
American Journal of Computational Mathematics, 2013, 3, 86-89
http://dx.doi.org/10.4236/ajcm.2013.31014 Published Online March 2013 (http://www.scirp.org/journal/ajcm)

A Sieve for Prime Based on Extension
Form of Not Prime

Gabriele Martino
Via Cornelia, Rome, Italy

Email: martino.gabri@gmail.com

Received October 10, 2012; revised November 21, 2012; accepted December 3, 2012

ABSTRACT

This paper will illustrate two versions of an algorithm for finding prime number up to N, which give the first version
complexity

  1 log 2O c N N c   (1)

where c1, c2 are constants, and N is the input dimension, and gives a better result for the second version. The method is
based on an equation that expresses the behavior of not prime numbers. With this equation it is possible to construct a
fast iteration to verify if the not prime number is generated by a prime and with which parameters. The second method
differs because it does not pass other times over a number that has been previously evaluated as not prime. This is pos-
sible for a recurrence of not prime number that is (mod 3) = 0. The complexity in this case is better than the first. The
comparison is made most with Mathematics than by computer calculation as the number N should be very big to appre-
ciate the difference between the two versions. Anyway the second version results better. The algorithms have been de-
veloped in an object oriented language.

Keywords: Prime Number; Equation; Sieve

1. Introduction

Prime numbers are numbers that can be divided only by
one or by themselves in order to get integer number. They
are probably the most famous number’s series. For find-
ing the primes up to N, 2 main Sieves have been devel-
oped. One is the Eratosthenes Sieve [1] that is based on
eliminating the not prime that is generated by multiplies
of numbers over a list. For this Sieve the complexity is

. Another Sieve is the Atkins and Bernstein Sieve
[2,3], which is based on the remainder of modulo sixty.
 O N

In this case the complexity is
log log

N
O

N



 


 . This paper

aims to continue on this work improving the sieving.
Observe that all the odd numbers are not prime if they
are of the form

2np p p kp   (2)

where p is a prime number > 1 and and
np is for not prime.Taking all the numbers for x odd
where the set of the odds is bigger than the set of prime,
and k integer is possible to cover all the Not Prime set.
There are some repetition in particular those that have
remainder 0 divided by 3 (Of course the x = 3 series must
be generated first and after a number np can be consid-

ered not prime already counted if divided by 3 gives re-
mainder 0). In the first algorithm we give a solution with
repetition in building the set of not prime. In the second
we avoid the repetition considering that a square number
generated from an odd, generate vary k, two possible
kind of repetition: in the first is repeated for each k (mod
3) = 2, and in the second for each k (mod 3) = 3.

 0,1, 2,3,k  

2. Methods

2.1. Method I

The follow is a explanation of the method for the search
of prime. We want to count the prime up to N. We extend
our iteration variable in the interval 0, N



 . The

numbers (mod 2) = 0 are not primes. For the prime num-
ber we generate first p p as not prime and after gen-
erate 2p p k p    . With p that can be an also an odd
number because the set of primes is in the set of odds
except that number 2 and p N . The algorithm is
presented in the appendix.

2.2. Method II

Another better result can achieved thinking that the
numbers (mod 3) = 0, repeat in the count. I observed that

Copyright © 2013 SciRes. AJCM

G. MARTINO 87

there are 3 kind of repetition. n for every k
like 9   for
every k counted 1 (not counted 0) in the sequence
101-101-101 like 5. And for every k in the sequence
110-110-110 like 7.

 mod 3 0p 
odd mod3, 27, . odd odd 0k   

We should make it in a way that affords us to go over
a case of 0 and go to next k = k + 1, avoiding count repe-
tition.

Example 7 × 7 = 49 (mod 3 different from 0) not
counted; 7 × 7 + 2 × 7 = 63 (mod 3 = 1) already counted
in the 3 sequence; 7 × 7 + 4 × 7 = 77 not counted. They
gives the sequence 101.

3. Results

To count the primes up to 1,000,000 both methods take 3
seconds. This means that only for bigger N a comparison
of methods is possible. The second should anyway take
less time than the first. The test has been done with an

machine Asus Intel i7 with 4 GB Ram, with an Operative
System Windows 7 and the platform Java.

REFERENCES
[1] Wikipedia.

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

[2] A. O. L. Atkin and D. J. Bernstein, “Prime Sieves Using
Binary Quadratic Forms,” Mathematics of Computation,
Vol. 73, 2004, pp. 1023-1030.
doi:10.1090/S0025-5718-03-01501-1

[3] Wikipedia. http://en.wikipedia.org/wiki/Sieve_of_Atkin

[4] http://math.stackexchange.com/questions/141224/finite-s
um-of-reciprocal-odd-integers

[5] T. M. Apostol, “Calculus I,” Bollati Boringhieri, 2003, p.
481.

[6] Wikipedia. http://en.wikipedia.org/wiki/Harmonic_series

Copyright © 2013 SciRes. AJCM

http://dx.doi.org/10.1090/S0025-5718-03-01501-1

G. MARTINO 88

Appendix

Algorithm I

N we count the prime up to N
primes [N] = true for each element
r N
for do 1i i   N

r

primes [i] = false
2i i 

end for
for do 2i i  

   1 1j i i   
j N

while do

if || then  mod 3 ! 0j 


2i 
1primes j   false

end if
 2 1j j i   

end while
2i i 

end for
return primes

Computational Complexity of Algorithm I
We call C(A) the complexity of the second loop, whereas,
T(A) is the complexity of all the code.

   
2

N
C A O T A

   
 

We use the approximation

 
2

1,odd

1

2

N

I

N
I



 
 

 
 (3)

as stated in [4]

1 1

1 1 1 1
b

n b aN a

k ka k b a k k



 

 
     
 

 
1k


 (4)

and

1

1
log

N

k

N
k

 
 
 

 � (5)

as stated in [5,6]
The complexity of the first method is given by the 2

nested loop in the algorithm.

 
 2

3,odd 2

N

I

N I
C A

I

 
  
  



Separating the members of addition

3,odd 2 2

N

I

N I

I

 


Evaluating the second member with (3)

 2

3
3,odd

1 1

2 22

N

I

NN

I

 
  



Taking out of the first member the constant operation

 
3

3,odd

2 11 1

2 22

N

I

N NN

I

  
   
 
 

Changing the form for odd number at first member

 1
2

3
2

2 11 1

2 2 1 22

N

k

N NN

k





         
 



Extending the sum adding and subtracting the same
element

 1
2

3
1

2 51
2

2 2 1 2

N

k

N NN
N

K





        
 



Using the (4)

 1 1
1

2 2 2

3
1 1

2 51 1

2 2

N

k k

N NN N

K K

 

 

       
 
 

 
2

Using the (5)

    
3

2 5
log 3

2 2

N NN
N

 
 

That asymptotically goes like

   1 log 2T A c N N c  

Algorithm II

N we want to count the primes until N
primes [N] = true

 r N

for 1; ; 2i i N i i    do
primes [i] = false

end if
for 2; ; 2i i r i i    do

   square 1 1i i   
j = square
k = 0
condition = "";
if  2j i 1   mod 3 == 0 And then  1 ! 3i  

condition = "101";
else if  4j i 1   mod 3 == 0 And  1 ! 3i  

then
condition = "110"

else if  1 ! 3i   then
condition = "111"

Copyright © 2013 SciRes. AJCM

G. MARTINO

Copyright © 2013 SciRes. AJCM

89

end if ;j N
if condition = ("110") And then  mod 3 2k end if

while And! ("111") do j N 1k k 
if j mod 3! = 0 or i == 2 then end if

 1primi j false   square 2 1j k i    
end if end while

end for 1k k 
if condition = ("101") And then  mod 3 1k  returns primes

1k k 

