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ABSTRACT 

In light of the fact that no existing tree algorithms can guarantee the recombination property for general Ornstein- 
Uhlenbeck processes with time-dependent parameters, a new trinomial recombination-tree algorithm is designed in this 
research. The proposed algorithm enhances the existing mechanisms in interest-rate modelings with the comparisons to 
[1,2] methodologies, and the proposed framework provides a more efficient way in discrete-time mean-reverting simu- 
lations. 
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1. Introduction 

A general Ornstein-Uhlenbeck process is defined such 
that 

            d dG t k t a t G t t b t W t   d  

where  is a standard Brownian motion, and  W t  k t , 
,  are time-dependent deterministic parame- 

ters. The parameter  is the mean-reversion term 
indicating the long-term mean-reverting level with a rate 

 at time t. The source of randomness is described 
by the Brownian motion  multiplied by a volatil- 
ity term .  

 a t

 k t

 b t

 b t

 a t

 W t

A tree is an acyclic structure where each node has zero 
to multiple descendant nodes and one parent node. A 
recombination tree is a special tree structure of which the 
size grows linearly. Therefore the investing decisions, if 
computed recursively, have time complexity1 at most 

, which is much more efficient than a general 
simulation method which may cost exponential amount 
of time. For example, a recombination tree can help us to 
efficiently determine the price and the buy/sell timing for 
an American style option by comparing the derivatives 
value at each tree node with its children nodes (see [4] 
for more details). However, designing a recombination 
tree algorithm for modeling interest rates is far from tri-

vial. Here are two examples: 

 2O n

In [1], Hull and White provided a heuristic two-stage 
method for constructing an interest rate tree based on the 
extended-Vasicek short-rate model.2 In the first stage the 
algorithm builds the framework of the tree, and in the 
second stage the algorithm calibrates the tree to the cur- 
rent interest-rate term structure. The algorithm is de- 
signed for a short-rate model; hence the tree cannot be 
adjusted or updated according to the markets. Also, their 
method cannot deal with stochastic mean-reverting pa- 
rameters, and there is no guarantee that the tree is a re- 
combination tree especially when the volatility term of 
the short-rate process is a decreasing function. Therefore, 
Hull-White’s algorithm is not a good candidate. 

In [2], Black, Derman, and Toy (BDT hereafter) also 
provided a recombination tree algorithm for short rates. 
Their tree is constructed recursively and calibrated to 
zero-coupon bond volatilities and current interest rate 
structure. Though the BDT tree guarantees a recombina- 
tion structure, the tree is not designed for a general Orn- 
stein-Uhlenbeck process. Therefore, the BDT tree is not 
a good candidate either. 

In light of the fact that no existing tree algorithms can 
guarantee the recombination property for general Orn-  

2For more definitions of short-rate models, see [5]. Yet, for this article 
we should focus only on the mathematical modeling for general Orn-
stein-Uhlenbeck Processes. 1For the terminology of computational complexity please see [3]. 
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stein-Uhlenbeck processes, we propose a new recombi- 
nation trinominal tree algorithm. The idea is to modify a 
standard trinominal tree (Exhibit 1(a)) by adding extra 
branches at each node. First, we denote the tree structure 
in black color the center path. Then, given a node  
directly above (below) the center path, define 

V
V  the 

set of nodes containing V  and all the nodes down to 
(up to) the center path. Then we modify the tree accord- 
ing to the following rules: 1) the center path remains un- 
changed; 2) given a node  above the center path, we 
connect the node to all the descendant (children) nodes 
stemming from 

V

V ; 3) given a node V  below the 
center path, we connect the node to all the descendant 
nodes stemming from all the nodes from V . The mod- 
ified tree structure is shown in Exhibit 1(b). We will use 
the names, spanning nodes and spanning branches, to 
identify those nodes not on the center path, and branches 
not emanating from a center node. 

The crucial key of modifying a standard trinominal 
tree is that we can further simplify and still keep the tree 
structure by adding sibling branches. Sibling branches 
are one-way streets through which we can only move up 
or down at a given time epoch, but not in both directions. 
A spanning node above the center path can reach the 
center path and all the nodes in between only by moving 
down through the sibling branches; a spanning node be- 
low the center path can reach the center path and all the 
nodes in between only by moving up through the sibling 
branches. As a result, by adding the sibling branches, 
each node can reach all but one descendent nodes via its 
sibling branches. So, in the simplified tree structure, each  

spanning node will have only one time transition de- 
scendant branch. The final tree structure is shown in Ex- 
hibit 1(c). The algorithm is given below. The proof of 
the correctness of the algorithm for simulation is given in 
Section 3. 

2. Algorithm 

Now we give a full description of the algorithm. Let 

,j jg  denote the node on the center path at time jt , and 
let  ,jg t j  denote the value of node ,j jg . Therefore, 
if :g      is represented as a function, then it 
indicates the value of the node. Let ,j j kg   and 
 ,jg t j k  denote the k-th node above center node 

,j jg  and the value of ,j j kg   respectively. Similarly, let 

,j j kg   and  ,jg t j k  denote the k-th node below 
center node ,j jg  and the value of ,j j k

 ,jG t
g  respectively. 

Moreover, if we use capital letter  , then it 
represents a random variable of the tree value at time jt . 
To shorthand the notation, the expectation value 
 1jG t  conditional on the position of  jG t  is written 

as 

   1E j jG t G t . 
               (1) 

Define the conditional expectation at node ,j jg  to be 

     1, ,j j j jM t j E G t G t g j
          (2) 

Since the volatility term in stochastic-splines model is 
assumed to be a deterministic function, the conditional 
variance is the same for all nodes at a given time, i.e. at 
time jt , the conditional variance 

 

  
(a)                          (b) 

 
(c) 

Exhibit 1. (a) original recombination trinominal tree; (b) modified tree; (c) simplified Tree. 
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Algorithm 1 Recombination Tree 

Require: MAXLEVEL (Tree Size) 

1: {Stage One – Center Path} 

2: For j = 1 to MAXLEVEL do 

3: j jx V   

4: 
 ,j

j

M t j
h round

x

 
 
  

 

5: Set 

 
   
   

,

, 1 1

, 1 1

j j

.j j

j j

g t j h x

g t j h x

g t j h x

  
    


   

 

6: Set 

        

    

        

2

2

2

2

2

2

, , , ,1

6 6 2 3

, ,2
.

3 3

, , , ,1

6 6 2 3

j j j j

u
t tj j

j j

n
t j

j j j j

d
t tj j

M t j g t j M t j g t j
p

V V

M t j g t j
p

V

M t j g t j M t j g t j
p

V V

     



  


  
   



 

7: end for 

8: {Stage Two – Spanning Branches} 

9: for i = 1 to MAXLEVEL do 

10: for j = 1 to 2 1j   do 

11: {Move to the j-th vertex below the center path} 

Find , 1 , 1,i j i i j ix M V M V 
      where  

 
   

2

, 1, 1

2 2
, , , 1 , 1

i i ji j

i j j i j i j i j

V x Mx M

x M V M M x M



 

 


    
 

12: 

 1, 2ig t j x    13: 

  , 1
, 1 ,

,

, i j
i j i j

i j

x M
p g g

x M








 14: 

  , 1
, 1 1, 2

,

, 1 i j
i j i j

i j

x M
p g g

x M


  


 


 15: 

{Move to the j-th vertex above the center path} 16: 

Find , 1 , 1,i j i i j ix M V M V 
      where  

 
  

17: 



2

, 1, 1

2 2
, , , 1 , 1

i i ji j

i j j i j i j i j

V x Mx M

x M V M M x M



 

 


    
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Continued 

 1, 2ig t j x    18: 

  , 1
, 1 ,

,

, i j
i j i j

i j

x M
p g g

x M








 19: 

  , 1
, 1 1, 2

,

, 1 i j
i j i j

i j

x M
p g g

x M


  


 


 20: 

21: end for 

22: end for 

 
algorithm adopts the ideas of the law of total 
expectations and the law of total variances to assign the 
values and probabilities of spanning nodes and branches. 
The procedure is done recursively. Therefore we just 
need to look at the cases when  and 1k   1k  . 
Given a node 1, 2j jg    spanning from node , 1j jg   at 
time jt , we denote the conditional expectation and 
conditional variance at node , 1j j  to be , 1g  j jM   and 

, 1j jV   respectively. Denote the probability  to be the 
probability moving down from , 1

p

j j  to ,g  j jg  and 
 p1  to be the probability moving through the 
spanning branch from 

    1Var .j jV G t G t j           (3) 

The idea of the recombination algorithm is to construct 
the center path first including the node values and branch 
probabilities, then determine the values of the spanning 
nodes, the probabilities on the spanning branches, and 
the probabilities on the sibling branches. The details are 
given in Algorithm 1. However, the algorithmshows that 
each tree is designed for simulating one coefficient proc- 
ess; if we have N coefficient, we will need to build N 
trees altogether if coefficient processes are correlated. 
After constructing the coefficient recombination “forest”, 
we can simulate the interest rate curve efficiently.  

g

The justification of the algorithm is given in the next 
Section. 

3. Verification 

First we look at the first part of the algorithm and some 
notations. The first stage of the algorithm follows the 
standard Hull-White methodology (see [1]) and provides 
the backbone of the tree. Let ,j jg  denote the node on 
the center path at time jt , and let  ,jg t j  denote the 
value of node ,j jg . Therefore, if g  is represented as a 
function, then it indicate the value of the node. Let 

,j j kg   and  ,j g t j

,

k  denote the k-th node above  
center node j jg  and the value of ,j j kg   respectively. 

Similarly, let ,j j kg  and  ,jg t j 

,

k  denote the k-th 

node below center node j jg  and the value of 

,j j kg 

 
respectively. Moreover, if we use capital letter 

jG t , then it represents a random variable of the tree  

value at time jt


. To shorthand the notation, the expected  

value  conditional on the position of  1jG t   jG t  is 

written as 

   1E j jG t G t

 .              (4) 

Now we move to the second part of the algorithm. The 
tree branches besides the central path are called spanning 
branches and spanning nodes. The second stage of the 

, 1j j  to 1, 2j j

We can recall the law of total expectation which states 
g   . 

   E E .X p Y y X Y y             (5) 

If we let 

   1E ,j j j jX G t G t g , 1
   
         (6) 

and Y denotes the random variable such that 

0, if moving to the spanning brance
,

1, otherwise
Y


 


   (7) 

then 

   
   

     
   

, 1 1 , 1

,

1 ,

, 1

E

E

1 E , 2

1 , 2 ,

j j j j j j

j j j j

j j

j j j

M G t G t g

p G t G t g

p G t j G t g

pM p g t j

  

 



   
   

1j j
     

   






    

(8) 

which shows 

 
 

1

1 ,

, 2
.

, 2

j , 1j j

j j j

g t j M
p

g t j M





 


 


          (9) 

The task of deriving the relationship between 
 1, 2g j j   and p from the law of total variance is 

more complicated. We will show the the result first, then 
break into each part. Recall the law of total variance 
which states 
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    Var E Var Var E .X X Y X Y         (10) 

Similarly we let 

   1E j jX G t G t
 
 ,           (11) 

and Y denotes the random variable such that 

0, if moving to spanning brance
.

1, otherwise
Y


 


    (12) 

If the following statement is true: 

     
     
    

 
    

1 , 1

1 , 1

1 , 1

2

, , 1

2

, 1

Var E

E Var E

Var E E

1 , 1 ,

j j j j

j j j j

j j j j

j j j j j

j j

G t G t g

G t G t g Y

G t G t g Y

pV p M M

p g j j M

 

 

 





  

      
       

  

   



 

   


  (13) 

then we have 

  
    

2

, 1

2 2

, , 1 , 1

, 1
.

, 1

j j j

j j j j j j j

V g j j M
p

V M M g j j M



 

  


    
     

(14) 

Examining the first term, jpV , on the right-hand-side 
of Equation (13), 

     
   

1 , 1Var E 0

Var 1, 2 0

j j j jG t G t g Y

g j j

 
  

   


       (15) 

since there is only one choice moving from , 1j jg   to 

1, 2j jg   . On the other hand, 

     1 , 1Var E 1 ,j j j jG t G t g Y V 
    


j   (16) 

and we know this value recursively. So 

     
      

     
     

1 , 1

1 , 1

1 , 1

1 , 1

E Var E

1 Var E 0

Var E 1

Var E 1 .

j j j j

j j j j

j j j j

j j j j

G t G t g Y

p G t G t g Y

p G t G t g Y

p G t G t g Y p

 

 

 

 

     

     

   

   

 






jV



 

    

(17) 

 

Next, the second and third terms. Since 

     

     
1

1 ,

E E E , 1

E , 1

j j j

j j j j j

G t G t G t j Y

G t G t G t j M



 

         
     

  



we have 

    

   

     

    
    

1 , 1

2

1 , 1 , 1

2

1 , 1 ,

2

1 , 1 , 1

2

, 1

, ,

Var E E

E E 1

1 E E 0

E

1 1, 2

j j j j

j j j j j j

j j j j j j

j j j j j j

j j

j j j j

G t G t g Y

p G t G t g Y M

p G t G t g Y M

p G t G t g M

p g j j M

p M M

 

  

 

  





        

           

            

    

    

 

 

 

 



      2 2

1 ,1 1, 2 j jp g j j M     

1

1 .

(19) 

Now we have two equations and two unknown  
and 

p
 1, 2jg t j   in the following 

 
 

  
    

1 , 1

1 ,

2

, 1

2 2

, , 1 , 1

, 2

, 2
.

1, 2

1, 2

j j j

j j j

j j j

j j j j j j j

g t j M
p

g t j M

V g j j M
q

V M M g j j M

 





 

  
 

 


   


     

 

(20) 

However,  must be a number between 0 and 1. And 
we now show that the equations indeed yield a solution 
such that 

p

 0, 1p . First, the case where , 1 ,j j j jM M   
and write 

  , 1
1

,

j j

j j

x M
f x

x M





            (21) 

and 

 
 

   

2

, 1

2 2 2

, , 1 , 1

.
j j j

j j j j j j j

V x M
f x

V M M x M



 

 


   
 (22) 

Since , 1 ,j j j jM M  , for any , 1j jx M   

, 1

,

0 j j

j j

x M

x M


1 


             (23) 

and  1f x  is continuous and monotonically increasing. 
On the other hand, for any , 1 , 1,j j j j jx M M V 

    , 

 
   

2

, 1

2 2

, , 1 , 1

0 1
j j j

j j j j j j j

V x M

V M M x M



 

 
 

   
  (24) 

1,


  (18) 

and  2f x  is a continuous and monotonically 
decreasing function. Since 

  1 , 1 1 , 10, 0j j j j jf M f M V        (25) 

and 
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   2 , 1 , 10, 0,j j x j j jf M f M V      (26) 

we know that there must exist a unique  

, 1 , 1ˆ ,j j j j jx M M V 
     such that 

     1 ˆ ˆ 0,1 .xf x f x p            (27) 

Alternatively, the proof is similar for the case when 

, 1 ,j j j jM M   except the solution exists in 

, 1 , 1,j j j j jM V M
 

p






. The uniqueness and existence of 

the solution  and  help us solve the 

equations fast. 

 1, 2jg t j 

4. Conclusion 

This research proposes a new trinomial recombination- 
tree algorithm for simulating general Ornstein-Uhlenbeck 
processes with time-dependent parameters. We show that 

there is an equivalent recombination-tree structure to 
simulate the mean-reverting interest-rate dynamics. De- 
tailed algorithm and justification are given. 
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