
American Journal of Computational Mathematics, 2013, 3, 291-296
Published Online December 2013 (http://www.scirp.org/journal/ajcm)
http://dx.doi.org/10.4236/ajcm.2013.34038

Open Access AJCM

A New Recombination Tree Algorithm for
Mean-Reverting Interest-Rate Dynamics

Peter C. L. Lin
Department of Mathematical Sciences & Financial Engineering Program,

Stevens Institute of Technology, Hoboken, USA
Email: peter.lin@stevens.edu

Received June 13, 2013; revised August 15, 2013; accepted September 12, 2013

Copyright © 2013 Peter C. L. Lin. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In light of the fact that no existing tree algorithms can guarantee the recombination property for general Ornstein-
Uhlenbeck processes with time-dependent parameters, a new trinomial recombination-tree algorithm is designed in this
research. The proposed algorithm enhances the existing mechanisms in interest-rate modelings with the comparisons to
[1,2] methodologies, and the proposed framework provides a more efficient way in discrete-time mean-reverting simu-
lations.

Keywords: Natural Asset; Financial Value; Neural Network

1. Introduction

A general Ornstein-Uhlenbeck process is defined such
that

            d dG t k t a t G t t b t W t   d

where is a standard Brownian motion, and  W t  k t ,
, are time-dependent deterministic parame-

ters. The parameter is the mean-reversion term
indicating the long-term mean-reverting level with a rate

 at time t. The source of randomness is described
by the Brownian motion multiplied by a volatil-
ity term .

 a t

 k t

 b t

 b t

 a t

 W t

A tree is an acyclic structure where each node has zero
to multiple descendant nodes and one parent node. A
recombination tree is a special tree structure of which the
size grows linearly. Therefore the investing decisions, if
computed recursively, have time complexity1 at most

, which is much more efficient than a general
simulation method which may cost exponential amount
of time. For example, a recombination tree can help us to
efficiently determine the price and the buy/sell timing for
an American style option by comparing the derivatives
value at each tree node with its children nodes (see [4]
for more details). However, designing a recombination
tree algorithm for modeling interest rates is far from tri-

vial. Here are two examples:

 2O n

In [1], Hull and White provided a heuristic two-stage
method for constructing an interest rate tree based on the
extended-Vasicek short-rate model.2 In the first stage the
algorithm builds the framework of the tree, and in the
second stage the algorithm calibrates the tree to the cur-
rent interest-rate term structure. The algorithm is de-
signed for a short-rate model; hence the tree cannot be
adjusted or updated according to the markets. Also, their
method cannot deal with stochastic mean-reverting pa-
rameters, and there is no guarantee that the tree is a re-
combination tree especially when the volatility term of
the short-rate process is a decreasing function. Therefore,
Hull-White’s algorithm is not a good candidate.

In [2], Black, Derman, and Toy (BDT hereafter) also
provided a recombination tree algorithm for short rates.
Their tree is constructed recursively and calibrated to
zero-coupon bond volatilities and current interest rate
structure. Though the BDT tree guarantees a recombina-
tion structure, the tree is not designed for a general Orn-
stein-Uhlenbeck process. Therefore, the BDT tree is not
a good candidate either.

In light of the fact that no existing tree algorithms can
guarantee the recombination property for general Orn-

2For more definitions of short-rate models, see [5]. Yet, for this article
we should focus only on the mathematical modeling for general Orn-
stein-Uhlenbeck Processes. 1For the terminology of computational complexity please see [3].

P. C. L. LIN 292

stein-Uhlenbeck processes, we propose a new recombi-
nation trinominal tree algorithm. The idea is to modify a
standard trinominal tree (Exhibit 1(a)) by adding extra
branches at each node. First, we denote the tree structure
in black color the center path. Then, given a node
directly above (below) the center path, define

V
V the

set of nodes containing V and all the nodes down to
(up to) the center path. Then we modify the tree accord-
ing to the following rules: 1) the center path remains un-
changed; 2) given a node above the center path, we
connect the node to all the descendant (children) nodes
stemming from

V

V ; 3) given a node V below the
center path, we connect the node to all the descendant
nodes stemming from all the nodes from V . The mod-
ified tree structure is shown in Exhibit 1(b). We will use
the names, spanning nodes and spanning branches, to
identify those nodes not on the center path, and branches
not emanating from a center node.

The crucial key of modifying a standard trinominal
tree is that we can further simplify and still keep the tree
structure by adding sibling branches. Sibling branches
are one-way streets through which we can only move up
or down at a given time epoch, but not in both directions.
A spanning node above the center path can reach the
center path and all the nodes in between only by moving
down through the sibling branches; a spanning node be-
low the center path can reach the center path and all the
nodes in between only by moving up through the sibling
branches. As a result, by adding the sibling branches,
each node can reach all but one descendent nodes via its
sibling branches. So, in the simplified tree structure, each

spanning node will have only one time transition de-
scendant branch. The final tree structure is shown in Ex-
hibit 1(c). The algorithm is given below. The proof of
the correctness of the algorithm for simulation is given in
Section 3.

2. Algorithm

Now we give a full description of the algorithm. Let

,j jg denote the node on the center path at time jt , and
let  ,jg t j denote the value of node ,j jg . Therefore,
if :g     is represented as a function, then it
indicates the value of the node. Let ,j j kg  and
 ,jg t j k denote the k-th node above center node

,j jg and the value of ,j j kg  respectively. Similarly, let

,j j kg  and  ,jg t j k denote the k-th node below
center node ,j jg and the value of ,j j k

 ,jG t
g respectively.

Moreover, if we use capital letter  , then it
represents a random variable of the tree value at time jt .
To shorthand the notation, the expectation value
 1jG t conditional on the position of  jG t is written

as

   1E j jG t G t . 
  (1)

Define the conditional expectation at node ,j jg to be

     1, ,j j j jM t j E G t G t g j
    (2)

Since the volatility term in stochastic-splines model is
assumed to be a deterministic function, the conditional
variance is the same for all nodes at a given time, i.e. at
time jt , the conditional variance

(a) (b)

(c)

Exhibit 1. (a) original recombination trinominal tree; (b) modified tree; (c) simplified Tree.

Open Access AJCM

P. C. L. LIN 293

Algorithm 1 Recombination Tree

Require: MAXLEVEL (Tree Size)

1: {Stage One – Center Path}

2: For j = 1 to MAXLEVEL do

3: j jx V 

4:
 ,j

j

M t j
h round

x

 
 
  

5: Set

 
   
   

,

, 1 1

, 1 1

j j

.j j

j j

g t j h x

g t j h x

g t j h x

  
    


   

6: Set

        

    

        

2

2

2

2

2

2

, , , ,1

6 6 2 3

, ,2
.

3 3

, , , ,1

6 6 2 3

j j j j

u
t tj j

j j

n
t j

j j j j

d
t tj j

M t j g t j M t j g t j
p

V V

M t j g t j
p

V

M t j g t j M t j g t j
p

V V

     



  


  
   



7: end for

8: {Stage Two – Spanning Branches}

9: for i = 1 to MAXLEVEL do

10: for j = 1 to 2 1j  do

11: {Move to the j-th vertex below the center path}

Find , 1 , 1,i j i i j ix M V M V 
     where

 
   

2

, 1, 1

2 2
, , , 1 , 1

i i ji j

i j j i j i j i j

V x Mx M

x M V M M x M



 

 


    

12:

 1, 2ig t j x   13:

  , 1
, 1 ,

,

, i j
i j i j

i j

x M
p g g

x M








 14:

  , 1
, 1 1, 2

,

, 1 i j
i j i j

i j

x M
p g g

x M


  


 


 15:

{Move to the j-th vertex above the center path} 16:

Find , 1 , 1,i j i i j ix M V M V 
     where

 
  

17:



2

, 1, 1

2 2
, , , 1 , 1

i i ji j

i j j i j i j i j

V x Mx M

x M V M M x M



 

 


    

Open Access AJCM

P. C. L. LIN

Open Access AJCM

294

Continued

 1, 2ig t j x   18:

  , 1
, 1 ,

,

, i j
i j i j

i j

x M
p g g

x M








 19:

  , 1
, 1 1, 2

,

, 1 i j
i j i j

i j

x M
p g g

x M


  


 


 20:

21: end for

22: end for

algorithm adopts the ideas of the law of total
expectations and the law of total variances to assign the
values and probabilities of spanning nodes and branches.
The procedure is done recursively. Therefore we just
need to look at the cases when and 1k   1k  .
Given a node 1, 2j jg   spanning from node , 1j jg  at
time jt , we denote the conditional expectation and
conditional variance at node , 1j j to be , 1g  j jM  and

, 1j jV  respectively. Denote the probability to be the
probability moving down from , 1

p

j j to ,g  j jg and
 p1 to be the probability moving through the
spanning branch from

    1Var .j jV G t G t j (3)

The idea of the recombination algorithm is to construct
the center path first including the node values and branch
probabilities, then determine the values of the spanning
nodes, the probabilities on the spanning branches, and
the probabilities on the sibling branches. The details are
given in Algorithm 1. However, the algorithmshows that
each tree is designed for simulating one coefficient proc-
ess; if we have N coefficient, we will need to build N
trees altogether if coefficient processes are correlated.
After constructing the coefficient recombination “forest”,
we can simulate the interest rate curve efficiently.

g

The justification of the algorithm is given in the next
Section.

3. Verification

First we look at the first part of the algorithm and some
notations. The first stage of the algorithm follows the
standard Hull-White methodology (see [1]) and provides
the backbone of the tree. Let ,j jg denote the node on
the center path at time jt , and let  ,jg t j denote the
value of node ,j jg . Therefore, if g is represented as a
function, then it indicate the value of the node. Let

,j j kg  and  ,j g t j

,

k denote the k-th node above
center node j jg and the value of ,j j kg  respectively.

Similarly, let ,j j kg and  ,jg t j 

,

k denote the k-th

node below center node j jg and the value of

,j j kg 

 
respectively. Moreover, if we use capital letter

jG t , then it represents a random variable of the tree

value at time jt


. To shorthand the notation, the expected

value conditional on the position of  1jG t   jG t is

written as

   1E j jG t G t

 . (4)

Now we move to the second part of the algorithm. The
tree branches besides the central path are called spanning
branches and spanning nodes. The second stage of the

, 1j j to 1, 2j j

We can recall the law of total expectation which states
g   .

   E E .X p Y y X Y y      (5)

If we let

   1E ,j j j jX G t G t g , 1
   
 (6)

and Y denotes the random variable such that

0, if moving to the spanning brance
,

1, otherwise
Y


 


 (7)

then

   
   

     
   

, 1 1 , 1

,

1 ,

, 1

E

E

1 E , 2

1 , 2 ,

j j j j j j

j j j j

j j

j j j

M G t G t g

p G t G t g

p G t j G t g

pM p g t j

  

 



   
   

1j j
     

   







(8)

which shows

 
 

1

1 ,

, 2
.

, 2

j , 1j j

j j j

g t j M
p

g t j M





 


 


 (9)

The task of deriving the relationship between
 1, 2g j j  and p from the law of total variance is

more complicated. We will show the the result first, then
break into each part. Recall the law of total variance
which states

P. C. L. LIN 295

    Var E Var Var E .X X Y X Y       (10)

Similarly we let

   1E j jX G t G t
 
 , (11)

and Y denotes the random variable such that

0, if moving to spanning brance
.

1, otherwise
Y


 


 (12)

If the following statement is true:

     
     
    

 
    

1 , 1

1 , 1

1 , 1

2

, , 1

2

, 1

Var E

E Var E

Var E E

1 , 1 ,

j j j j

j j j j

j j j j

j j j j j

j j

G t G t g

G t G t g Y

G t G t g Y

pV p M M

p g j j M

 

 

 





  

      
       

  

   



 

   


 (13)

then we have

  
    

2

, 1

2 2

, , 1 , 1

, 1
.

, 1

j j j

j j j j j j j

V g j j M
p

V M M g j j M



 

  


    

(14)

Examining the first term, jpV , on the right-hand-side
of Equation (13),

     
   

1 , 1Var E 0

Var 1, 2 0

j j j jG t G t g Y

g j j

 
  

   


 (15)

since there is only one choice moving from , 1j jg  to

1, 2j jg   . On the other hand,

     1 , 1Var E 1 ,j j j jG t G t g Y V 
    


j (16)

and we know this value recursively. So

     
      

     
     

1 , 1

1 , 1

1 , 1

1 , 1

E Var E

1 Var E 0

Var E 1

Var E 1 .

j j j j

j j j j

j j j j

j j j j

G t G t g Y

p G t G t g Y

p G t G t g Y

p G t G t g Y p

 

 

 

 

     

     

   

   

 






jV



 

(17)

Next, the second and third terms. Since

     

     
1

1 ,

E E E , 1

E , 1

j j j

j j j j j

G t G t G t j Y

G t G t G t j M



 

         
     

  



we have

    

   

     

    
    

1 , 1

2

1 , 1 , 1

2

1 , 1 ,

2

1 , 1 , 1

2

, 1

, ,

Var E E

E E 1

1 E E 0

E

1 1, 2

j j j j

j j j j j j

j j j j j j

j j j j j j

j j

j j j j

G t G t g Y

p G t G t g Y M

p G t G t g Y M

p G t G t g M

p g j j M

p M M

 

  

 

  





        

           

            

    

    

 

 

 

 



      2 2

1 ,1 1, 2 j jp g j j M     

1

1 .

(19)

Now we have two equations and two unknown
and

p
 1, 2jg t j  in the following

 
 

  
    

1 , 1

1 ,

2

, 1

2 2

, , 1 , 1

, 2

, 2
.

1, 2

1, 2

j j j

j j j

j j j

j j j j j j j

g t j M
p

g t j M

V g j j M
q

V M M g j j M

 





 

  
 

 


   


     

(20)

However, must be a number between 0 and 1. And
we now show that the equations indeed yield a solution
such that

p

 0, 1p . First, the case where , 1 ,j j j jM M 
and write

  , 1
1

,

j j

j j

x M
f x

x M





 (21)

and

 
 

   

2

, 1

2 2 2

, , 1 , 1

.
j j j

j j j j j j j

V x M
f x

V M M x M



 

 


   
 (22)

Since , 1 ,j j j jM M  , for any , 1j jx M 

, 1

,

0 j j

j j

x M

x M


1 


 (23)

and  1f x is continuous and monotonically increasing.
On the other hand, for any , 1 , 1,j j j j jx M M V 

    ,

 
   

2

, 1

2 2

, , 1 , 1

0 1
j j j

j j j j j j j

V x M

V M M x M



 

 
 

   
 (24)

1,


 (18)

and  2f x is a continuous and monotonically
decreasing function. Since

  1 , 1 1 , 10, 0j j j j jf M f M V     (25)

and

Open Access AJCM

P. C. L. LIN

Open Access AJCM

296

   2 , 1 , 10, 0,j j x j j jf M f M V    (26)

we know that there must exist a unique

, 1 , 1ˆ ,j j j j jx M M V 
    such that

     1 ˆ ˆ 0,1 .xf x f x p   (27)

Alternatively, the proof is similar for the case when

, 1 ,j j j jM M  except the solution exists in

, 1 , 1,j j j j jM V M
 

p






. The uniqueness and existence of

the solution and help us solve the

equations fast.

 1, 2jg t j 

4. Conclusion

This research proposes a new trinomial recombination-
tree algorithm for simulating general Ornstein-Uhlenbeck
processes with time-dependent parameters. We show that

there is an equivalent recombination-tree structure to
simulate the mean-reverting interest-rate dynamics. De-
tailed algorithm and justification are given.

REFERENCES
[1] J. Hull and A. White, “Pricing Interest-Rate-Derivative

Securities,” Review of Financial Studies, Vol. 3, No. 4,
1990, pp. 573-592. http://dx.doi.org/10.1093/rfs/3.4.573

[2] F. Black, E. Derman and W. Toy, “A One-Factor Model
of Interest Rates and Its Application to Treasury Bond
Options,” Financial Analysts Journal, Vol. 46, No. 1,
1990, pp. 33-39. http://dx.doi.org/10.2469/faj.v46.n1.33

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,
“Introduction to Algorithms,” 3rd Edition, The MIT Press,
Cambridge, 2009.

[4] J. Hull, “Options, Futures, and Other Derivatives,” 7th
Edition, Prentice Hall, Upper Saddle River, 2008.

[5] D. Brigo and F. Mercurio, “Interest Rate Models-Theory
and Practice,” 2nd Edition, Springer, New York, 2006.

http://dx.doi.org/10.1093/rfs/3.4.573
http://dx.doi.org/10.2469/faj.v46.n1.33

