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Abstract

This paper focuses on derivation of a uniform order 8 implicit block method for the direct solution
of general second order differential equations through continuous coefficients of Linear Multi-
step Method (LMM). The continuous formulation and its first derivatives were evaluated at some
selected grid and off grid points to obtain our proposed method. The superiority of the method
over the existing methods is established numerically.

Keywords

Uniform Order, Second Order Initial Value Problem, Implicit Block Algorithms, Zero Stable

1. Introduction

In the past, efforts have been made by many researchers to develop an efficient algorithm for solving second
order differential equations of the form

y'=f(xy.y) y(0)=a, y'(0)=2 (1.0)

directly through the interpolation and collocation points (see [1]-[4] to mention a few). Since many numerical
techniques are available for the solution of higher order initial value problems (IVPs) and these techniques de-
pend on many factors such as speed of convergence, computational expenses, data storage requirement and ac-
curacy.

This paper aimed to address all these factors in the process of derivation and the implementation of this new
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method. Seven-point solutions are obtained from the block at once which speed up the computational processes;
the method is self-starting and we obtained better accuracy over the existing methods.

The Equation (1.0) where f is a continuous function, is conventionally solved by first reducing it to a system
of first order differential equations and then applying the various first order methods available for their solutions.
This approach is extensively discussed and established by some of the following researchers such as ([5] [6]).
Also [7] [8] and [9] showed that this approach was associated with certain drawbacks. Due to the dimension of
the problem after it has been reduced to a system of first order ordinary differential equations (ODEs), also the
reduced systems of ODEs are not well posed unlike the given problem. The approach wastes a lot of computer
time and human efforts, hence there is a great need to develop new and efficient algorithms to handle problem
(1.0) directly without any reduction to its equivalent system of first order ODEs.

Several authors have also solved problem (1.0) through predictor corrector mode (PC) of implementations;
among them are [10] and [11]. Although the implementation of the methods in a PC mode yields good accuracy,
the approach is more costly to implement, for instance PC routines are very complicated to write, since they re-
quire special techniques for supplying starting values and also predicting all the off grid points present in the
method which leads to longer computer time and human efforts to handle their approach.

In our new algorithms, we take great advantage of this approach by exploring its continuous formulation na-
ture to obtain some discrete schemes when evaluated at some X,.;, ] =[0,k] to form our block method;
schemes are equally obtained from the derivative of the continuous formula.

Definition 1.0

A linear multi-step method is said to be zero-stable if the roots R, j :1(1)k of the first characteristic poly-
nomials

k .
p(R)= det[ZARk'} 0, Ay =-1 satisfies|R;[<1.
i=0
If one of the roots is +1, we call this the principal root of p(R) (see [12]).

Definition 1.1
A linear multi-step method

k k
y(x)=2 2 (%) Yoy =02 B (X) o - (1.2)
i=0 j=0
We associate the linear differential operator
Kk
L[y(x);h]=2[aj;y(x+jh)—hzﬁjy"(x; jh)] (1.3)
j=0

where y(x) isan arbitrary function, continuity differentiable on [a,b].
Expanding the test function y(x+ jh) as Taylor series about x and collecting terms gives

L[ y(x);h]=Coy(x)+Chy'(x)+-++Cyhy? (x)+---

where C,,--, C, are constants.
A simple calculation yields the following formulae for the constants C, in terms of the coefficients «;, 5.
Co=o,+a,+a,+a;+-+¢a

C, =a,+2a, +3a; +---+ ke,

C, :%(a1+22a2+32a3+~-+k2ak)—(ﬁo+,Bl+ﬁ2+~-+ﬂk)

1 1 _ .
C, :a<al+2qa2+3qa3+~~~+kqak)—m(ﬂl+2q B+ +KTPB) =23,

Hence, we say that the method has order P if C,=C, =C,=C,=C_, =0, but C,,=#0. Then C
the error constantand C_,,hP*?yP*? (xn) is the principal local truncated error at the point x,.

p+2

p+2 IS
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2. Theory of Block Methods for Second Order Initial Value Problems
Within the r-vectors 'y, and f, (for m=nr,n=0,1--) Y =(Yau Yasz: Yrsr s Your )T

fm :( fn+1l fn+2! fn+3!"', -fn+r )T '
The S block r-point methods for

are given by the matrix finite difference equation.
k . k .
Ay, =Y AVy +h2Y BYf, (2.0)
j=0 j=0

where A",B%,i=0,(0) are rxr matrices respectively with element a’,bl", for ij=0(1)r.

The block scheme (2.0) is explicit if the coefficient matrix B is a null matrix.
Let

Y (Xour)
be respectively the theoretical solution to Equation (1.0) (see [12] [13]).

3. Specification of the Method

We consider a power series of single variables x in the form

P(X):iajxj (3.0)

j=0

which is used as the basis or trial function to produce our approximate solution to (1.0) as

P(X)=mflajxj 3.1)

j=0
P'(x) = mﬁ; jax? (3.2)

i

P"(x)= mji?i(i—1)0!,-><"2 =f(xyY) (3.3)

where a; are the parameters to be determined, t and m are point of interpolation and collocation points. The

Equation (3.3) is collocated at x=x,,;, j=(0,k) and interpolating (3.1) at x=x 0,%, with this me-

n+jJ:

thod k = 3 and specifically gives the following system of non linear equations of the form h

m+t-1 . . 1
2o =Y, Z[O’E} (3.4)
j=0
m+t-1 .
S i(i-Dax =1, i{oé,%,l,g,z,g,s] (3.5)
j=2

The continuous formulation of the method will be of the form
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(3.6)
= h2 ﬁn fn +18 1 f 1 +ﬂ 3 f 3 +ﬁn+lfn+1+ﬁ 3 f 3 +ﬂn+2 fn+2 +ﬂ 5 f 5 +ﬂn+3 fn+3
n+5 n+E n+Z n+; n+E n+E n+5 +E
When using Maple 17 mathematical software to obtain the values of «;s in (3.4), (3.5) and substituting the
values in Equation (3.0) to obtain our continuous formulation in the new method as

(h-2(x-x%))  2(x-x,) 1115837h 1 2 1683 3
)= Ry o) 5 g ()

+ﬂ(x_ )4_L53( _ )5+ﬂ(x_x)ﬁ
324h? "/ 5400h° "/ 810h* "

413 7 45 8 2 9
- - -x) - - f
2835h5(x %) +1890h5(x %) 1215h6(x X”)} "

[ 313243h 270 s 1143 4 957
- (X_Xn)+_(x_xn) N 2( N n)
604800 45h 90h

325 6 (4 43 8 4 9
e e () oo b e 1
2
32256

7

+'96496h(x_X )_92160(X_x Y (x=x,)" - (x=x,
| 127575 "/ 8505h "’ 1215h? "' 2025h° "
21504 s 51200 7 3072 s 2048 9
-x) - - -x,) - - f
+2a1ene %) o (4 X0) * og35ns (X %) ~ 551508 (X X”)} w
[ 117415h 270 s 1413 4 2787 5

L 72h?
1333 331 M 2
_W(x—xn)‘s+@(x—xn)7—m(x—xn)8+m(x—xn)g} f. (3.7)
[73279h 180 s 501 s 1066 5
+_544320(X_X”)_8E(X_ ") +81h2( %) _135h3(x_x")

2214 1184
( - n)6

7 8 8 9

Lo =P (= % (x-— ——° (x- f
o5t 567h5(x %) +189h6(x %) 243h6(x X”)} ns

53323h 135 s 774 . 1713 5

__1209600(X_X”)+18Oh(X_X") _360h2(x_ ") +600h3(x_xn)
187 6 7 37 8 2 9
_W(X_Xn) +315h5(x_xn) _210h6 (X_Xn) +W(X_Xn) :|fn+2
[ 5989h 54 s 45 + 51 5
+_6048000(X_X”)_315h(X_X”) +90h2(x_x”) _75h3(x_x”)

23 6 68 7 5 8 4 9
22 (x— 2 (x— 2 (x- T (x— f
o ) =g () g () gggge (* X”)} s
{_ 34543h (xox )+ 90 (x—x.J - 5312(X_Xn)4+ 12233(X_Xn)5

32659200 4860h 9720h 16200h

141

6 15 7 33 2 9
s B 0 o V22 (x— _f (x- f
2430h* (X Xn) +8505h5 (X Xn) 5670h® (X Xn) +3645h6 (X Xn) } ms
3.3_.5

nej 1= 2,1,5,2,5,3 and the first derivative of Equation (3.7) at x = x,, to obtain
the following discrete schemes to form our block method.

8

Evaluating (3.7) at x=x
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y %, L, _ 329909 1464259 125471 774913
s 27n 27" 4644860 " 10321920  n+; 1088640 e 10321920 ™
941669 ., 16889 ., 15049 ., 43163 ,
46448640  n+S 2580480 "7 10321920 > 278691840
g2y Lty = 2057 pop (LL1650 ., 304, AT .
= 145152 40320 n+5 1701 ”*z 26880
T80 o 051y B g L OTL oy
181440 -3 " 80640 4480 -3 2177280
y . 3y oy 20841 2886l 2702, | 80343,
e el 725760 40320 n+; 8505 el 80640
8437 16889 |, 29 ., 1187,
- h 3 ———~h n+2__h 5 ———h n+3
181440  n+l 2580480 5760 el 2177280
g dy 43y 3049 ., 3590, 4064, 34163,
n+ 72576 4032 i 8505 n:d 40320
13333, 2299 .. _ 181 , %91 . (38)
90720 n+ 40320 "? 20160 e 1088640 "
y .5y L +ay, 20149 o BOBT, . | 5584, 0055
s el 362880 6720 ”*5 8505 > 8064
, 6367 , 4057 197 ., 611,
3t n+2 s f s+ h n+3
" 18144 n+5 13440 20160 > 1088640
y Gy .45y, = D2L03 o, GB6ST ., 5564, | 28178,
s 725760 " 40820 -1 8505 - 16128
23987, 40657 , 10529 , 36637
h 3 n+2 h 5+ h n+3
"36288 '+ 80640 40320 o 2177280
Y, =-——~ | 65318400y, - 65318400y , +3347511h* f, +15851025n° f, , +1439721° 1, ,
32659200h 3

2

+34543h7 f, , +16915122h% f , —4396740h? f

n+=
2

, —24702976h? f

n+=
2

, —323406h° f

n+= n+—
4 2

Equation (3.8) is our proposed uniform eighth order block method with the error constants exhibited in Table 1.

Table 1. Order and error constants of schemes (3.8).

Schemes Order Error constants
Y . 8 _ 1367003
4 5073430118400
569
Yoa 8 P re——
1061683200
Y, 8 __ 108
2 707788800
631
Yoz 8 Eyrrye———
412876800
Y . 8 2671
"2 1486356480
1859
Vs 8 ———
495452160
v 8 126297
2048
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Also the first derivative of (3.7) is evaluated at x=Xx,,; j= %%1% 2,%,3 as follows
y' -t —65318400y, +65318400y , +939729h* f +10585755h* f, +899559h° f ,
ne> 32659200h nes

+21197h* f, , +16257618h* f | —2802180h* f , —17537024h*f , —199854h° f

n+= n+= n+= n+=

2 2 4 2
Yy, SN S —8360755200Y, +8360755200y , +117608847h* f, +1161584685h* f,,,
n+;  4180377600h ne
+104563737h* f,, +2485771h* f_ . +2489303394h* f |

n+=
2

~321829620nh° f , —1440166912h° f , —23361102h*f |
n+E n+z n+5

y, = ;{—65318400% +65318400y , +927849h? f, +13321935h° f
n+E

+880119h*f
32659200h

n+l

+20657h* f, , +19061838h* f | —2768700h* f , —6754304h*f , —194994h? f 5}
n+5 n+E n+z n+E

1
", =——— | -65318400y. + 65318400 +880689h° f +27057915h% f . +134919h*f .
ymg 32659200h |: yn yn+% n n+1 n+2 (3 9)

+9197h% f_, +20482578h° f | +4950780h? f , —12621824h*f , —70254h> f 5}
H+E n+E n-¢-Z n-v-E

Y ., 1 —65318400y, +65318400y , +949449h* f +19814895h* f . +7373079h*f
32659200 n

n+= n+= n+= n+=
2 2 4 2

+42257h? £ +18750798h% f | +17483460h* f , —6754304h? f , —506034h? f 5}

Yy . =m{—65318400yn +65318400y , +801489h7 f +31736475h? f,, +22050279h f_,
n*a n+E

n+= n+= n+= n+=
2 2 4 2

—117043h* f, , +22167378n° f | +8671740h* f , —17537024h* f , +5709906h* 5}

+1709559h% f_ ,

n+l

Y., = —— | 65318400y, + 65318400y , +1434720h? f, ~12701745h f
32659200h et

n+= n+= n+= n+=
2 2 4 2

+4747697h° f, , +8279118h° f | +36122820h* f , +24702976h> f , +25517646h° f 5}

Equation (3.9) has the following order and error constants in Table 2.

4. Implementation Strategies

Equation (3.9) is substituted in Equation (3.8) when applying to Equation (1.0) directly at n=0, simultaneously

produces solutions atthe point 'y, , Vs, Vi, Y5, Y., Y5, Y, atoncewithoutany recourse to special predictor
2 4 2 2
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Table 2. Order and error constants of schemes (3.9).

Schemes Order Error constants
y;g 8 150147
2 4096
y;g 8 35647065
4 8192
v 8 72999
2048
y' 8 95139
"2 4096
, 99495
8 _
T 2048
Y s 8 89469
2 4096
v 8 713511
" 2048

for y, present in the method. For the advancement in the integration processes we used schemes derived at y 5,
n+—
4
Y s, Y. togetheras n=12,---. This new method is demonstrated on linear and non linear problems to as-
n+—
2

certain their degree of accuracy with the existing methods.
5. Numerical Experiments

Three numerical experiments of two linear and one non linear problem were used to ascertain the efficiency of
the method.
Example 1

8.4
Y'Y+ —5y=0
X X

0.1
1)=1 y'(1)=1 h=— x>0.
Y=L y (=1 h=g;
Theoretical solutionis y(x) _5_ 2
3x 3
Example 2
yrl _ Sy/ — 8e2x

y(0)=1, y'(0)=1, h=0.005.

Theoretical solution is y(x)=—4e* +3e¥ +2.
Example 3

2xy

y"—-3y' =8e
y(0)=1, y’(0)=1 h=0.005.

No theoretical solution.

6. Conclusion

We want to re-emphasize the claim made by [14] for first order schemes that when the derived schemes for var-



A. M. Badmus

ious values of k are of the same order the block scheme gotten from the minimal value of k performed excel-
lently well and compared favourably with the exact solutions. This has also been established for second order
schemes derived from various values of k which are of the same order with three different numerical experi-
ments tested (see Figure 1, Figure 2 and Figure 3).

Table 3 and Table 4 also display the numerical result of problem 1 and absolute errors by using various block
methods of k = 4, k = 5 together with the new block method at k = 3. Table 5 and Table 6 display the numerical
result of problem 2 and absolute errors by using various block methods of k = 4, k = 5 together with the new
block method at k = 3.

Table 7 displays the approximate solution of example 3 with block methods of k = 4, k = 5 together with the

0.001 -
0.0009 -
0.0008 -+
0.0007 -+
0.0006 -

0.0005 -
0.0004 - =fi—Block Nethod [15] k=5

Block Nethod [3] k=4

0.0003 - —4—New Method k=3
0.0002 -

0.0001 -+
0 -

1 2 3 4 5 6 7 8 9 10

Figure 1. Error graph of problem 1.

0.0007 -
0.0006 -
0.0005 -
0.0004 - Block Nethod [3] k=4
0.0003 - ——Block Nethod [15] k=5
0.0002 - =—¢—New Method k=3
0.0001
0 5%

1

Figure 2. Error graph of problem 2.

J

0.00035

0.0003 -

0.00025 -

0.0002 -+
—=—Kk"5-k"3

—fll—k"5-k"4

0.00015 -

0.0001 -

0.00005 -

0 *—. ﬂ T T T T 1
0.005 0.01 0.015 0.02 0.025 0.03 0.04

Figure 3. Error graph of problem 3.
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Table 3. Table of result for example 1.

X

Theoretical solution

Block method [14] k = 4

Block method [15] k=5

New block method k = 3

1.003125

1.00625

1.009375

1.0125

1.015625

1.01875

1.021875

1.025

1.028125

1.03125

1.003076526

1.006057503

1.008944993

1.011741018

1.014447543

1.017066494

1.019599755

1.022049164

1.024416519

1.026703578

1.003114880

1.006132507

1.009050907

1.011876494

1.014603110

1.017252866

1.019795810

1.022270209

1.024622147

1.026981486

1.0030766905

1.00605684265

1.0089405789

1.01172802434

1.014431165439

1.017038197167

1.01954923805

1.02201055468

1.02434160973

1.026557694498

1.0030764430

1.006055854

1.008938355

1.011731527

1.014480080

1.017057078

1.019553250

1.0220996286

1.0242295932

1.027146899

Table 4. Absolute error of problem 1.

Block method [3] k =4

Block method [15] k =5

New method k = 3

3.8354E(-05)

7.5004E(-05)
1.05926E(-04)
1.35476E(-04)
1.55567E(-04)
1.863726E(~04)
1.96055E(-04)
2.21045E(-04)

2.0562E(-04)

2.77908E(-04)

1.645E(-07)

6.6035E(-07)

4.4141E(-06)
1.299366E(-05)
1.6377561E(-05)
2.8296833E(-05)
5.051695E(-05)
3.860932E(~05)
7.490927E(~05)

1.458835E(-04)

8.3E(-08)
1.16E(-06)
6.638E(-06)
9.491E(-06)
1.9535E(~06)
9.416E(-06)
4.6505E(-05)
4.7122E(-05)
1.86926E(~04)

4.43321E(-04)

Table 5. Table of result for example 2.

X

Theoretical solution

Block method [3] k =4

Block method [15] k =5

New block method k = 3

0.005

0.01

0.015

0.02

0.025

0.03

0.04

1.005138526

1.010558242

1.016265444

1.022266643

1.028568067

1.035176665

1.049342284

1.005139114

1.010557205

1.016255068

1.022226977

1.028508035

1.035010659

1.048928801

1.0051388419

1.0105569711

1.0162567886

1.0222407282

1.02853411642

1.03511676083

1.04925342567

1.005138368

1.010555066

1.016252503

1.022247320

1.028527886

1.035154590

1.049432200
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Table 6. Absolute error of problem 2.

Block method [3] k=4 Block method [15] k=5 New block method k = 3

5.8849E(-07)
1.03675E(-06)
1.03759E(-05)
3.95659E(~05)
5.97171E(-05)
1.66006E(~04)
4.13483E(-04)

3.159E(-07)

1.2709E(-06)

8.6554E(-06)
2.59148E(-05)
3.395058E(~05)
5.990417E(-05)
8.885833E(~05)

1.58E(-07)
3.176E(-06)
1.2941E(-05)
1.9323E(-05)
4.0181E(-05)
2.2075E(-05)
8.9916E(-05)

Table 7. Table of result for example 3.

X Block method [3] k= 4 Block method [15] k=5 New block method k =3
0.005 1.005139120 1.0051388451 1.005138369
0.01 1.010557226 1.0105569851 1.010555080
0.015 1.016255105 1.01625686111 1.016252575
0.02 1.02222703 1.0222409615 1.022247553
0.025 1.028508106 1.0285346996 1.028528475
0.03 1.035010745 1.035118000 1.035155832
0.04 1.048928909 1.049257509 1.049436332
Table 8. Global error of problem 3.
Iy -y'| |y -
2.749E(-07) 4.761E(-07)
2.409E(-07) 1.9051E(-06)

1.75611E(-05)
1.39315E(-05)
2.65936E(-05)
1.07255E(-04)
3.286E(-04)

4.28611E(-06)
6.5915E(~06)
6.2246E(-06)
3.7832E(-05)
1.78823E(-04)

Where |y —y*| = the absolute difference between approximate solution of k = 5 and k = 4; |y*—y’| = the
absolute difference between approximate solution of k =5 and k = 3.

new block method at k = 3 while Table 8 is the global or approximate error of problem 3, since this problem has
no theoretical solution.
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