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ABSTRACT 

N-body simulations of the Sun, the planets, and small celestial bodies are frequently used to model the evolution of the 
Solar System. Large numbers of numerical integrators for performing such simulations have been developed and used; 
see, for example, [1,2]. The primary objective of this paper is to analyse and compare the efficiency and the error 
growth for different numerical integrators. Throughout the paper, the error growth is examined in terms of the global 
errors in the positions and velocities, and the relative errors in the energy and angular momentum of the system. We 
performed numerical experiments for the different integrators applied to the Jovian problem over a long interval of du- 
ration, as long as one million years, with the local error tolerance ranging from 10−16 to 10−8. 
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1. Introduction 

Computational astronomers make extensive use of accu- 
rate N-body simulations when studying the dynamics of 
the planets, asteroids and other small celestial bodies in 
the Solar System. These simulations are performed by 
first deriving a set of differential equations for the accel- 
eration of the N bodies in the simulation, and specifying 
the initial positions and velocities of the bodies at time t 
= t0. Generally, the initial value problems (IVPs) that 
occur for N-body simulations are a mixture of first- and 
second-order differential equations, but the sort of prob- 
lems we are considering are of the form, 

        0 0 0, , = , = ,y t f t y t y t y y t y   0

k

   (1.1) 

where 0  and 0  denote the initial posi- 
tions and velocities, the operator denotes differentiation 
with respect to time t, and  is a suffi- 
ciently smooth function. Here,  is the dimension of 
the IVP, which in some cases may change over time, as 
bodies are added or removed in the simulations. In some 
cases, these equations can be solved analytically, but 
mostly the differential equations are too complicated to 
find analytical solutions, necessitating the use of ap- 
proximation techniques to find the numerical approxi- 
mate solution. A wide range of integrators, for example, 
Runge-Kutta [3,4], Linear multistep [5], Runge-Kutta-  

ky  ky 

:f k   
k

Nyström [6], and Störmer [7] are used to find a numeri- 
cal solution to the differential equations at 0=t t ih , 
with  and time-step h, which can depend on i. = 1,2,i 

2. Jovian Problem 

The Jovian problem (see, for example, [1]) models the 
orbital motion of the Sun and the four Gas giants, Jupiter, 
Saturn, Uranus and Neptune, interacting through Newto- 
nian gravitational forces. The Jovian problem is often 
used in numerical experiments, because the Gas giants 
collectively drive much of the dynamics of the Solar 
System. Let , be the position 
vector of the  body of the Jovian problem, where the 
bodies are ordered from Sun to Neptune and the coordi- 
nate system is the three-dimensional Cartesian system 
with the origin at the barycentre (centre of mass) of the 
bodies. Then the equations of motion for the  body 
can be written as 

 = , , , = 1, ,5
T

i i i ir x y z i 
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
     (1.2) 

where 
2
  denotes the L2-norm and j  is the gravita- 

tional constant G times the mass jm  of the  body, 
i.e, 

thj
=j jGm . For each body we have a second-order 

differential equation for the x-, y-, and z-component, 
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giving us fifteen second-order differential equations in 
total. We express units of distance in astronomical units, 
the independent variable t  in Earth days and the mass 

 in Solar mass. j

We use the symmetry of interactions to reduce the 
number of calculations in the subroutine for evaluating 
the acceleration for the Jovian problem. Consider the 
individual terms in the summation and observe 

m

    
   

    
   3 3

2 2

.
j i i j

j i j i

r t r t r t r t

r t r t r t r t

  


1

 
 

Hence, once this term for j  is calculated, we can 
update the acceleration for the second body by symmetry. 
Using this symmetry, we found that the subroutine for 
the evaluation of the force term for the Jovian problem 
reduces to approximately half of the CPU-time. 

r

Unlike the Kepler problem, an analytical solution for 
the Jovian problem is unavailable. Therefore, numerical 
experiments using the Jovian problem require a reference 
solution in order to obtain an estimate of the error in the 
position and velocity. The reference solution has to be 
more accurate than the numerical solution. Since we plan 
to test the numerical integrators near the limit of double- 
precision arithmetic ( 162.2 0 ), it is essential to use 
quadruple-precision arithmetic for the reference solution. 
Therefore, for long-term simulations, obtaining a refer- 
ence solution can require considerable CPU-time. 

Different types of errors are discussed throughout this 
paper. The global error is of major importance in the 
measurement of the quality of the numerical solution. We 
measure this global error in position and velocity, and 
also measure the relative error in energy and angular 
momentum. For the total error in the system the main 
source of error is the integration error, which consists of 
a truncation and round-off error. While performing ac- 
curate simulations, the round-off error contributes sig- 
nificantly to the global error because computers store 
numbers to only a certain precision. So, there will always 
be a loss of accuracy when performing long-term simula- 
tions. For fixed-step-size schemes, Brouwer [8] showed 
that, if the step-size is smaller than a prescribed value, 
the round-off error for conserved quantities, such as total  

energy and angular momentum, grows as 
1

2t  and for  
other dynamical variables, such as coordinates of parti- 

cles, as 2

3

t . This error growth is known as Brouwer’s  
law in the literature; see, for example, [9,10]. In contrast, 
when the round-off error is systematic, the power laws 
become t  and , respectively. In addition to these 
aspects, we investigate other effects of the round-off er- 
ror here. 

2t

First we define the types of errors used in this paper. 

Let yn and yt be the vectors of the solution calculated 
numerically and the reference solution, respectively, and 

ny  and ty  are the vectors of the derivative to the nu- 
merical and reference solutions, respectively. Then the 
norm of the global errors in the position and the velocity 
are given by  

   2 2
=  , =r n t v n tE t y y E t y y   ,  

where, 
2

 is the unweighted L2-norm. 
Physical systems often have conserved quantities, for 

example, the total energy H or the total angular momen- 
tum L as for Kepler’s two-body problem and the Jovian 
problem. Usually, these quantities will not be conserved 
exactly by the numerical solution and this derivation 
provides assessment about the accuracy of the solution. 
The total energy is defined as 

1
2

=1 =1 = 1

1
 ,

2

N N N
i j

i i
i j i j ij

m m
H m v G

d





     

where G is the gravitational constant,  the mass of 
the  body, iv  its velocity, and 2jiij

im
=||thi ||rrd   the 

distance between the  and  bodies. The relative 
error in the energy can be calculated as 

thi thj

0

0

,rel

H H
H

H


  

where 0  is the total energy at the initial time . 
However, we use 

H 0=t

0

0

= ,rel

GH GH
H

GH


 

to calculate rel , because the value of H = Gm  is 
known more accurately than . m

The total angular momentum L and the relative error 
of the angular momentum  are defined as  relL

0 2

=1 0 2

=  , =  
N

i i i rel
i

L L
L m r v L

L


 ,  

where 0  is the angular momentum at the initial time 
. Note that a reference solution is not required to 

calculate rel

L
0=t

H  and rel , unlike for the errors in the 
position and velocity. Hence, less computing resources 
are needed to measure the performance of the integrators 
here. However, rel  and rel , being scalar quantities, 
impose only one constraint; if we look at the error in 
position or velocity then every component of  or 

 has to be small. 

L

H L

rE

v

The phase error is the difference between the phase 
angle of the numerical solution and the reference solution. 
The phase error is defined by  

E

 
2 2

cos = n t

n t

y y

y y



. 
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2 s

=1 j jh b K j
, and the round-off error caused by adding 

terms on the right-hand side of (1.3). If the integration 
time-step is small then j jj

 is small 
compared to 1n

2
1 =1

s

nhy h b K  
y  . Hence, the round-off error will be 

dominated by adding jj
 to 1n

2
1 =1

s

n jh b K  hy y  . In 
each time-step we estimate the round-off error caused by 
adding 1 =1j  to 1n  and then update 
the solution as follows; First, calculate 

2h  s

n jb K j y hy

where   is the angle between the numerical solution 
and the reference solution. 

3. Numerical Methods and Integrators 

Explicit Runge-Kutta-Nyström methods (ERKN) were 
introduced by E. J. Nyström in 1925 [6]. The efficiency 
of an ERKN method depends upon the approach for 
controlling the error in the numerical approximations. 
One way of controlling the error is to use an adaptive 
step-size technique. In order to control the local error of a 
single step, a pair of formulae of different orders is used 
in such a way that the function evaluations of the two 
methods are identical. If the numerical solution n  is 
obtained by using the lower-order formula, then the pair 
is said to be implemented in lower-order mode. However, 
it is recommended for efficiency reasons that the solution 
yn be obtained using the higher-order formula for the next 
step [11], and the pair operated in this fashion is said to 
be implemented in higher-order mode or local extrapola- 
tion. In this paper we are using two variable-step-size 
ERKN integrators: Integrator ERKN689 is a nine stage, 
6-8 FSAL pair [12] and integrator ERKN101217 is a 
seventeen stage, 10-12 non-FSAL pair [12]. 

y

2
1

=1

= ,
s

n j j
j

hy h b K     

where δ is the estimated round-off error on the previous 
time-step (at the start of the integration 0= ). Since 

=1 j jj
 and δ are small compared to 1n

2
1

s

nhy h b K   y  , 
the error caused in the formation of   is negligible. The 
solution is then updated to  

1=  ,n nY y    

and the estimated round-off error for the time-step is 
calculated as 

= n nY y                (1.4) 

The solution is then updated as n . The velocity 
formula also uses the same concept to control the round- 
off error. 

=ny Y

3.1. Round-Off Error Control for ERKN  
Integrators 

In this paper, we perform experiments with tolerance 
close to the machine precision ( ). Therefore, 
we investigate the possibility of reducing the growth of 
round-off error in the explicit Runge-Kutta-Nyström in- 
tegrators using the technique known as compensated 
summation [13]. The idea of compensated summation is 
based on estimating the dominant contribution term of 
the round-off error. To explain the round-off error control 
technique, we consider the following solution formula 

162.2 10

2
1 1

=1

=
s

n n n j j
j

y y hy h b K    .          (1.3) 

We used the round-off error control technique to in- 
vestigate the maximum error in position ( r ) and 
velocity ( v ) for the Jovian problem described in Sec- 
tion 2. The integration was performed over  years 
using 

E

610
E

= 1L 20 iTO  , for . Table 1 shows the 
maximum values of Er and Ev for the explicit Runge- 
Kutta-Nyström integrators ERKN689 and ERKN101217. 
The column labelled With contains Er and Ev calculated 
when the integration is performed with round-off error 
control, whereas the column labeled Without contains the 
percentage variation corresponding to the values in 
column With when calculated Er and Ev by performing 
integration with-out round-off error control. 

= 4,5, ,8i 

For ERKN689, the maximum values for Er and Ev with 
round-off error control are always less than Er and Ev 
without round-off error control. The only exception is for 

, where the values of Er and Ev in the  1010= TOL

Equation (1.3) contains three types of errors; the 
integration error already in n  from the previous time- 
step, the round-off error in the formation of 

y

1nhy   and  
 

Table 1. The maximum values of Er and Ev for ERKN689 and ERKN101217 obtained with and with-out round-off error 
control applied to the Jovian problem over one million years for the local error tolerances 10−8, 10−10, 10−128, 10−14, 10−16. 

 ERKN689 ERKN101217 

 Er Ev Er Ev 

TOL With Without With Without With Without With Without 

10−8 4.37 × 10−2 +0.02% 6.31 × 10−5 +0.02% 4.70 × 10−1 +0.21% 6.78 × 10−4 +0.29% 

10−10 1.11 × 10−4 −0.91% 1.60 × 10−7 −0.63% 1.63 × 10−3 −0.62% 2.35 × 10−6 −0.86% 

10−12 1.70 × 10−6 +71.8% 1.94 × 10−9 +68.9% 4.82 × 10−5 −0.21% 6.63 × 10−8 −0.15% 

10−14 9.74 × 10−7 +86.0% 9.35 × 10−10 +84.4% 2.42 × 10−5 −6.61% 3.33 × 10−8 −7.77% 

10−16 2.28 × 10−6 +71.0% 1.58 × 10−9 +78.5% 8.71 × 10−6 −7.40% 1.19 × 10−8 −6.25% 
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column Without are close to zero and insignificant com- 
pared with values for smaller tolerances. The maximum 
difference was observed for TOL = 10−14. Here, the 
maximum values for r  and v  obtained with round- 
off error control were approximately 86% and 84% less 
than those obtained without round-off error control. For 
ERKN101217, except for TOL = 10−8, we found that the 
round-off error control technique is not very effective, 
because the errors in the position and velocity obtained 
with round-off error control are not always less than  
and  without round-off error control. 

E E

rE

v

This could be because the average time-step for 
ERKN101217 over  years is quite large. For exam- 
ple, with TOL = 10−14, ERKN101217 takes a time-step of 
approximately 144 days on average over  years, and 
hence, the assumption that 

=1n j jj  is small 
relative to yn−1 is invalid. Therefore, for ERKN101217, 
using  with , it is not recom- 
mended to use the round-off error control technique. 

E

610

610
s

b K2
1hy h  

5,6,7,8=i,10= 2iTOL 

3.2. ODEX2 Integrator 

For the direct numerical solution of systems of second- 
order ordinary differential equations, Hairer, Nørsett and 
Wanner [14] developed an extrapolation code ODEX2 
based upon the explicit midpoint rule with order selec- 
tion and step-size control. The ODEX2 integrator is good 
for all tolerances, especially for high precision, like 10−20 
or . To observe the change in results for r , we 
performed experiments with a variety of default settings 
of ODEX2, for example, by setting the parameter  
used for controlling the local error to 0 or 1. We ob- 
served that there is hardly any significant difference in 
results when applied to the Jovian problem over one 
million years for  to . 

3010 E

ITOL

1610= TOL 810

3.3. Step-Size Variation 

Here, we investigate the step-size variation for the vari- 
able-step-size integrators ERKN689, ERKN101217, and 
ODEX2 applied to the Jovian problem. The eccentricities 
of the orbits of the Jovian planets are no more than 0.1 
and there are no close-encounters between the planets. 
Therefore, the variable-step-size integrators should re- 

quire small step-size variation. Table 2 shows the step- 
size variation for the above integrators applied to the 
Jovian problem over one million years for the local error 
tolerances in the range 10−16 to 10−8. The columns hmn 
and mx  list the percentage variation in the minimum 
and maximum step-sizes relative to the mean step-size. 
For example,  is calculated as  

h

mnh

= 100 ,min
mn

h h
h

h

 
 
 

 

where, min  is the smallest step-size used and h h  the 
mean step-size. For these results, we considered the on- 
scale step-sizes by ignoring the first few step-sizes in a 
transient region near  as well as the final step-size. 0=t

The step-size variation depends both upon the integra- 
tor and the tolerance chosen and ranges from approxi- 
mately −34% to 152%. The largest variation between the 
maximum and minimum step-sizes occurs for ERKN689 
with TOL = 10−16, where it is a factor of three, with  
ranging from 

h
0.89h  to h2.52 . For the purpose of our 

work, we regard this variation as small. This small step- 
size variation enables us to add a fixed-step-size integrator 
S -13 (Störmer of order 13) in this paper. Therefore, we 
conclude that TOL has little effect on the step-size varia- 
tion for ERKN101217 and ODEX2. 

To see the effect of round-off error, we also performed 
integrations with TOL = 10−14 in quadruple-precision 
arithmetic. The percentage variations of mn  and mx  
were approximately −18% and 133% for ERKN689, 
−20% and 21% for ERKN101217, and −30% and 21% 
for ODEX2. Except for mx  in ERKN101217, the step- 
size variations obtained in quadruple-precision arithmetic 
have reasonably good agreement with Table 2. Hence 
the round-off error is not significant with . 

h

TOL

h

14

h

10= 

3.4. Störmer Methods 

Störmer methods are an important class of methods for 
solving systems of second-order differential equations. 
Introduced by Störmer [7], the methods have long been 
utilised for accurate long-term simulations of the Solar 
System [2]. Grazier [15] recommended an order-13, fixed- 
step-size Störmer method that uses backward differences 

 
Table 2. Step-size variation for the variable-step-size integrators ERKN689, ERKN101217, and ODEX2 applied to the Jovian 
problem over one million years, with the local error tolerance TOL as specified in the first column. 

 ERKN689 ERKN101217 ODEX2 

TOL hmn hmx hmn hmx hmn hmx 

10−8 −17% 84% −20% 23% −30% 14% 

10−10 −17% 99% −20% 22% −13% 12% 

10−12 −18% 115% −19% 21% −30% 31% 

10−14 −18% 134% −20% 32% −29% 21% 

10−16 −18% 152% −34% 71% −21% 26% 
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in summed form, summing from the highest to lowest 
differences. The test results in [9] for simulations of the 
Sun, Jupiter, Saturn, Uranus and Neptune in double pre- 
cision showed that the error in the energy and phase error 
grows as  and , respectively, to within numeri- 1/2t 3/2t

cal uncertainty when the step-size is (
1024

1
)-th (4.1 days)  

of Jupiter’s orbital period. This choice of step-size en- 
sures that the local truncation error of the Störmer method 
is well below machine precision. In this paper we con- 
sider the fixed-step-size Störmer method of order 13 and 
refer to it as the S -13 integrator. 

4. Numerical Experiments for Long-Term 
Simulation 

First we consider the error growth in the position and 
velocity using the variable-step-size integrators ODEX2, 
ERKN689, and ERKN101217. We obtained the reference 
solution in quadruple-precision using ERKN101217 with 
TOL = 10−18. To justify this particular choice for the ref- 
erence solution, we integrated the Jovian problem using 
the ERKN101217 integrator with TOL = 10−20. The 
maximum difference between the positions and velocities 
of these two solutions is no more than . We 
also integrated the Jovian problem in quadruple-precision 
with the tolerance TOL = 10−18, but using the ERKN689 
integrator and found that the maximum difference with 
the solution for ERKN101217 with TOL = 10−18 is no 
more than . This suggests that the  
ERKN101217 integrator with TOL = 10−18 is sufficiently 
accurate to obtain the reference solution. 

13104.61 

13105.11 

Figure 1 illustrates the unweighted 2 -norm of the 
estimation of the maximum global error in the position as  

L

 

10
−16

10
−14

10
−12

10
−10

10
−8

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

TOL

M
ax

. g
lo

ba
l e

rr
or

 (
po

si
tio

n)

 

 

ODEX2
ERKN689
ERKN101217

 

Figure 1. The maximum global error in position for the 
variable-step-size integrators ODEX2, ERKN689, and 
ERKN101217 applied to the Jovian problem over one million 
years for local error tolerances ranging from 10−16 to 10−8. 

a function of tolerance with three variable-step-size inte- 
grators ODEX2, ERKN689, and ERKN101217 for the 
Jovian problem over one million years. In most cases, the 
maximum global error occurs at the end point of the 
integration. We chose the range  to 1610 810  for the 
local error tolerance, because  is close to machine 
precision in double-precision arithmetic and tolerances 
greater than 

1610

810  lead to errors that are too large to be 
meaningful. The result for ODEX2 is an accuracy (maxi- 
mum global error) that ranges from 7.4 × 10−5 to 1.1 × 
102. We observe that the maximum accuracy (minimum 
of the maximum global error) is obtained with TOL = 
10−16 and the minimum accuracy with 8TO = 10L  . The 
graph for ODEX2 exhibits three phases: In the middle 
phase, with  the round-off error does 
not yet affect the global error. Round-off has an effect for 

, which we further investigated by using 
smaller tolerances, i.e, , for k = 0.2, 0.4, 
0.6, 0.8, and 1. As  decreases further from , 
the global error starts to increase again, which indicates 
the influence of the round-off error. The phase for TOL > 
10−11, shows a global error of approximately  AU, 
which is the diameter of Jupiter’s orbit. Here, the inte- 
grator still finds the orbit but at an arbitrary position 
angle that could deviate as much as 180˚. We evaluated 
the phase error using the formula described in Section 2 
and found that it is approximately 172˚. This means that 
the amplitude of the orbit is not changing, but the error in 
its phase angle may be as large as π. 

]12

10=

,10[10 15 

TOL
TOL

TOL

1610TOL
k16

1610

110

Let us now consider the integrator ERKN101217 in 
Figure 1. Here, the accuracy ranges from  to 

. The maximum accuracy is again obtained 
with TOL = 10−16 and the minimum with TOL = 10−8. We 
observe that from TOL = 10−11 to 10−16 there is hardly 
any gain in accuracy. Therefore, if the best accuracy is 
required then TOL = 10−16 should be used, but otherwise, 
a small sacrifice in accuracy will save a considerable 
amount of CPU-time. 

6108.7 
1104.6 

The integrator ERKN689 has an accuracy ranging from 
 to , with the maximum accuracy 

obtained at TOL = 10−14 and the minimum at TOL = 10−8. 
Therefore, nothing is gained by decreasing the tolerance 
from  to . The maximum at TOL = 10−14 is 
an indicator that the round-off error affects the global 
error when using tolerances between  and . 
To measure the possible effect of round-off error, we 
performed experiments in quadruple-precision. We ob- 
tained the maximum global error in the position as a 
function of tolerance for the local error tolerances  
and  using ERKN689 and ERKN101217. We ob- 
served that both curves are straight and maintain a dif- 
ference of about 1.5 orders of magnitude. In particular, 
the graph is not bending up for ERKN689 using the small 
tolerance of . This confirms the effect of round-off 

7109.7 

1410

1010

2104.4 

1610

1610

1410 1610

1610
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error in the double-precision arithmetic. We conclude 
from Figure 1 that, for local error tolerances ranging 
from TOL = 10−16 to , the integrator ERKN689 is 
the most accurate and ODEX2 is the least accurate inte- 
grator. 

810

Let us now compare this performance with the S -13 
integrator. Figure 2 shows the error growth in the posi- 
tion for the Jovian problem using the integrators S -13, 
ODEX2, ERKN689, and ERKN101217. The integration 
was performed over  years and the error was sam- 
pled at every 100 years. The integration with the 

610
S -13 

integrator was performed in double-precision using a 
step-size of four days. 

We performed two sets of experiments. For the first 
set of experiments, we maintained a given accuracy of 
approximately 10−4 for the maximum global error in the 
position over 106 years. We set , 10−10, and 
10−11 for ODEX2, ERKN689, and ERKN101217, respec- 
tively; note that this variation in tolerance is necessary to 
achieve the prescribed accuracy, as illustrated in Figure 
1. For small 

1610= TOL

t , ERKN689 and ERKN101217 are more 
accurate than the other two integrators, but there is a 
crossover approximately at 5  years. We see in 
Figure 2 that the three variable-step-size integrators 
achieve almost the same accuracy for the global error in 
position at the end of  years of integration and the 
fixed-step-size integrator 

410

610
S -13 achieves almost one or- 
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Figure 2. The error growth in position for the integrators 

S -13, ODEX2, ERKN689, and ERKN101217 applied to the 
Jovian problem over one million years. The selection of 
local error tolerances is subject to a prescribed maximum 
accuracy. 

der of magnitude better accuracy than the variable-step- 
size integrators. 

To gain insight about the error growth depicted in 
Figure 2, we used unweighted linear least squares to fit a 
power law  to r . We found that the integration 
error for the integrators ERKN689 and ERKN101217 
grows approximately as  (quadratic growth), while 
for ODEX2 and 

t E

2t
S -13 it is approximately . The 

error growth for ODEX2 is unexpected. Therefore, we 
repeated the integrations for ODEX2 by increasing the 
tolerance from  to  and ; then 
we observe approximately the quadratic error growth. 

3/2t

14101610=TOL 1510

The second set of experiments for integrators S -13, 
ERKN689, and ERKN101217, labelled S-13-M,  
ERKN689-M and ERKN101217-M in Figure 2, respec- 
tively, are done such that maximum accuracy is main- 
tained. To attain maximum accuracy, integrators ERKN689 
and ERKN101217 use  and 1410= TOL 1610 , respec- 
tively. For S -13, we performed experiments with step- 
size variations as shown in Table 3. We observe that 
S -13 achieves best accuracy with a step-size of ap- 
proximately 10 days. The performance of the ODEX2 
integrator at the prescribed accuracy, as shown in Figure 
1, is also at the maximum accuracy for the local error 
tolerance of . When performed at the maximum 
accuracy, there is no longer a crossover of the 

1610

S -13 in- 
tegrator with the integrators ERKN689 and ERKN101217. 
At the end of 106 yuracyears of integration, ERKN689 
achieves the best acc and ERKN101217 achieves the next 
best accuracy. 

Some of the plots in these kinds of experiments have 
high-frequency oscillations. In order to smooth that data, 
the filter command in Matlab was employed with a win- 
dow size of 50. The appropriate choice of window size is 
important. We have experimented (using the experiments 
illustrated in Figure 2 with the exclusion of those 
labelled S-13M, ERKN689-M, and ERKN101217-M) for 
values of window sizes, 0, 10, 20, and 50 as shown in 
Figure 3. Figure 3(a) shows the result without filtering 
(WS = 0). There are enough oscillations of sufficient am- 
plitude that it is difficult to distinguish the graphs. If the 
window size is small, as shown in Figure 3(b) (WS = 10) 
then quite a few oscillations are still there and it is not 
clear which of the integrators is being crossed. A window 
size of 50 seems to be a sensible value for this set of 
experiments. As is shown in Figure 3(d), it is quite clear 
that S -13 crosses only the integrators ERKN689 and 
ERKN101217. We also observed (although not shown)  

 
Table 3. The maximum global error as a function of the step-size for the fixed-step-size integrator S -13, applied to the 
Jovian problem over one million years. 

Days 4 10 15 20 25 30 

Global error in position 1.96 × 10−5 1.08 × 10−5 1.89 × 10−5 3.95 × 10−5 6.23 × 10−5 1.05 × 10−4 
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(c)                                                             (d) 

Figure 3. Experiments with a variation of the window size for the Matlab function filter. The window size is set to 0, 10, 20 
and 50 in plots (a)-(d), respectively. 

 
that filtering can complicate the interpretation of results 
for the first WS points, but this effect can be removed by 
ignoring the first WS points. 

Let us now consider the accuracy of the integrators in 
terms of the relative error in energy and angular momen-
tum. Figure 4 shows the error growth in the energy for 
the Jovian problem. The integration has been performed 
in double-precision over  years using the same local 
error tolerances and integrators as for the results shown 
in Figure 2. For this set of experiments, we used the 
filter command in Matlab with a larger window size of 
WS = 100, because the oscillations were more pronounc- 
ed than the set of experiments shown in Figure 2. The 
interval of integration is divided into 10,000 evenly spac- 
ed sub-intervals. To see the effect on the performance of 
the integrator by forcing it to hit every 100 years. We 
also performed experiments using ERKN101217, where 
we forced the integrator to hit every 50 and 200 years.  

610

We found three parallel graphs with a maximum differ- 
ence in errors at  years of no more than . 
Using 10,000 sub-intervals, we calculate the 2 -norm of 
the relative error in energy and angular momentum on 
the last accepted time step at the end of each sub-interval. 

610 13103.5 
L

Similar to the set of experiments illustrated in Figure 
2 that attain a given accuracy of , for the integrators 
ERKN689 and ERKN101217 (labeled by ERKN689-G 
and ERKN101217-G in Figure 4, respectively) we ob- 
serve an error growth proportional to 

410

t  in energy and 
angular momentum. For ODEX2, the error growth for 
energy and angular momentum shows some oscillations. 
The integrations were repeated for ODEX2 by increasing 
the tolerance from  to  and , 
which causes the oscillations to disappear. This indicates 
that round-off error is the cause of the oscillations. Ap- 
proximately linear error growth in energy and angular  

1610= TOL 1510 1410
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Figure 4. The error growth in the energy for the four 

integrators S -13, ODEX2, ERKN689, and ERKN101217 
applied to the Jovian problem over one million years. The 
selection of local error tolerances is subject to attaining the 
given and maximum accuracy. 

 
momentum was observed particularly for ODEX2 with 

. As in Figure 2, the integrators ODEX2 and 1410= TOL
S -13 with step-sizes of four days, cross the integrators 
ERKN689 and ERKN101217. 

However, this crossover for the relative error in energy 
occurs at a smaller t  than for the global error in posi- 
tion. We observe from Figure 4 that, for the relative error 
in energy, the integrator ERKN689 using 14= 10TOL   
(labeled by ERKN689-M) again achieves the best accu- 
racy. 

Let us now consider the efficiency of the integrators, 
which is the amount of work to attain prescribed accu- 
racy. One way of measuring the work of different inte- 
grators is to count the number of function evaluations. 
Figure 5 shows plots of the number of function evalua- 
tions against the maximum global error in position, 
obtained for the variable-step-size integrators ERKN689, 
ERKN101217, and ODEX2, and applied to the Jovian 
problem over one million years with  ranging from 

 to . As described in Figure 1 the best accu- 
racy for ERKN689 is achieved at , which 
needs approximately 1.7 and 2.7 times more function 
evaluations than ERKN101217 and ODEX2, respectively. 
If we consider tolerances such that all three integrators 
achieve the same accuracy  then ERKN101217 is 
the most efficient, because it uses the least number of 
function evaluations. The integrator ERKN689 is approxi- 
mately 2.4 and ODEX2 approximately 3.3 times more 
expensive than ERKN101217. Our conclusion slightly 
changes by reducing the accuracy from 

TOL

TOL

1610 1010

14= 10

410

410

  to ap- 
proximately  or . The integrator ERKN101217 
again achieves the best accuracy compared to the inte- 
grators ODEX2 and ERKN689. For an accuracy of ap- 
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Figure 5. Efficiency plots showing the number Nfev of 
function evaluations against the L2-norm of the maximum 
global error in position, obtained for the variable-step-size 
integrators ERKN689, ERKN101217, and ODEX2, applied 
to the Jovian problem over one million years with TOL 
ranging from 10−16 to 10−8. 

 
proximately , the integrator ODEX2 is approxi- 
mately 1.9 and ERKN689 approximately 2.1 times more 
expensive than ERKN101217. In contrast, for an accu- 
racy of approximately , the integrators ODEX2 and 
ERKN689 achieve almost the same accuracy and are 
approximately 2 times more expensive than ERKN101217. 

310

210

We also investigated the CPU-time taken by the same 
variable-step-size integrators applied to the Jovian prob- 
lem over one million years with local error tolerances in 
the range from  to . For , we 
found that ODEX2 and ERKN101217 take almost the 
same CPU-time, but ERKN101217 has approximately 
four orders of magnitude better accuracy than ODEX2. 
For the same tolerance, ERKN689 is almost three times 
more expensive than ERKN101217 and ODEX2, but has 
approximately one and five orders of magnitude better 
accuracy, respectively. For a given accuracy of approxi- 
mately , , and , ERKN101217 takes the 
least CPU-time. Hence, the integrator ERKN101217 is 
the cheapest option. 

1610

3

810

210

1010= TOL

410 10

For the given range of tolerances from 10−16 to 10−10, 
we found that ERKN689 achieves the best accuracy (at 

), which is approximately one and two or- 
ders of magnitude better than the best accuracies achieved 
by ERKN101217 and ODEX2, respectively. At the same 
point in-time, ERKN689 is almost 1.6 and 2.4 times more 
expensive than ERKN101217 and ODEX2, respectively. 
These results clearly illustrate a trade-off between accu- 
racy and efficiency. 

1410= TOL

5. Conclusions 

The main objective of this paper was to analyse and 

Copyright © 2013 SciRes.                                                                                AJCM 



S. U. REHMAN 203

compare the efficiency and the error growth for different 
numerical integrators applied to the realistic problem 
involving the Sun and four Gas-giants. Throughout the 
paper, we examined the growth of the global error in the 
positions and velocities of the bodies, and the relative 
error in the energy and angular momentum of the system. 
The simulations were performed over as much as  
years. 

610

For long-term simulations, we performed experiments 
to observe the error growth in the positions and velocities 
using the variable-step-size integrators ODEX2, ERKN689, 
and ERKN101217, applied to the Jovian problem over 
one million years for local error tolerances in the range 

 to . We observed that the integrators ODEX2, 
ERKN689, and ERKN101217 attained maximum accu- 
racy with , and , respectively. 
Overall, we observed that for the local error tolerances in 
the range TOL = 10−16 to 10−8, the integrator ERKN689 is 
the most accurate and ODEX2 is the least accurate. We 
also observed that the integration error for the integrators 
ERKN689 and ERKN101217 grows approximately as , 
while it grows as  for ODEX2 and 

1610 810

TO 16 14= 10 , 10L  

3/2t

1610

2t
S -13. The error 

growth for ODEX2 was unexpected. Therefore, integra- 
tions were repeated for ODEX2 by increasing the toler- 
ance from  to  and , for which 
we did observe the quadratic error growth. 

1610=  10TOL 15 1410

We then investigated the efficiency of the integrators 
by counting the number of function evaluations against 
the maximum global error. We observed that the best 
accuracy achieved by ERKN689 uses approximately 1.7 
and 2.7 times more function evaluations than ERKN101217 
and ODEX2, respectively. Instead, if we require ap- 
proximately the same accuracy of  achieved by all 
three integrators, the ERKN101217 is the most efficient, 
because it uses the least number of function evaluations. 
The integrator ERKN689 is approximately 2.4 and ODEX2 
approximately 3.3 times more expensive than  
ERKN101217. We then investigated the CPU-time and 
observed that for a given accuracy of , the number 
of function evaluations is proportional to the CPU-time. 
Hence, also in terms of CPU-time ERKN101217 is the 
cheapest option, which is approximately 2.4 and 3.3 
times more efficient than ERKN689 and ODEX2, respec- 
tively. For the given range of tolerances from  to 

, the integrator ERKN689 achieved best accuracy, 
which is approximately one and two orders of magnitude 
better than the best accuracy achieved by ERKN101217 
and ODEX2, respectively. At the same point in time, 
ERKN689 is almost 1.6 and 2.4 times more expensive 
than ERKN101217 and ODEX2, respectively. These re- 
sults clearly illustrate a trade-off between the accuracy 
and the efficiency. 

410

10 4

1610

810

We also measured the accuracy of the integrators by 
obtaining the relative error in energy and angular mo- 

mentum. For the integrators ERKN689 and ERKN101217, 
the error growth is proportional to t , and for ODEX2 
with , we observe approximately linear er- 
ror growth in energy and angular momentum. 

1410= TOL
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