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ABSTRACT 
It poses the inverse problem that consists in finding the logarithm of a function. It shows that when the function 
is holomorphic in a simply connected domain Ω ⊆  , the solution at the inverse problem exists and is unique if 
a branch of the logarithm is fixed. In addition, it’s demonstrated that when the function is continuous in a 
domain XΩ ⊆ , where X  is Hausdorff space and connected by paths. The solution of the problem exists and is 
unique if a branch of the logarithm is fixed and is stable; for what in this case, the inverse problem turns out to 
be well-posed. 
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1. Introduction 
The inverse problems generally are ill-posed in Hadamard sense. These words lead us to think that there exist 
inverse problems that are well-posed and which are possible to be solved analytically [1].  

The ill-posed problems do not fulfill with at least one of the conditions of existence, uniqueness or stability of the 
solution. Nevertheless, if a problem does not have a solution, or the solution is not unique, it is possible to correct in 
spite of doing considerations on the domain and the co-domain of the operator who represents the problem.  

Unlike a complex number different from zero for which, it is always possible to find his logarithm. The functions 
need certain conditions on his domain to guarantee the existence of his logarithm [2]. It appears that one of these 
conditions is that the domain is simply connected. To assure the uniqueness of the logarithm of a function, it is es- 
sential to take a branch of the logarithm. 

In this paper, there appears the problem of finding the logarithm of a given function, by different techniques. It is 
demonstrated that the above-mentioned problem is an inverse stable problem in Hadamard sense [3]. Therefore, the 
problem of existence and uniqueness is solved. In addition, it is demonstrated that it is stable, which transforms it 
into a well-posed inverse problem. It is realized the analysis of the solution of the inverse problem for when the do- 
main of the inverse operator, it corresponds to the functions that are not annulled and in addition they are holomor- 
phic in some region [4]. It is demonstrated that when Ω ⊆   is a simply connected domain, the solution of the in- 
verse problem exists and is unique. In a similar way, when the space Y , it corresponds to the space of the conti- 
nuous functions that are not annulled on a region XΩ ⊆  simply connected and where Z is a Hausdorff’s space and 
connected for paths, the solution of the inverse problem exists, is unique and is stable [5]. 

2. Exposition of the Problem 
It’s known that not all the real numbers have logarithm, nevertheless, all complex numbers have it.  

The natural question that arises is under what conditions a function has logarithm. To answer to the previous 
question, an operator :A X Y→  is considered, if expA = , and X , Y  are spaces of functions, it is possible 
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to pose the direct problem: From a function on f X∈ , find to a function g Y∈  such that ( )expg f= . The 
corresponding inverse problem is given a function g Y∈ , to find to a function f X∈ , such that ( )expg f= . 
It’s known that the inverse of the operator exp is the operator log , so the inverse problem can be seen as the 
search of the logarithm of a given function. Notice that as is considered the operator expA = , it has felt to take 
as space Y  to the functions that are not annulled and in addition be continuous or holomorphic on some region; 
nevertheless they must determine the conditions that the region must fulfill to demonstrate the existence, uni- 
queness and stability of the inverse problem. 

3. Holomorphic Logarithm 
In this section, it is considered that X  corresponds to the holomorphic functions and Y  to the holomorphic 
functions that are not annulled on any region. There’s demonstrated that when Ω is a simply connected domain, 
the solution of the inverse problem exists and is unique when a branch of the logarithm is fixed. The problem 
consists of knowing if given a function holomorphic f can be a function g Y∈ , such that ( )expf g= . 

Definition: Given a domain Ω ⊆  , and be *:f CΩ→  and :g CΩ→ . It is said that g  is a loga- 
rithm of f  if ( )expf g= . If the functions f  and g  are holomorphic in Ω, it is said that g  is a ho- 
lomorphic logarithm of f  [6]. 

Theorem 1: Let ( ) ( )*exp : H HΩ → Ω  be, where Ω is a simply connected set of the plane, then the so- 
lution of the inverse problem exists and is unique. 

Proof: If it thinks that Ω it is a simply connected domain, by theorem of the Riemann application, the 
simply connected domains of the flat sound of two types: the conformal equivalent to the plane   and the 
conformal equivalent to the unitary disc D. For such a motive, the existence of the solution of the inverse 
problem, are obtained as a consequence of the propositions 1, 2 and 3. As for the uniqueness, it is essential to 
take a branch of the logarithm. 

Proposition 1: Every function ( )*f H D∈  admits a holomorphic logarithm. 
Proof: It is known that ( ) 0f z ≠  for every z D∈ . Let 0w  be a point such that ( ) ( )0 0exp w f z= . It’s de- 

fined by:  

( ) ( )
( )0 d

z

f
z w

fγ

ξ
ψ ξ

ξ
′

= + ∫ ,                                (1) 

where zγ  is the curve that joins to z  with 0z . f  it’s holomorphic and is not annulled on D , then f
f
′  is 

holomorphic on D . Then, ( )
( )

d
z

f
fγ

ξ
ξ

ξ
′

∫  it´s definite as well. This way, ( ) ( )
( )

f z
z

f z
ψ

′
′ = . Consider 

( )
( )( )

( )
exp

,
z

h z
f z
ψ

=  then ( )
( ) ( )( ) ( ) ( ) ( )( )

( )2

exp exp
0

f z z z f z z
h z

f z
ψ ψ ψ′ ′−

′ = =  

z D∀ ∈ . Then, ( )h z  it is constant on D . So, ( )
( )( )

( )
( )0 0

0
0 0

exp exp
1.

z w
h z

f z w
ψ

= = =   

Then ( ) ( )( )expf z zψ= . 

Let ( ) ( ) ( )0 0logg z z w wψ= − +  be, then ( ) ( )( )expf z g z=  and the proof it is complete. 
Proposition 2: Let Ω be a simply connected domain own of  , admits a holomorphic logarithm. 
Proof: Consider ( )*f H∈ Ω , since Ω be a simply connected domain own of  , there is an conformal 

function :g D →Ω , such that ( )f g H D∈ . Since ( )*f H∈ Ω , follows that ( )*f g H D∈
. By the propo- 

sition 1, the function f g  admits a holomorphic logarithm in D . That is, there exists :h D →   such that 
( ) ( )( )exp .f g w h w=  

Hereby ( ) ( )( )1expf z h g z−=   and therefore f  admits a holomorphic logarithm in Ω. 
Proposition 3: Every function ( )*f H∈ 

 admits a holomorphic logarithm.  

Proof: Since f  it is not annulled in   and ( )f H′∈  . Then 
( )
( ) ( )

f z
H

f z
′

∈  , that is, there exist a 

OPEN ACCESS                                                                                       AJCM 



S. R. MORA  ET  AL. 3 

function ( )F H∈   such that is the primitive of 
( )
( )

f z
f z
′

, that is to say, 
( )
( )

f z
F

f z
′

′ =  for everything z∈ . 

Notice that 

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )exp exp exp exp 0.f F z f F z f z F z F z f z f z F z F z′ ′ ′ ′ ′− = − − − = − − =  

Then ( ) ( )( )expf z F z C− = , if ( )expC k=  it follows that ( )expf k F= + . 

4. Continuous Logarithm 
In this section, the inverse problem it’s studied, when the condition weakens of being a holomorphic function 
to being a continuous function. Nevertheless, on having asked him only continuity to the functions and hav- 
ing tried to solve the inverse problem, it is needed to do more restrictions on the domain of the above men- 
tioned functions. 

It is considered to be that ( )X C= Ω  and the space ( )*Y C= Ω  that correspond to the spaces of conti- 
nuous and continuous that are not annulled function respectively. There is demonstrated that when ZΩ ⊆  it’s 
a simply connected domain and Z  is Hausdorff space and connected by paths, the solution of the inverse 
problem exists, is unique if a branch of the logarithm is fixed adapted and is stable. 

Theorem 2 Let ( ) ( )*exp : C CΩ → Ω  be, where Ω  a simply connected set is (not necessarily it is a subset 
of the plane) content in Hausdorff space and connected by paths; then the solution of the inverse problem exists, 
is unique and is stable. 

Proof: The existence of the solution of the inverse problem, it’s demonstrated in the proposition 3 and the ex- 
istence in the proposition 4. 

Since ( ) ( )*exp : C CΩ → Ω , where ( )C Ω  and ( )*C Ω  are Banach spaces, in addition, the operator is 
continuous; then, by the open mapping theorem, the inverse operator is continuous and therefore, the solution of 
the inverse problem is stable. 

Definition: Let X  and Y  be topological spaces. Consider to :p X Y→  a continuous function. Is say 
that p  is a covering map if ,y Y∀ ∈  it exists a neighborhood U  for y , with following properties: 

1) ( )1
j

j J
p U U−

∈

= 



 with  .k lU U k l= ∅ ∀ ≠ 

  

2) jU  is a neighborhood for X  such that 
jUp


 is a homeomorphism on U , j J∀ ∈ . 
Proposition 4: The *exp : →   function is a covering map. 
Definition: Let :f X Y→  be a continuous function and let :p X Y→  be a covering map. The g  ap- 

plication is a lifting for f  (in respect of p ) if ( )p g f= . 
Note that if it is known that the exp function is a covering map, then to define the lifting, and under the condi- 

tions for the existence and uniqueness of the lifting, it will be had that ( )exp g f= ; and therefore on having 
demonstrated the existence and uniqueness of the lifting, there will be demonstrated the existence and unique- 
ness of the logarithm of a continuous function . 

4.1. Uniqueness of the Lifting 
For the uniqueness of the lifting it is necessary that the X  topological space be connected and Hausdorff.  

Theorem 3 Let :p X Y→  be a local homeomorphism, let X  be a connected and Hausdorff space and let 
:f X Y→  be a continuous application. Suppose that 1g  and 2g  are lifting of f . Then, if 0x X∈  exists, 

such that ( ) ( )1 0 2 0g x g x= , it follows that 1 2g g=  in X . 
Proof: The set ( ) ( ){ }1 2:E x X g x g x= ∈ =  is defined. Note that 0x E∈  and therefore E ≠ ∅ . If it is 

shown that E  is open and closed it follow that E X= . To show that E  is a closed set, enough to prove that 
\X E  is an open set. Let \y X E∈  be, clearly ( ) ( )1 2f y f y≠  and since X  is a Hausdorff space, exist  

neighborhoods ( ) ( )1 2f y f yV V≠  for ( )1f y  and ( )2f y , respectively such that ( ) ( )1 2f y f yV V = ∅
. Consider that 

( )( ) ( )( )1 2

1 1
1 2f y f yW f V f V− −=  , note that W  isn’t an empty set, then ,y W∈  so, W  is open set since is a  

finite intersection of open sets. Let x W∈  be, then ( ) ( )11 f yf x V∈  and ( ) ( )22 f yf x V∈ . What implies that 
( ) ( )1 2f x f y≠ . Therefore \W X E⊂  and so, the \X E  open set and then the E  set is closed. To show 

that E  is an open set. Let x E∈  be and ( ) ( )1 2a f x f x= = . By hypothesis, there is a neighborhood U  for 
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a  such that ( )p U U=  is open set and 
Up


 is an homeomorphism. Since 1f  and 2f  are continuous func- 
tion, there is V  an neighborhood for y  such that ( ) \if V U  and ( )( ) ( ) ( )( )1 2p f v f v p f v= = . Since 

Up


 
is an injective function, it follows that ( ) ( )1 2f v f v=  so, \V E  it’s a closed set and then the E  set is open. 
Since Y  is connected space and E  is a non-empty, open and closed set, it follows that E Y= . 

4.2. Existence of the Lifting 
The study of the existence of the lifting needs of the study of the fundamental group. 

Let :k I Xα →  be, where 1,2k = , curves that begin and end in x , it is to say, they are closed curves. Is 
said that 1α  it is related with 2α , 1 2α α , if it exists :H I I X× →  a continuous function such that  

( ) ( ) ( ) ( )1 20, ,  1,H t t H t tα α= = , ( ) ( ),0 ,1H s H s x= =  

The H  function is called continuous homotopy. 
It is easy to see that the relation   is an equivalence relation. Since it is known well, everything equivalence 

relation induces a partition. In this case the classes [ ]α  are formed by the set of curves β  that are homotopic 
to α . Intuitively it is possible to define the operation join curved and the above mentioned operation gives a 
structure of group. 

Definition: The first group of homotopy of X  is defined, with basis x X∈ : 

( ) [ ]{ }1π ,X x α= , 

where α  is a closed curve. 
We noted that α  is the curve ( )tα − . 
The following result gives necessary and sufficient conditions for the existence of the lifting. 
Theorem 4: Let ( ) ( )0: , ,p X x Y y→  be a covering map and let ( ) ( )0 0: , ,f X x Y y→  be a continuous 

function, with X  a connected by paths set. Then they are equivalent: 
1) A lifting ( ) ( )0 0: , ,g X x X x→ 

  there exists for f ; 

2) ( )( ) ( )( )1 0 1 0π , π ,f X x p X x∗ ⊂ ∗ .  

Where *g  is the induced mapping of fundamental groups. 
Proof: The demonstration ) )1 2⇒  obviously, because f p f∗ = ∗ ∗ .  
There will be demonstrated that ) )2 1⇒ . Let x X∈  be and let γ  be a curve in X  from 0x  to x . The 

curve fγ  in Y  that it begins in 0y  it has a unique lifting fγ
  that it begins 0x . ( ) ( )1f x fγ=   is defined. 

It is demonstrated that it is definite as well, independently of the choice of γ , let γ ′  be another curve from 
0x  to x . Then ( ) ( )f fγ γ′ •   is a closed curve of 0h  to 0y  with: 

[ ] ( )( ) ( )( )0 1 0 1 0π , π ,h f X x p X x∈ ∗ ⊂ ∗ 

 . 

This means that there is a homotopy th  from 0h  to a closed curve 1h  that gets up to a closed curve 1h  in 
X  based in 0x . Property homotopy covering is applied to th  to obtain a lifting th . Since 1h  is a closed 

curve to 0x , 0h  it’s too. By the uniqueness of the lift curve, the first half of 0h  is fγ ′  and the second half is 
fγ  route the other way around, with the common midpoint ( ) ( )1 1f fγ γ ′=  . This shows that fγ  it´s definite as 

well. Need to show that f  is a continuous function. Let U Y⊂  be a neighborhood of ( )f x  that it has a 
lifting U X⊂   containing to ( )f x  such that  :p U U→  is an homeomorphism. A connected by path 
neighborhood V  is chosen for x  with ( )f V U⊂ . The curves from 0x  to x V′∈  points, it is possible to 
take a given fixed curve γ  from 0x  to x  follow by curves η  in V from y to the points y′ . Then, the 
curves ( ) ( )f fγ η•  in Y  it has lifting ( ) ( )f fγ η•   where 1f p fη η

−=  and :p U U→   is the inverse of 
:p U U→ . So, ( )f V U⊂

  and 1

V
f p f−= , therefore f  is continuous in x . 
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