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Abstract 

In this paper, a new method for solving a mathematical programming problem with linearly com-
plementarity constraints (MPLCC) is introduced, which applies the Levenberg-Marquardt (L-M) 
method to solve the B-stationary condition of original problem. Under the MPEC-LICQ, the pro-
posed method is proved convergent to B-stationary point of MPLCC. 
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1. Introduction 
The mathematical program with equibrium constraints (MPEC) has extensive application in area engineering 
design and economic model [1]. It has been an active research topic in recent years. In this paper, we consider 
the mathematical programming problem with linearly complementarity constraints (MPLCC), which is a special 
case of the MPEC:   
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where : n mf R R+ →  is twice continuously differential real-valued function; p nA R ×∈ , m nN R ×∈  and 
m mM R ×∈  are given matrices; b  and q  are given p, m dimensional vectors, respectively. 

Complementarity constraints in MPEC are known to be difficult to treat. Research work on the MPEC 
includes the monograph of Luo et al. [1] in which Bouligand stationary condition is introduced that provides a 
comprehensive study on MPEC. Based on different formulations, there are many algorithms such as Fukushima 
[2], Zhu [3], Zhang [4] [5], Jiang [6], Tao [7], and Jian [8]. Notice that B-stationary condition is a stronger 
stationary point. Differing from the approaches mentioned above, we directly introduce L-M technique, without 
any reformulation or relax form, to solve the B-stationary condition of MPLCC (1.1). 

The plan of the paper is as follows: in Section 2, some preliminaries and model we used are presented; in Sec- 
tion 3, the algorithm is proposed. 

2. Preliminaries 
For reader’s convenience, we use following notation throughout this paper:  

( ) ( ) ( )T T T T
1 2, , , , , , , , ,pz x y w s x y A a a a= = =   

( ) { } { }T
1 2 1 1, , , , 1, 2, , , : 0 ,p l lb b b b L p I l L a x b= = = ∈ − =   

{ } { } { }2 2 21, 2, , , : 0 , : 0 .y i w iL m I i L y I i L w= = ∈ = = ∈ =  

Let F denote the feasible set of problem (1.1). 
Now we give two definitions as follow. 
Definition 2.1. Let *z  be a feasible point of MPLCC (1.1), we say that MPEC linear independence 

constraint qualification is satisfied at *z  if the gradient vectors  
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Definition 2.2. Under the MPEC-LICQ, a feasible point z is a B-stationary of problem (1.1) if there exist 
multiplier vectors pRλ ∈ , qRµ ∈  and , mu v R∈  such that   
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                     (2.1) 

( )T0, , 0,z F Ax bλ λ≥ ∈ − =                                  (2.2) 

20, \ ,i yu i L I= ∈                                        (2.3) 

20, \ ,i wv i L I= ∈                                        (2.4) 

0, 0, .i i y wu v i I I= = ∈                                     (2.5) 

As we know, most of the works on MPLCC want to get the B-stationary point of problem (1.1), so we also 
put emphasis on trying to construct a method to obtain the B-stationary of MPLCC (1.1). Now we rewrite the 
conditions (2.1)-(2.5) in term of lagrange multipliers as follow: 



C. Zhang et al. 
 

 
241 

( )

( ) ( )
( )

( )

T T

T
1

2

0 0
0 diag 0
0 0 diag

0

S

i

i

i i i

j j

j j

A N
f z M e u v

I e
Q a x b

Nx My q w
u y
v w

λ µ

λ

       
       ∇ + + + +       

      −        
 Ω = =−
 

+ + − 
 
 
 
 

               (2.6) 

subject to:   
, 0, 0, 0, 0,j jAx b y w y wλ≤ ≥ ≥ ≥ ≤                           (2.7) 

and   

20 and 0 when 0 for some ,l l l lv u y w l L≥ ≥ = = ∈                        (2.8) 

where ( ), , , ,z u vλ µΩ = , 2j L∈ . 
Remark: In (2.7) we replace 0j jy w =  with 0j jy w ≤ , because it will be convenient for our computing. 

3. The Description of Algorithm 
Without any reformulation and relaxing techniques, we now use L-M method to solve the nonlinear systems 
(2.6). Firstly, let J be the Jacobian of ( )G Ω  at Ω . For an approximate solution kz  of (2.6), in order to 
produce an improving direction, we consider the following system of linear equations 

( ) ( )T T
k k k kJ J I d J Gσ+ = − Ω                                   (3.1) 

( ) T1 ,k k k kG J Gσ θ θ= + −  

where ( )k
kG G= Ω , θ  is a constant. 

Lemma 3.1. The coefficient matrix of (L − M) is positive definite, and furthermore, (L − M) method has 
unique solution. 

According to the constraint conditions, we now find a step length for current iterated point. First, we consider 
computing the step length of ( ), , ,x y w λ . In the first place, for each constraint in (2.7), we should use the kΩ  
and kd  to computer a step length:  
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( )1min ,x xi i Lα α= ∈  

where k
xd  is the element of kd . Similar to the discussion of step length about x, we can obtain the step length 

1 1, , y w λα α α  about ( ), ,y w λ . 
As to calculating the step length for the constraint 0,j jy w ≤  we get the solution to the equation 

( )( ) 0k k
j y j wy d w dα α+ + =  with α  as its variable, then jα  is as follows: 

( )
( )( )

1 2max , , the equation has two solutions,
min 1,max 0, , the equation has one solution and 0,
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( )2 2 2min , ,w y j j Lα α α= = ∈  

so  

( ) ( )1 2 1 2min , ,  min , .y y y w w wα α α α α α= =  
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Secondly, we will consider the step length of ( ), ,u vµ . Based on the step length that we obtain above, we can 
compute the value of , new newy w . If there is some i that ( ) ( ) 0new newi i

y y= = , then the step length of corres- 
ponding variables ,i iu v  is obtained by the same way in (3.2) in order to satisfy the constraints (2.8); otherwise 
the step lengths of u, v are set to 1. The step length of µ  is set to 1. 

In this paper, we take ( ) 2
G Ω  as the merit function.   

Lemma 3.2. Let d  be computed from (3.1), then ( ) 2T 0.d G∇ Ω ≤    
Proof. In view of Equation (3.1) and the positive definition of matrix ( )T

k k kJ J Iσ+ , we have  

( ) ( )2T T T T2 2 0.k k k k kd G d J G d J J I dσ∇ Ω = = − + ≤  

Now we present the algorithm. 
Algorithm A: 
Step 0: Given a feasible initial point Ω , let 1k = ; 
Step 1: If ( ) 2

G Ω <  , then stop; else get the kd  for (3.1); 
Step 2: Compute the step length kθ ; 
Step 3: ( )1 diagk k k

k dθ+Ω = Ω + , go to Step 1, where ( )T
, , ,1, , ,k x y w u vλθ α α α α α α= . 

Theorem 3.1. Suppose that Ω  is generated by Algorithm A and converges to Ω ; if kz F∈  for infinitely  
many k, let the MPEC-LICQ hold on z , then z  is a B-stationary point of problem (1.1). 

Proof. From the construction of the algorithm, we have kz F∈  for sufficient large k and z F∈ . And 
because the MPEC-LICQ holds on z , then z  is a B-stationary point of problem (1.1). 
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