J  is approximated by mean normal stress, thus avoiding equation of state altogether. This 
is an assumption, but in view of the fact that the main goal here is to study the nonlinearity in wave propagation 
due to Green’s strain tensor, this assumption is not very crucial.  

2) For compressible matter, the specific heat is a function of thermodynamic pressure (p) and temperature or 
density and temperature due to ( ),p p ρ θ= . In the present work, a constant value of the specific heat is used.  

3) Even though lack of precise account of compressibility in the energy equation may affect the overall results 
somewhat, the present forms used here are adequate enough to demonstrate the complex temperature distribu-
tion along the rod due to dissipation during wave propagation and reflection.  

The space-time integral formulation based on space-time residual functional for a space-time strip with time 
marching is highly meritorious in (a) reducing the problem size, (b) ensuring accurate evolution for the current 
space-time strip before time marching is commenced. When the space-time residual functional is ( )610O −  or 
lower only then time marching is commenced. This ensures time accurate evolution during the entire range of 
time. The orders of the scalar product approximation space in space and time ( )1 2,k k  are chosen to be 2 so that 
the space-time integrals over the discretization of the space-time strip are Riemann, an essential condition for 
time accurate evolution. 
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From the numerical studies we observe the following.    
1) In thermoelastic solid continua, linear or nonlinear waves maintain their amplitude and support for all 

space-time strips as well as for extended time evolution confirming that the computational process utilized here 
is elatively free of numerical dispersion.  

2) The compressive nonlinear waves lag the linear waves due to increased density, hence reducing wave 
speed.  

3) The tensile nonlinear waves lead the linear waves because of reduced density, hence increasing wave 
speed.  

4) Both 2) and 3) hold for thermoelastic solid continua as well as thermoviscoelastic solid continua.  
5) In both thermoviscoelastic solid continua with memory as well as the thermoviscoelastic solids without 

memory, the wave amplitude decays and the wave base elongates as evolution proceeds due to dissipation i.e. 
conversion of mechanical energy into entropy which results in temperature rise along the length of the rod. 
Complex temperature distribution due to dissipation is free of oscillations and is simulated without any difficulty 
together with the deformation field.  

6) Progressively changing density due to compressibility or elongation results in progressively changing wave 
speed which finally results in piling up of waves forming a shock. This phenomenon exists in compressive as 
well as tensile nonlinear waves when the matter is compressible. Compared to linear waves, in the case of non-
linear compressive waves the shock formation occurs behind the linear wave, whereas in the case of tensile 
wave the shocks are formed ahead of the linear wave. Since in tension, large values of 1σ  can be used without 
occurrence of instability, the studies shown in Figures 18(a)-(f) for L2 loading with 1 0.4σ =  clearly show the 
formation of shock wave ahead of the linear wave.  

7) In the case of TVEM, the results are similar to TVE solid continua except that in case of TVEM momenta-
rily higher stress magnitudes are observed during evolutions because of rheology.  

8) From the extended time evolutions shown in Figure 20 and Figure 21 for TVE and TVEM (for L2 loading) 
for 4000 time steps we make some remarks. 

a) Transient response has dramatically higher displacements than the static response. A rod of length one unit 
is elongated as much as 0.75 units during evolution.  

b) Evolutions are smooth and free of numerical dispersion and are time accurate. This is confirmed by I val-
ues ( )610O −  or lower for each space-time strip.  

c) Linear and nonlinear responses differ significantly. Tension increases the effective stiffness value as com-
pression reduces it.  

d) Peak positive displacements for linear and nonlinear cases for TVE and TVEM shown in Figure 22 show 
the differences in linear and nonlinear responses quite clearly.  

This work demonstrates the significance of nonlinearity due to Green’s strain and the need for incorporating it 
in wave propagation studies involving finite deformation. This is dramatically illustrated for tensile loading (L2) 
with 1 0.4σ = . These studies presented here cannot be performed in a time accurate manner without using the 
mathematical models presented here and without using the space-time variationally consistent space-time finite 
element formulations, [21]-[30], based on space-time residual functional as used here. Extensions of this work 
for R2 as well as with the equation of state and with specific heat formulation that incorporates compressibility 
influence are currently in progress. 
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