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ABSTRACT 

This paper will illustrate two versions of an algorithm for finding prime number up to N, which give the first version 
complexity  

  1 log 2O c N N c                                       (1) 

where c1, c2 are constants, and N is the input dimension, and gives a better result for the second version. The method is 
based on an equation that expresses the behavior of not prime numbers. With this equation it is possible to construct a 
fast iteration to verify if the not prime number is generated by a prime and with which parameters. The second method 
differs because it does not pass other times over a number that has been previously evaluated as not prime. This is pos-
sible for a recurrence of not prime number that is (mod 3) = 0. The complexity in this case is better than the first. The 
comparison is made most with Mathematics than by computer calculation as the number N should be very big to appre-
ciate the difference between the two versions. Anyway the second version results better. The algorithms have been de-
veloped in an object oriented language.  
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1. Introduction 

Prime numbers are numbers that can be divided only by 
one or by themselves in order to get integer number. They 
are probably the most famous number’s series. For find- 
ing the primes up to N, 2 main Sieves have been devel- 
oped. One is the Eratosthenes Sieve [1] that is based on 
eliminating the not prime that is generated by multiplies 
of numbers over a list. For this Sieve the complexity is 

. Another Sieve is the Atkins and Bernstein Sieve 
[2,3], which is based on the remainder of modulo sixty.  
 O N

In this case the complexity is 
log log

N
O

N



 


 . This paper  

aims to continue on this work improving the sieving. 
Observe that all the odd numbers are not prime if they 
are of the form  

2np p p kp                  (2) 

where p is a prime number > 1 and  and 
np is for not prime.Taking all the numbers for x odd 
where the set of the odds is bigger than the set of prime, 
and k integer is possible to cover all the Not Prime set. 
There are some repetition in particular those that have 
remainder 0 divided by 3 (Of course the x = 3 series must 
be generated first and after a number np can be consid-

ered not prime already counted if divided by 3 gives re-
mainder 0). In the first algorithm we give a solution with 
repetition in building the set of not prime. In the second 
we avoid the repetition considering that a square number 
generated from an odd, generate vary k, two possible 
kind of repetition: in the first is repeated for each k (mod 
3) = 2, and in the second for each k (mod 3) = 3. 

 0,1, 2,3,k  

2. Methods 

2.1. Method I 

The follow is a explanation of the method for the search 
of prime. We want to count the prime up to N. We extend 
our iteration variable in the interval 0, N



 . The 

numbers (mod 2) = 0 are not primes. For the prime num-
ber we generate first p p  as not prime and after gen-
erate 2p p k p    . With p that can be an also an odd 
number because the set of primes is in the set of odds 
except that number 2 and p N . The algorithm is 
presented in the appendix. 

2.2. Method II 

Another better result can achieved thinking that the 
numbers (mod 3) = 0, repeat in the count. I observed that 
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there are 3 kind of repetition. n for every k 
like 9   for  
every k counted 1 (not counted 0) in the sequence 
101-101-101 like 5. And for every k in the sequence 
110-110-110 like 7. 

 mod 3 0p   
odd mod3, 27, . odd odd 0k    

We should make it in a way that affords us to go over 
a case of 0 and go to next k = k + 1, avoiding count repe- 
tition. 

Example 7 × 7 = 49 (mod 3 different from 0) not 
counted; 7 × 7 + 2 × 7 = 63 (mod 3 = 1) already counted 
in the 3 sequence; 7 × 7 + 4 × 7 = 77 not counted. They 
gives the sequence 101. 

3. Results 

To count the primes up to 1,000,000 both methods take 3 
seconds. This means that only for bigger N a comparison 
of methods is possible. The second should anyway take 
less time than the first. The test has been done with an 

machine Asus Intel i7 with 4 GB Ram, with an Operative 
System Windows 7 and the platform Java. 

REFERENCES 
[1] Wikipedia.  

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes  

[2] A. O. L. Atkin and D. J. Bernstein, “Prime Sieves Using 
Binary Quadratic Forms,” Mathematics of Computation, 
Vol. 73, 2004, pp. 1023-1030.  
doi:10.1090/S0025-5718-03-01501-1  

[3] Wikipedia. http://en.wikipedia.org/wiki/Sieve_of_Atkin  

[4] http://math.stackexchange.com/questions/141224/finite-s
um-of-reciprocal-odd-integers 

[5] T. M. Apostol, “Calculus I,” Bollati Boringhieri, 2003, p. 
481.  

[6] Wikipedia. http://en.wikipedia.org/wiki/Harmonic_series 

 

Copyright © 2013 SciRes.                                                                                AJCM 

http://dx.doi.org/10.1090/S0025-5718-03-01501-1


G. MARTINO 88 

Appendix 

Algorithm I 

N we count the prime up to N 
primes [N] = true for each element 
r N  
for  do 1i i   N

r

primes [i] = false 
2i i   

end for 
for  do 2i i  

   1 1j i i   
j N

  
while  do 

if  ||  then  mod 3 ! 0j 


2i 
1primes j   false  

end if 
 2 1j j i     

end while 
2i i   

end for 
return primes  

Computational Complexity of Algorithm I 
We call C(A) the complexity of the second loop, whereas, 
T(A) is the complexity of all the code. 

   
2

N
C A O T A

   
 

 

We use the approximation 

 
2

1,odd

1

2

N

I

N
I



 
 

 
              (3) 

as stated in [4] 

1 1

1 1 1 1
b

n b aN a

k ka k b a k k



 

 
     
 

 
1k


         (4) 

and 

1

1
log

N

k

N
k

 
 
 

 �                (5) 

as stated in [5,6] 
The complexity of the first method is given by the 2 

nested loop in the algorithm. 

 
 2

3,odd 2

N

I

N I
C A

I

 
  
  

  

Separating the members of addition 

3,odd 2 2

N

I

N I

I

 
  

Evaluating the second member with (3) 

 2

3
3,odd

1 1

2 22

N

I

NN

I

 
  

  

Taking out of the first member the constant operation 

 
3

3,odd

2 11 1

2 22

N

I

N NN

I

  
   
 
   

Changing the form for odd number at first member 

 1
2

3
2

2 11 1

2 2 1 22

N

k

N NN

k





         
 

  

Extending the sum adding and subtracting the same 
element 

 1
2

3
1

2 51
2

2 2 1 2

N

k

N NN
N

K





        
 

  

Using the (4) 

 1 1
1

2 2 2

3
1 1

2 51 1

2 2

N

k k

N NN N

K K

 

 

       
 
 

 
2

 

Using the (5) 

    
3

2 5
log 3

2 2

N NN
N

 
   

That asymptotically goes like 

   1 log 2T A c N N c    

Algorithm II 

N we want to count the primes until N 
primes [N] = true 

 r N  

for 1; ; 2i i N i i     do 
primes [i] = false  

end if 
for 2; ; 2i i r i i     do 

   square 1 1i i     
j = square 
k = 0 
condition = ""; 
if  2j i 1    mod 3 == 0 And  then  1 ! 3i  

condition = "101"; 
else if  4j i 1    mod 3 == 0 And  1 ! 3i    

then 
condition = "110" 

else if  1 ! 3i    then 
condition = "111" 
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end if ;j N  
if condition = ("110") And  then   mod 3 2k  end if 

while  And! ("111") do j N 1k k   
if j mod 3! = 0 or i == 2 then end if 

 1primi j false    square 2 1j k i      
end if end while 

end for 1k k   
if condition = ("101") And  then  mod 3 1k  returns primes 

1k k   
 


