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ABSTRACT

It poses the inverse problem that consists in finding the logarithm of a function. It shows that when the function
is holomorphic in a simply connected domain Q < C, the solution at the inverse problem exists and is unique if
a branch of the logarithm is fixed. In addition, it’s demonstrated that when the function is continuous in a
domain Q¢ X ,where X is Hausdorff space and connected by paths. The solution of the problem exists and is
unique if a branch of the logarithm is fixed and is stable; for what in this case, the inverse problem turns out to
be well-posed.
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1. Introduction

The inverse problems generally are ill-posed in Hadamard sense. These words lead us to think that there exist
inverse problems that are well-posed and which are possible to be solved analytically [1].

The ill-posed problems do not fulfill with at least one of the conditions of existence, uniqueness or stability of the
solution. Nevertheless, if a problem does not have a solution, or the solution is not unique, it is possible to correct in
spite of doing considerations on the domain and the co-domain of the operator who represents the problem.

Unlike a complex number different from zero for which, it is always possible to find his logarithm. The functions
need certain conditions on his domain to guarantee the existence of his logarithm [2]. It appears that one of these
conditions is that the domain is simply connected. To assure the uniqueness of the logarithm of a function, it is es-
sential to take a branch of the logarithm.

In this paper, there appears the problem of finding the logarithm of a given function, by different techniques. It is
demonstrated that the above-mentioned problem is an inverse stable problem in Hadamard sense [3]. Therefore, the
problem of existence and uniqueness is solved. In addition, it is demonstrated that it is stable, which transforms it
into a well-posed inverse problem. It is realized the analysis of the solution of the inverse problem for when the do-
main of the inverse operator, it corresponds to the functions that are not annulled and in addition they are holomor-
phic in some region [4]. It is demonstrated that when Q < C is a simply connected domain, the solution of the in-
verse problem exists and is unique. In a similar way, when the space Y , it corresponds to the space of the conti-
nuous functions that are not annulled on aregion Q < X simply connected and where Z is a Hausdorff’s space and
connected for paths, the solution of the inverse problem exists, is unique and is stable [5].

2. Exposition of the Problem

It’s known that not all the real numbers have logarithm, nevertheless, all complex numbers have it.
The natural question that arises is under what conditions a function has logarithm. To answer to the previous
question, an operator A: X —Y isconsidered, if A=exp,and X, Y arespaces of functions, it is possible
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to pose the direct problem: From a function on f e X, find to a function geY suchthat g = exp( f ) The
corresponding inverse problem is given a function g eY , to find to a function f € X, suchthat g = exp( f ) .
It’s known that the inverse of the operator expis the operator log, so the inverse problem can be seen as the
search of the logarithm of a given function. Notice that as is considered the operator A =exp, it has felt to take
asspace Y to the functions that are not annulled and in addition be continuous or holomorphic on some region;
nevertheless they must determine the conditions that the region must fulfill to demonstrate the existence, uni-
queness and stability of the inverse problem.

3. Holomorphic Logarithm

In this section, it is considered that X corresponds to the holomorphic functions and Y to the holomorphic
functions that are not annulled on any region. There’s demonstrated that when Q is a simply connected domain,
the solution of the inverse problem exists and is unique when a branch of the logarithm is fixed. The problem
consists of knowing if given a function holomorphic f can be a function g eY ,suchthat f =exp(g).

Definition: Given a domain QcC,andbe f:Q—>C" and g:Q—C. It is said that g is a loga-
rithm of f if f :exp(g). If the functions f and g are holomorphic in Q, it is said that g is a ho-
lomorphic logarithm of f [6].

Theorem 1: Let exp:H (Q)— H (Q) be, where Q is a simply connected set of the plane, then the so-
lution of the inverse problem exists and is unique.

Proof: If it thinks that Q it is a simply connected domain, by theorem of the Riemann application, the
simply connected domains of the flat sound of two types: the conformal equivalent to the plane C and the
conformal equivalent to the unitary disc D. For such a motive, the existence of the solution of the inverse
problem, are obtained as a consequence of the propositions 1, 2 and 3. As for the uniqueness, it is essential to
take a branch of the logarithm.

Proposition 1: Every function f e H™ (D) admits a holomorphic logarithm.

Proof: It is known that f(z)#0 forevery zeD.Let w, be a pointsuch that exp(w,)= f(z,). It’s de-
fined by:

t'($)

W(z):wo+f71@d§, 1)

’

where y, isthe curve that joinsto z with z,. f it’s holomorphic and is not annulled on D, then 5 is

()

holomorphicon D . Then, L ﬁdg it’s definite as well. This way, V/'(Z)= _Consider
h(Z)=M, then h'(z)= f(z)eXp(v’(Z))V/’EZ)—f’(z)exp(z//(z)) ;

f(z)

vzeD.Then, h(z) itisconstanton D.So, h(z,)

_ exp(v(2,)) _exp(w)

=1.
f(z,) W,

Then f(z)=exp(v(z)).

Let g(z)=w(z)-w,+log(w,) be, then f(z)=exp(g(z)) and the proof it is complete.

Proposition 2: Let Q be a simply connected domain own of C , admits a holomorphic logarithm.

Proof: Consider f eH"(Q), since Q be a simply connected domain own of C, there is an conformal
functiong:D —» Q, such that f og e H(D). Since f e H" (), follows that f oge H" (D). By the propo-
sition 1, the function f og admits a holomorphic logarithm in D . That is, there exists h:D — C such that

fog(w)=exp(h(w)).

Hereby f(z)= exp(h o g*l)(z) and therefore f admits a holomorphic logarithm in Q.

Proposition 3: Every function f e H™(C) admits a holomorphic logarithm.

f'(z
Proof: Since f it is not annulled in C and f’eH(C). Then ( )e H(C), that is, there exist a

t(2)
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f’ f’
(Z) that is to say, F'= (Z)

f(z) t(2)

function FeH ((C) such that is the primitive of for everything zeC.

Notice that

(fexp(-F)) (2)= 'exp(~F (2))~ f (2) F'(2)exp(~F (2))=('(2) - 1 (2)F'(2) exp(~F (2)) =0.

Then f(z)exp(—F(z))=C,if C=exp(k) itfollowsthat f=exp(k+F).

4. Continuous Logarithm

In this section, the inverse problem it’s studied, when the condition weakens of being a holomorphic function
to being a continuous function. Nevertheless, on having asked him only continuity to the functions and hav-
ing tried to solve the inverse problem, it is needed to do more restrictions on the domain of the above men-
tioned functions.

It is considered to be that X :C(Q) and the space Y =C"(Q) that correspond to the spaces of conti-
nuous and continuous that are not annulled function respectively. There is demonstrated that when Q< Z it’s
a simply connected domain and Z is Hausdorff space and connected by paths, the solution of the inverse
problem exists, is unique if a branch of the logarithm is fixed adapted and is stable.

Theorem 2 Let exp:C(Q)—C™(Q) be, where Q asimply connected set is (not necessarily it is a subset
of the plane) content in Hausdorff space and connected by paths; then the solution of the inverse problem exists,
is unique and is stable.

Proof: The existence of the solution of the inverse problem, it’s demonstrated in the proposition 3 and the ex-
istence in the proposition 4.

Since exp:C(Q)— C"(Q), where C(Q) and C” (©) are Banach spaces, in addition, the operator is
continuous; then, by the open mapping theorem, the inverse operator is continuous and therefore, the solution of
the inverse problem is stable.

Definition: Let X and Y be topological spaces. Consider to p:X —Y a continuous function. Is say
that p isacovering mapif VvyeY, itexistsaneighborhood U for vy, with following properties:

1) p*(U)=JU; with U,NU, =@ Vk=I.

jed

2) U is a neighborhood for X such that p| is a homeomorphismon U, VjelJ.

Proposmon 4:The exp:C — C" function is a covering map.

Definition: Let f:X —Y be a continuous function and let p:X —Y be a covering map. The g ap-
plication is a lifting for f (inrespectof p)if (pog): f.

Note that if it is known that the exp function is a covering map, then to define the lifting, and under the condi-
tions for the existence and uniqueness of the lifting, it will be had that (expo g) = f ; and therefore on having
demonstrated the existence and uniqueness of the lifting, there will be demonstrated the existence and unique-
ness of the logarithm of a continuous function .

4.1. Uniqueness of the Lifting

For the uniqueness of the lifting it is necessary that the X topological space be connected and Hausdorff.
Theorem 3 Let p: X —Y be a local homeomorphism, let X be a connected and Hausdorff space and let
f:X —>Y be acontinuous application. Suppose that g, and g, are lifting of f . Then, if X, e X exists,
such that g,(X%,)=0,(%,), it follows that g, =g, in X.
Proof: The set E={xe X :g,(x)=0,(x)} is defined. Note that x, e E and therefore E=@. If it is
shown that E is open and closed it follow that E = X . To show that E is a closed set, enough to prove that
X\E is an open set. Let ye X\E be, clearly fl(y)i fz(y) and since X is a Hausdorff space, exist

neighborhoods Vv, =V, - for f,(y) and f,(y), respectively such that Vi Ny, =2 - Consider that
=1, 1( H) )ﬂ f ’1( y)> note that W isn’t an empty set, then yeW, so, W is open set since is a

finite intersection of open sets. Let xeW be, then f(x)eV,, and f,(x)eV, . What implies that
f(x)# f,(y). Therefore W = X \E and so, the X \E open set and then the E st is closed. To show
that E is anopenset. Let xeE beand &= f,(x)=f,(x). By hypothesis, there is a neighborhood U for
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a such that p(U =U isopensetand p|; isanhomeomorphism. Since f, and f, are continuous func-
tion, there is V -~ an neighborhood for y such that f;(V)\U and p(f,(v))=f(v)=p(f,(v)).Since p|;
is an injective function, it follows that f,(v)=f,(v) so, V\E it’sa closed set and then the E set is open.
Since Y isconnected space and E is a non-empty, open and closed set, it follows that E=Y .

4.2. Existence of the Lifting

The study of the existence of the lifting needs of the study of the fundamental group.
Let a, :1 > X be, where k=12, curves that begin and end in x, it is to say, they are closed curves. Is
said that ¢, itisrelated with «,, o ~a,,ifitexists H:1xIl — X acontinuous function such that

H(0.t)=a,(t), H(Lt)=a,(t), H(s,0)=H(s,1)=x

The H function is called continuous homotopy.

It is easy to see that the relation ~ is an equivalence relation. Since it is known well, everything equivalence
relation induces a partition. In this case the classes [a] are formed by the set of curves g that are homotopic
to « . Intuitively it is possible to define the operation join curved and the above mentioned operation gives a
structure of group.

Definition: The first group of homotopy of X is defined, with basis xe X :

nl(X,X):{[a]},

where « isaclosed curve.

We noted that & is the curve o (-t).

The following result gives necessary and sufficient conditions for the existence of the lifting.

Theorem 4: Let p:(X,x)—>(Y,yO) be a covering map and let f:(X,x,)—>(Y,y,) be a continuous
function, with X a connected by paths set. Then they are equivalent:

1) Alifting g:(X,%)—(X,%) there exists for f ;

2) f *(nl(X,XO))C p*(nl(X,Xo)) .

Where g* is the induced mapping of fundamental groups. 5

Proof: The demonstration 1)=> 2) obviously, because f*=p=f .

There will be demonstrated that 2)=1). Let xe X beandlet » beacurvein X from x, to x.The
curve f in Y thatit beginsin vy, ithasa unique lifting f = that it begins X . f(x) = fy (1) is defined.
It is demonstrated that it is definite as well, independently of the choice of v, let ¥ be another curve from
X, toX.Then (f,)e(f,) isaclosedcurveof h, to y, with:

[h]e f(m(X,%))c p*(nl()z,f(o)).

This means that there is a homotopy h_from h, to a closed curve h, that gets up to a closed curve h, in
X based in %,. Property homotopy covering is applied to h to obtain a lifting h. Since h, is a closed
curve to %,, h, it’s too. By the uniqueness of the lift curve, the first half of h, is f, and the second half is
f, route the other way around, with the common midpoint f, (1)= f, (1). This shows that f it’s definite as
well. Need to show that f is a continuous function. Let U Y be a neighborhood of f x) that it has a
lifting U < X containing to f(x) such that p:U —»U is an homeomorphism. A connected by path
neighborhood V is chosen for x with f(V)cU . The curves from x, to x'eV points, it is possible to
take a given fixed curve y from x, to x follow by curves 7 in V from y to the pointsy'. Then, the
curves (f,)e(f,) in Y it has lifting (fy .(fn? where f =p?f and p:U—U is the inverse of
p:U—->U.So, f(V)cU and f|V =p~f ,therefore f iscontinuousinX.
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